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1 Introduction and main result
In this article, we study the existence and multiplicity of positive solutions to the following
Schrödinger–Poisson system:

⎧
⎪⎪⎨

⎪⎪⎩

–�u – φu = u5 + λ
uγ , in Ω ,

–�φ = u2, in Ω ,

u = φ = 0, on ∂Ω ,

(1.1)

where Ω ⊂ R
3 is a smooth bounded domain, 0 < γ < 1, λ > 0 is a real parameter. It is well

known that system (1.1) is related to the following system:
⎧
⎨

⎩

–�u + Vu + φu = f (x, u), in R
3,

–�φ = u2, in R
3,

(1.2)

which was firstly introduced by Benci and Fortunato in [1]. It described the quantum me-
chanics models and semiconductor theory. We can learn more details about physical back-
ground from [2, 3] and the references therein. System (1.2) has been extensively studied,
focusing on the existence of positive solutions, multiplicity of solutions, ground state so-
lutions, sign-changing solutions, radial solutions, by using the variational methods and
critical point theory under various assumptions of potential V and nonlocal term f , see
for example [4–17] and the references therein.

In addition, existence and multiplicity of the Schrödinger–Poisson problem in a bounded
domain has been paid attention to by many authors, we can see [18–24]. More precisely,
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Fan [21] considered the following system:

⎧
⎪⎪⎨

⎪⎪⎩

–�u + l(x)φu = fλ|u|q–1u + g(x)u5, in Ω ,

–�φ = l(x)u2, in Ω ,

u = φ = 0, on ∂Ω ,

where Ω ⊂ R
3 is a bounded domain with smooth boundary, 1 < q < 2, and the functions

l(x), fλ, and g(x) satisfy some assumptions, the author proved multiple positive solutions
with the help of Nehari manifold and Ljusternik–Schnirelmann category theory.

Zhang in [22] considered the system involving singularity on bounded domain as fol-
lows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–�u + ηφu = λu–γ , in Ω ,

–�φ = u2, in Ω ,

u > 0, in Ω ,

u = φ = 0, on ∂Ω .

(1.3)

For η = 1 and λ > 0, the author obtained the existence and uniqueness of positive solution
of system (1.3) by using variational method; for η = –1 and λ > 0 small enough, the author
also considered the existence and multiplicity of positive solutions via Nehari manifold.
For the case that replaced with concave-convex nonlinearities and critical growth terms of
system (1.3), the authors in [23] got two positive solutions by using the variational method
and the concentration-compactness principle when λ is small enough.

Recently, Zheng [24] studied the following Schrödinger–Poisson system:

⎧
⎪⎪⎨

⎪⎪⎩

–�u – φu = u5 + λuq–1, in Ω ,

–�φ = u2, in Ω ,

u = φ = 0, on ∂Ω ,

where 2 < q < 6, λ > 0 is a parameter, the authors obtained one positive ground state solu-
tion with the mountain pass theorem and the concentration compactness principle.

As far as we know, there have been no works concerning the existence for system (1.1) up
to now. Motivated by the above papers, we study the Schrödinger–Poisson system involv-
ing critical and weak singular nonlinearities. Compared with the above mentioned papers,
our system has a special point, which makes it difficult to estimate the critical value level.
In order to overcome the difficulty, we shall give a special estimate so that two positive
solutions of the system can be found by applying the variational method.

Now, our main result is as follows:

Theorem 1.1 Assume that γ ∈ (0, 1), then there exists λ∗ > 0 such that, for any λ ∈ (0,λ∗),
system (1.1) has at least two pairs of different positive solutions.

2 Preliminaries
In this section, we give the variational setting for system (1.1) and use the following nota-
tions:
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H1
0 (Ω) is the usual Sobolev space with the norm ‖u‖ = (

∫

Ω
|∇u|2 dx)1/2, and the norm

in Lp(Ω) is represented by |u|p = (
∫

Ω
|u|p dx)1/p. We denote by Br (respectively, ∂Br) the

closed ball (respectively, the sphere) of center zero and radius r. u+
n(x) = max{un, 0}, u–

n(x) =
max{–un, 0}. C1, C2, C3, . . . denote various positive constants, which may vary from line to
line. S is the best Sobolev constant, namely

S = inf
u∈H1

0 {Ω}\{0}

∫

Ω
|∇u|2 dx

(
∫

Ω
|u|6 dx) 1

3
. (2.1)

By using the Lax–Milgram theorem, for each u ∈ H1
0 (Ω), there exists a unique solution

φu which satisfies the second equation of system (1.1). We substitute φu to the first equa-
tion of system (1.1), we can rewrite system (1.1) as follows:

⎧
⎨

⎩

–�u – φuu = u5 + λu–γ , in Ω ,

u = 0, on ∂Ω .
(2.2)

Now we define the energy functional Iλ on u ∈ H1
0 (Ω) by

Iλ(u) =
1
2
‖u‖2 –

1
4

∫

Ω

φu
(
u+)2 dx –

1
6

∫

Ω

(
u+)6 dx –

λ

1 – γ

∫

Ω

(
u+)1–γ dx.

If a function u ∈ H1
0 (Ω) satisfies

∫

Ω

(∇u,∇v) dx –
∫

Ω

φu
(
u+)

v dx –
∫

Ω

(
u+)5v dx – λ

∫

Ω

(
u+)–γ v dx = 0

for v ∈ H1
0 (Ω), then we say u is a weak solution of (2.2) and (u,φu) is a pair solution of

system (1.1).
Because of the singular nonlinearity u–γ , the functional Iλ on H1

0 (Ω) is not differentiable.
Therefore, we cannot apply directly the usual critical point theory to solve this problem.
However, we can find two positive solutions by an approximation approach. That is, for
α > 0, we consider the following perturbation problem:

⎧
⎨

⎩

–�u – φuu = (u+)5 + λ
(u++α)γ , in Ω ,

u = 0, on ∂Ω .
(2.3)

The solution of problem (2.3) corresponds to critical point of the C1-functional on H1
0 (Ω)

by

Iλ,α(u) =
1
2
‖u‖2 –

1
4

∫

Ω

φu
(
u+)2 dx –

1
6

∫

Ω

(
u+)6 dx

–
λ

1 – γ

∫

Ω

(
u+ + α

)1–γ – α1–γ dx. (2.4)

Moreover, if a function u ∈ H1
0 (Ω), and for v ∈ H1

0 (Ω), then (u,φu) is a pair solution of
problem (2.3) satisfying

∫

Ω

(∇u,∇v) dx –
∫

Ω

φu
(
u+)

v dx –
∫

Ω

(
u+)5v dx – λ

∫

Ω

v
(u+ + α)γ

dx = 0.
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3 Existence of positive solution for problem (2.3)
Before proving Theorem 1.1, we recall the following lemma (see [1, 22]).

Lemma 3.1 For every u ∈ H1
0 (Ω), there exists a unique solution φu ∈ H1

0 (Ω) of

⎧
⎨

⎩

–�φ = u2, in Ω ,

φ = 0, on ∂Ω ,

and
(1) ‖φu‖2 =

∫

Ω
φuu2 dx;

(2) φu ≥ 0; moreover, φu > 0 when u �= 0;
(3) For each t �= 0, φtu = t2φu;
(4)

∫

Ω
φuu2 dx =

∫

Ω
|∇φu|2 dx ≤ S–1|u|44|Ω|2/3 ≤ S–1|u|412/5 ≤ S–3‖u‖4|Ω|;

(5) Assume that un ⇀ u in H1
0 (Ω), then φun → φu in H1

0 (Ω) and

∫

Ω

φun unv dx →
∫

Ω

φuuv dx, ∀v ∈ H1
0 (Ω);

(6) Set F (u) =
∫

Ω
φuu2 dx, then F (u) : H1

0 (Ω) → H1
0 (Ω) is C1 and

〈
F ′(u), v

〉
= 4

∫

Ω

φuuv dx, ∀v ∈ H1
0 (Ω).

Lemma 3.2 There exist Λ0, ρ > 0 such that, for every λ ∈ (0,Λ0), we have

Iλ,α(u) ≥ κ for u ∈ ∂Bρ and Iλ,α(u) < 0 for u ∈ Bρ . (3.1)

Proof of Lemma 3.2 According to Hölder’s inequality and (2.1), we have

∫

Ω

(
u+)1–γ dx ≤

∫

Ω

|u|1–γ dx ≤ |u|1–γ

6 |Ω| 5+γ
6 ≤ |Ω| 5+γ

6 S– 1–γ
2 ‖u‖1–γ . (3.2)

Note the subadditivity of t1–γ , namely

(
u+ + α

)1–γ – α1–γ ≤ (
u+)1–γ , ∀u ∈ H1

0 (Ω). (3.3)

It follows from (2.1), (3.2), and (3.3) that

Iλ,α(u) =
1
2
‖u‖2 –

1
4

∫

Ω

φu
(
u+)2 dx –

1
6

∫

Ω

(
u+)6 dx –

λ

1 – γ

∫

Ω

(
u+ + α

)1–γ – α1–γ dx

≥ 1
2
‖u‖2 –

1
4

∫

Ω

φu
(
u+)2 dx –

1
6

∫

Ω

(
u+)6 dx –

λ

1 – γ

∫

Ω

(
u+)1–γ

≥ 1
2
‖u‖2 –

|Ω|
4

S–3‖u‖4 –
1
6

S–3‖u‖6 –
λ

1 – γ
|Ω| 5+γ

6 S– 1–γ
2 ‖u‖1–γ

≥ ‖u‖1–γ

(
1
2
‖u‖1+γ –

|Ω|
4

S–3‖u‖3+γ –
1
6

S–3‖u‖5+γ –
λ

1 – γ
|Ω| 5+γ

6 S– 1–γ
2

)

.
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Set g(t) = 1
2 t1+γ – |Ω|

4 S–3t3+γ – 1
6 S–3t5+γ for t > 0, then there exists a positive constant

ρ =
[

–3(3 + γ )|Ω| +
√

9(3 + γ )2|Ω|2 + 48(5 + 6γ + γ 2)S3

4(5 + γ )

] 1
2

> 0

such that maxt>0 g(t) = g(ρ) > 0. Letting Λ0 = (1–γ )S
1–γ

2

2|Ω|
5+γ

6
g(ρ), it follows that there exists a

constant κ > 0 such that Iλ,α(u)|Sρ ≥ κ for every λ ∈ (0,Λ0).
Especially, we define a function f (x) = x1–γ , x ∈ Ω , by using the Lagrange mean value

theorem, there exists ξ > 0 such that

(
u+ + α

)1–γ – α1–γ = f ′(ξ )u+,

here ξ ∈ (α, u+ + α). For every u ∈ Bρ , u+ �= 0, we have

lim
t→0+

Iλ,α(tu)
t

= –
λ

1 – γ
lim

t→0+

1
t

∫

Ω

(
tu+ + α

)1–γ – α1–γ dx

= –λ

∫

Ω

ξ–γ tu+ dx

< 0.

For t small enough, we have Iλ,α(tu) < 0. Hence, there exists u small enough such that
Iλ,α(u) < 0. Therefore, we deduce that

d =: inf
u∈Bρ

Iλ,α(u) < inf
u∈∂Bρ

Iλ,α(u).

The proof is complete. �

Lemma 3.3 Let 0 < α < 1, if {un} ⊂ H1
0 (Ω) is a (PS)c sequence for Iλ,α with c < 1

3 S 2
2 – Dλ

2
1+γ ,

where D = 1+γ

4(1–γ ) ( 3+γ

2 |Ω| 5+γ
6 S– 1–γ

2 )
2

1+γ , then there exists u0 ∈ H1
0 (Ω) such that un → u0 in

H1
0 (Ω) and

∫

Ω
u6

n dx → ∫

Ω
u6

0 dx.

Proof of Lemma 3.3 Let {un} ⊂ H1
0 (Ω) be such that

Iλ,α(un) → c, I ′
λ,α(un) → 0. (3.4)

Now, we claim that {un} is bounded in H1
0 (Ω). Otherwise, we assume that ‖un‖ → ∞, as

n → ∞. It follows from (3.2), (3.3), and (3.4) that

1 + c + o(1)‖un‖ = Iλ,α(un) –
1
4
〈
I ′
λ,α(un), un

〉

≥ 1
4
‖un‖2 +

1
12

∫

Ω

(
u+)6 dx –

λ

1 – γ

∫

Ω

[(
u+

n + α
)1–γ – α1–γ

]
dx

≥ 1
4
‖un‖2 –

λ

1 – γ

∫

Ω

(
u+

n
)1–γ dx

≥ 1
4
‖un‖2 –

λ

1 – γ
|Ω| 5+γ

6 S– 1–γ
2

∥
∥u+

n
∥
∥1–γ .
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Since 0 < γ < 1, the last inequality above is impossible, which implies that {un} is bounded
in H1

0 (Ω). So there exists τ ∈ L1(Ω) for all n such that |un(x)| ≤ τ (x) a.e. in Ω . And there
exists a subsequence, still denoted by {un}. We assume that there exists u0 ∈ H1

0 (Ω) such
that

⎧
⎪⎪⎨

⎪⎪⎩

un ⇀ u0, weakly in H1
0 (Ω),

un → u0, strongly in Lp(Ω) (1 ≤ p < 6),

un(x) → u0(x), a.e. in Ω .

(3.5)

Note the given condition α > 0, we can easily get |u0|
(u+

0 +α)γ ≤ |u0|
αγ . Then, by the dominated

convergence theorem and (3.5), we have

lim
n→∞

∫

Ω

(
u+

n + α
)–γ u0 dx =

∫

Ω

(
u+

0 + α
)–γ u0 dx. (3.6)

Moreover, we have | un
(u+

n +α)γ | ≤ τ
αγ , by the dominated convergence theorem, we also have

lim
n→∞

∫

Ω

(
u+

n + α
)–γ un dx =

∫

Ω

(
u+

0 + α
)–γ u0 dx. (3.7)

Now, set wn = un – u0, then ‖wn‖ → 0 as n → ∞. Otherwise, there exists a subsequence,
still denoted by wn, such that

lim
n→∞‖wn‖ = l > 0.

Note that limn→∞〈I ′
λ,α(un), u0〉 = 0 and (3.6), we deduce

‖u0‖2 –
∫

Ω

φu0

(
u+

0
)2 dx –

∫

R3

(
u+

0
)6 dx – λ

∫

Ω

(
u+

0 + α
)–γ u0 dx = 0. (3.8)

Using the Brézis–Lieb lemma [25], we have
⎧
⎨

⎩

‖un‖2 = ‖wn‖2 + ‖u0‖2 + o(1),
∫

Ω
(u+

n)6 dx =
∫

Ω
(w+

n)6 dx +
∫

Ω
(u+

0 )6 dx + o(1).
(3.9)

It follows from (3.4), (3.7), and (3.9) that

o(1) = ‖wn‖2 + ‖u0‖2 –
∫

Ω

φu0

(
u+

0
)2 dx

–
∫

Ω

(
w+

n
)6 dx –

∫

Ω

(
u+

0
)6 dx – λ

∫

Ω

(
u+

0 + α
)–γ u0 dx. (3.10)

Therefore, (3.8) and (3.10) lead to

‖wn‖2 –
∫

Ω

(
w+

n
)6 dx = o(1). (3.11)

Since also
∫

Ω
(w+

n)6 dx ≤ ∫

Ω
|wn|6 dx, then, according to (2.1), (3.11) implies that

l2 ≥ S
3
2 .
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From (3.2) and using the Young inequality, we have

Iλ,α(u0) =
1
2
‖u0‖2 –

1
4

∫

Ω

φu0

(
u+

0
)2 dx –

1
6

∫

Ω

u6
0 dx

–
λ

1 – γ

∫

Ω

[(
u+

0 + α
)1–γ – α1–γ

]
dx

≥ 1
2
‖u0‖2 –

1
4

∫

Ω

φu0

(
u+

0
)2 dx –

1
6

∫

Ω

u6
0 dx –

λ

1 – γ

∫

Ω

(
u+

0
)1–γ dx

=
1
4
‖u0‖2 +

1
12

∫

Ω

u6
0 dx – λ

(
1

1 – γ
–

1
4

)∫

Ω

(
u+

0
)1–γ dx

≥ 1
4
‖u0‖2 – λ

(
1

1 – γ
–

1
4

)

|Ω| 5+γ
6 S– 1–γ

2 ‖u0‖1–γ

≥ –Dλ
2

1+γ ,

where D = 1+γ

4(1–γ ) ( 3+γ

2 |Ω| 5+γ
6 S– 1–γ

2 )
2

1+γ . Combining (3.10) with (3.11), we also have

Iλ,α(u0) = Iλ,α(un) –
1
2
‖wn‖2 +

1
6

∫

Ω

|wn|6 dx + o(1)

= c –
1
3
‖wn‖2 + o(1)

< c –
1
3

S
3
2

=
1
3

S
2
2 – Dλ

2
1+γ –

1
3

S
3
2

= –Dλ
2

1+γ .

It is obvious that the above two inequalities are impossibility. Thus, we get l = 0, which
yields un → u0 in H1

0 (Ω). By (3.11), we get

0 ≤
∫

Ω

u6
n dx –

∫

Ω

u6
0 dx =

∫

Ω

w6
n dx + o(1) = ‖wn‖2 → 0,

which implies that
∫

Ω
u6

n dx → ∫

Ω
u6

0 dx as n → ∞. The proof is complete. �

Note that 0 < α < 1, we can get

Iλ,α(u) =
1
2
‖u‖2 –

1
4

∫

Ω

φu
(
u+)2 dx –

1
6

∫

Ω

(
u+)6 dx –

λ

1 – γ

∫

Ω

(
u+ + α

)1–γ – α1–γ dx

≤ 1
2
‖u‖2 –

1
6

∫

Ω

(
u+)6 dx –

λ

1 – γ

∫

Ω

(
u+ + α

)1–γ dx +
λ

1 – γ

∫

Ω

α1–γ dx

≤ 1
2
‖u‖2 –

1
6

∫

Ω

(
u+)6 dx –

λ

1 – γ

∫

Ω

(
u+)1–γ dx +

λ

1 – γ
|Ω|. (3.12)

Now, we define a new functional Jλ(u) : H1
0 (Ω) →R as follows:

Jλ(u) =
1
2
‖u‖2 –

1
6

∫

Ω

(
u+)6 dx –

λ

1 – γ

∫

Ω

(
u+)1–γ dx. (3.13)
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Consequently, we consider the following problem:

⎧
⎨

⎩

–�u = u5 + λ
uγ , in Ω ,

u = 0, on Ω .
(3.14)

And we find that the weak solutions of problem (3.14) correspond to the critical points of
the functional Jλ.

Remark 3.4 There exists ρ , Λ0 > 0 (given by Lemma 3.2 such that problem (3.14) has a
positive solution v0 ∈ Bρ with Jλ(v0) < 0 and Jλ|∂Bρ

> 0 for every λ ∈ (0,Λ0). In fact, from
(3.13), we have

Jλ(u) =
1
2
‖u‖2 –

1
6

∫

Ω

(
u+)6 dx –

λ

1 – γ

∫

Ω

(
u+)1–γ

≥ 1
2
‖u‖2 –

1
6

S–3‖u‖6 –
λ

1 – γ
|Ω| 5+γ

6 S– 1–γ
2 ‖u‖1–γ

≥ ‖u‖1–γ

(
1
2
‖u‖1+γ –

1
6

S–3‖u‖5+γ –
λ

1 – γ
|Ω| 5+γ

6 S– 1–γ
2

)

.

By Lemma 3.2, when ‖u‖ = ρ , we have

1
2
ρ1+γ –

|Ω|
4

S–3ρ3+γ –
1
6

S–3ρ5+γ –
λ

1 – γ
|Ω| 5+γ

6 S– 1–γ
2 > 0

for every λ ∈ (0,Λ0). Then we deduce that Jλ|∂Bρ
> 0 for λ ∈ (0,Λ0). Similar to Lemma 3.2,

we get v0 ∈ Bρ and Jλ(v0) < 0 for every λ ∈ (0,Λ0). Moreover, there exist two constants
m, M > 0 such that m < v0(x) < M.

As usual, we consider the following function:

Uε(x) =
(3ε2) 1

2

(ε2 + |x|2) 1
2

,

where ε is a positive constant. Moreover, we know that Uε is a positive solution of problem
–�u = |u|4u in R

3 and
∫

Ω
|∇Uε|2 dx =

∫

Ω
|Uε|6 + S 3

2 . Let ζ be a smooth cut-off function
ζ ∈ C∞

0 (Ω) such that 0 ≤ ζ (x) ≤ 1 in Ω . ζ (x) = 1 near x = 0 and it is radially symmetric.
Set vε(x) = ζ (x)U(x). Then we have the following.

Lemma 3.5 Assume 0 < γ < 1, there holds

sup
t≥0

Iλ,α(v0 + tvε) <
1
3

S
3
2 – Dλ

2
1+γ . (3.15)

Proof of Lemma 3.5 From [26], one has

∫

Ω

|∇vε|2 dx = S
3
2 + O(ε),

∫

Ω

∣
∣vε(x)

∣
∣6 dx = S

3
2 + O

(
ε3).
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It is well known that the following inequality

(a + b)6 ≥ a6 + b6 + 6a5b + 6ab5

holds true for each a, b ≥ 0. With no loss of generality, for a ≥ m and b ≥ 0, we can get
that

(a + b)1–γ – a1–γ ≥ 0.

Since v0 is a positive solution of problem (3.14), then there holds

Jλ(v0 + tvε)

=
1
2
‖v0 + tvε‖2 –

1
6

∫

Ω

(v0 + tvε)6 dx –
λ

1 – γ

∫

Ω

(v0 + tvε)1–γ dx

= Iλ(v0) +
t2

2
‖vε‖2 + t

∫

Ω

[
(∇v0,∇vε) – v5

0vε – λv–γ
0 vε

]
dx –

1
6

∫

Ω

[|v0 + tvε|6

– v6
0 – 6v5

0tvε

]
dx –

λ

1 – γ

∫

Ω

[|v0 + tvε|1–γ – v1–γ
0 – (1 – γ )v–γ

0 tuε

]
dx

≤ Iλ(v0) +
t2

2
‖vε‖2 + t

∫

Ω

[
(∇v0,∇vε) – v5

0vε – λv–γ
0 vε

]
dx –

1
6

∫

Ω

[|v0 + tvε|6

– v6
0 – 6v5

0tvε

]
dx + λ

∫

Ω

v–γ
0 tvε dx

≤ t2

2
‖vε‖2 –

t6

6

∫

Ω

|vε|6 dx – t5
∫

Ω

v0|vε|5 dx + λ

∫

Ω

v–γ
0 tvε dx

≤ t2

2
‖vε‖2 –

t6

6

∫

Ω

|vε|6 dx – mt5
∫

Ω

|vε|5 dx + M–γ λt
∫

Ω

vε dx.

Let

h(t) =
t2

2
‖vε‖2 –

t6

6

∫

Ω

|vε|6 dx – mt5
∫

Ω

|vε|5 dx + M–γ λt
∫

Ω

vε dx.

Similar to paper [27], we can find that there exist tε and positive constants t1, t2 (indepen-
dent of ε, λ) such that supt≥0 h(t) = h(tε) and

0 < t1 ≤ tε ≤ t2 < ∞.

Indeed, since limt→0 h(t) = 0, limt→+∞ h(t) = –∞, there exists tε such that

h(tε) = sup
t≥0

h(t), and h′(t)|t=tε = 0.

Note that
∫

Ω
|vε(x)|5 dx = C1ε

1
2 and

∫

Ω
|vε(x)|dx = C2ε

1
2 , one has

sup
t≥0

Jλ(v0 + tvε) ≤ sup
t≥0

h(t) = h(tε)

≤ sup
t≥0

{
t2

2
‖uε‖2 –

t6

6

∫

Ω

|uε|6 dx
}

– mt5
1

∫

Ω

|vε|5 dx
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+ M–γ λt2

∫

Ω

vε dx

≤ sup
t≥0

{
t2

2
‖uε‖2 –

t6

6

∫

Ω

|uε|6 dx
}

– C3ε
1
2 + λC4ε

1
2

≤ sup
t≥0

{
t2

2
S

3
2 –

t6

6
S

3
2

}

+ C5ε – C3ε
1
2 + λC4ε

1
2

≤ 1
3

S
3
2 + C5ε – C3ε

1
2 + λC4ε

1
2 .

From (3.12), we get the following estimate:

sup
t≥0

Iλ,α(v0 + tvε) ≤ sup
t≥0

Jλ(v0 + tvε) +
λ

1 – γ
|Ω|

≤ 1
3

S
3
2 + C5ε – C3ε

1
2 + λC4ε

1
2 + C6λ

≤ 1
3

S
3
2 + C5ε + C7λ – C3ε

1
2 .

Let ε = λ
2

1+γ , and for 2
1+γ

> 1, there holds

C5ε + C7λ – C3ε
1
2 = C5λ

2
1+γ + C7λ – C3λ

1
1+γ

≤ λ
2

1+γ
(
C8λ

γ –1
1+γ – C3λ

–1
1+γ

)

= λ
2

1+γ

(
C8

λ
1–γ
1+γ

–
C3

λ
1

1+γ

)

.

As 0 < γ < 1, we have 1–γ

1+γ
< 1

1+γ
. Moreover, we get that λ

1–γ
1+γ > λ

1
1+γ for every λ ∈ (0, 1).

Consequently, there exists Λ1 > 0 such that λ ≤ Λ1, then it is shown that

C8

λ
1–γ
1+γ

–
C3

λ
1

1+γ

≤ –D.

Thereby, from the above inequality, we conclude that

sup
t≥0

Iλ,α(v0 + tvε) ≤ 1
3

S
3
2 – Dλ

2
1+γ .

Hence, (3.15) holds true for λ < min{Λ0,Λ1}. The proof is complete. �

Theorem 3.6 Assume 0 < α < 1, 0 < γ < 1, there exists λ∗ > 0 such that 0 < λ < λ∗, problem
(2.3) has at least a positive solution vα ∈ H1

0 (Ω) satisfying Iλ,α(vα) > 0.

Proof of Theorem 3.6 Let λ∗ = min{Λ0,Λ1}, then Lemmas 3.3 and 3.5 hold for 0 < λ < λ∗.
As a matter of fact, according to Remark 3.4, we have Iλ,α(0) = 0, Iλ,α(v0) < 0 and Iλ,α|Bρ

> 0.
By Lemma 3.5, we can choose T0 > 0 large enough so that Iλ,α(v0 +T0vε) < 0. Consequently,
Iλ,α satisfies the geometry of the mountain pass lemma [28]. Applying the mountain pass
lemma, there exists a sequence {vn} ⊂ H1

0 such that

Iλ,α(vn) → c > 0 and I ′
λ,α(vn) → 0, as n → ∞, (3.16)
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where

c = inf
γ∈Γ

max
t∈[0,1]

Iλ,α
(
γ (t)

)

and

Γ =
{
γ ∈ C

(
[0, 1], H1

0
)

: γ (0) = u0,γ (1) = v0 + T0vε

}
.

Moreover, by Lemmas 3.2 and 3.5, we get

0 < κ < c ≤ max
t∈[0,1]

Iλ,α(v0 + T0vε) ≤ sup
t≥0

Iλ,α(v0 + T0vε) <
1
3

S
3
2 – Dλ

2
1+γ . (3.17)

According to Lemma 3.3, we know that {vn} ⊂ H1
0 (Ω) has a convergent subsequence, still

denoted by {vn}, we may assume that vn → vα in H1
0 (Ω) as n → ∞. Hence, from (3.16) and

(3.17) we have

Iλ,α(vα) = lim
n→∞ Iλ,α(vn) = c > κ > 0, (3.18)

which implies vα �≡ 0. Furthermore, from the continuity of I ′
λ,α , we find that vα is a solution

of problem (2.3), namely

∫

Ω

(∇vα ,∇ϕ) dx –
∫

Ω

φu
(
v+
α

)
ϕ dx –

∫

Ω

(
v+
α

)5
ϕ dx – λ

∫

Ω

ϕ

(v+
α + α)γ

dx = 0

for all ϕ ∈ H1
0 (Ω). Taking the test function ϕ = v–

α , we have

–
∥
∥v–

α

∥
∥2 = λ

∫

Ω

v–
α

(v+
α + α)γ

dx ≥ 0,

we infer that v–
α = 0. Then we deduce that vα ≥ 0 and vα �≡ 0. Hence, by the strong maxi-

mum principle, we obtain vα > 0 in Ω and vα is a positive solution of problem (2.3). The
proof is complete. �

Theorem 3.7 Assume 0 < α < 1, 0 < γ < 1, there exists λ∗ > 0 such that 0 < λ < λ∗, problem
(2.3) has at least a positive solution vα ∈ H1

0 (Ω) satisfying Iλ,α(vα) > 0.

Proof of Theorem 3.7 From Lemma 3.2, by applying Ekeland’s variational principle in Bρ ,
there exists a minimizing sequence {un} ⊂ Bρ such that

Iλ,α(un) ≤ inf
u∈Bρ

Iλ,α(u) +
1
n

, Iλ,α(v) ≥ Iλ,α(un) –
1
n

‖v – un‖, v ∈ Bρ .

Therefore,

I ′
λ,α(un) → 0 and Iλ,α(un) → d.

Since {un} is bounded and Bρ is a closed convex set, there exist uα ∈ Bρ ⊂ H1
0 (Ω) and a

subsequence still denoted by {un} such that un ⇀ uλ in H1
0 (Ω) as n → ∞.
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Note that Iλ,α(|un|) = Iλ,α(un), by Lemma 3.3, we can obtain un → uα in H1
0 (Ω) and

d = limn→∞ Iλ,α(un) = Iλ,α(uα) < 0, which suggests that uλ ≥ 0 and uα �≡ 0. Similar to The-
orem 3.6, we obtain uα > 0 in Ω , then uα is a solution of problem (2.3) with Iλ,α(uα) < 0.
The proof is complete. �

4 Existence of positive solutions for system (1.1)

Proof of Theorem 1.1 Now, we need to prove that system (1.1) has two positive solutions.
Let {vα} be a family of positive solutions of problem (2.3), one has

‖vα‖ –
∫

Ω

φvα v2
α dx –

∫

Ω

v6
α dx – λ

∫

Ω

(vα + α)–γ vα dx = 0. (4.1)

Hence, it follows from (2.1), (3.2), and (4.1) that

1
3

S
3
2 – Dλ

2
1+γ > Iλ,α(vα) –

1
4
〈
I ′
λ,α(vα), vα

〉

=
1
4
‖vα‖2 +

1
12

∫

Ω

v6
α dx +

λ

4

∫

Ω

vα

vα + α
dx

–
λ

1 – γ

∫

Ω

[
(vα + α)1–γ – α1–γ

]
dx

≥ 1
4
‖vα‖2 +

1
12

∫

Ω

v6
α dx –

λ

1 – γ

∫

Ω

(
v+
α

)1–γ dx

≥ 1
4
‖vα‖2 +

1
12

∫

Ω

v6
α dx –

λ

1 – γ
|Ω| 5+γ

6 S– 1–γ
2 ‖vα‖1–γ .

Obviously, {vα} is bounded in H1
0 (Ω) for 0 < γ < 1. Going if necessary to a subsequence,

also denoted by {vα}, there exists {v∗} ∈ H1
0 (Ω) such that

⎧
⎪⎪⎨

⎪⎪⎩

vα ⇀ v∗, weakly in H1
0 (Ω),

vα → v∗, strongly in Lp(Ω) (1 ≤ p < 6),

vα(x) → v∗(x), a.e. in Ω .

(4.2)

Next, we prove that (v∗,φu∗ ) is a pair solution of system (1.1). Notice that {vα} satisfies
problem (2.3), with an easy computation, we get that

–�vα ≥ v5
α +

λ

(vα + α)γ
≥ min

{

1,
λ

2γ

}

,

it follows that –�vα ≥ min{1, λ
2γ }. We denote by e the positive solution of

⎧
⎨

⎩

–�u = 1, in Ω ,

u = 0, on ∂Ω .

Hence, we get that e > 0 by using the strong maximum principle. For every Ω0 ⊂⊂ Ω ,
there exists e0 > 0 such that e|Ω0 ≥ e; therefore, by comparison principle, we get

vα ≥ min

{

1,
λ

2γ

}

e.
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In particular, from e|Ω0 ≥ e > 0, we deduce that

vα|Ω0 ≥ min

{

1,
λ

2γ

}

e0 > 0.

Now, we shall prove that vα → v∗ as α → 0. It is similar to [29], for ang ϕ ∈ H1
0 (Ω), we

have
∫

Ω

(∇v∗,∇ϕ) dx –
∫

Ω

φv∗v∗ϕ dx –
∫

Ω

v5
∗ϕ dx – λ

∫

Ω

v–γ
∗ ϕ dx = 0. (4.3)

Then, take a test function ϕ = v∗ in (4.3), there holds

‖v∗‖2 –
∫

Ω

φv∗v2
∗ dx –

∫

Ω

v6
∗ dx – λ

∫

Ω

v1–γ
∗ dx = 0. (4.4)

Without loss of generality, set wα = vα – v∗, then ‖wα‖ → 0 as α → 0. Otherwise, there
exists a subsequence (still denoted by wα) such that limα→0 ‖wα‖ = l > 0. Notice the given
condition α > 0, we obtain 0 ≤ vα

(vα+α)γ ≤ v1–γ
α , by the Hölder inequality and subadditivity,

from (4.2), we have

∫

Ω

vα

(vα + α)γ
dx ≤

∫

Ω

vα
1–γ ≤

∫

Ω

|wα|1–γ dx +
∫

Ω

v∗1–γ dx

≤ ‖wα‖1–γ
2 |Ω| 1+γ

2 +
∫

Ω

v∗1–γ dx

≤
∫

Ω

v∗1–γ dx + o(1).

Similarly,

∫

Ω

v∗1–γ dx ≤
∫

Ω

vα

(vα + α)γ
dx + o(1).

Hence, one has

lim
α→0

∫

Ω

vα

(vα + α)γ
dx =

∫

Ω

v∗1–γ dx.

Using the Brézis–Lieb lemma and by 〈I ′
α(vα), vα〉 = 0, there holds

‖wα‖2 + ‖v∗‖2 –
∫

Ω

φv∗ (v∗)2 dx –
∫

Ω

w6
α dx –

∫

Ω

v6
∗ dx – λ

∫

Ω

v1–γ
∗ dx = o(1). (4.5)

It follows from (4.4) and (4.5) that

‖wα‖2 –
∫

Ω

w6
α dx = o(1). (4.6)

Then (2.1) and (4.6) imply that

l2 ≥ S
3
2 . (4.7)
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From (3.2), (4.4) and using the Young inequality, we have

Iλ(v∗) =
1
2
‖v∗‖2 –

1
4

∫

Ω

φv∗v2
0 dx –

1
6

∫

Ω

v6
∗ dx –

λ

1 – γ

∫

Ω

v1–γ
∗ dx

=
1
4
‖v∗‖2 +

1
12

∫

Ω

v6
∗ dx – λ

(
1

1 – γ
–

1
4

)∫

Ω

v1–γ
∗ dx

≥ 1
4
‖v∗‖2 – λ

(
1

1 – γ
–

1
4

)

|Ω| 5+γ
6 S– 1–γ

2 ‖v∗‖1–γ

≥ –Dλ
2

1+γ ,

where D = 1+γ

4(1–γ ) ( 3+γ

2 |Ω| 5+γ
6 S– 1–γ

2 )
2

1+γ . Moreover, from (3.15), (4.7), and the Brézis–Lieb
lemma, one has

Iλ(v∗) ≤ Iλ,α(vα) –
1
2
‖wα‖2 +

1
6

∫

Ω

|wα|6 dx

<
1
3

S
2
2 – Dλ

2
1+γ –

1
3
‖wn‖2

<
1
3

S
2
2 – Dλ

2
1+γ –

1
3

S
3
2

= –Dλ
2

1+γ .

It is obvious that the above inequalities are impossibility. Thus, we get l = 0, which yields
vα → v∗ in H1

0 (Ω) as α → 0.
In addition, we claim that Iλ,α is uniformly bounded. In fact, define a function f (t) =

–(u + t)1–γ + t1–γ , we easily get f ′(t) < 0 for t > 0. Obviously, f (t) is decreasing for 0 < t < 1.
It follows that

Iλ,1(u) < Iλ,α(u) < Iλ,0(u)

for u ∈ H1
0 (Ω). So the claim is true. Therefore, by (3.18), we have Iα(v∗) = limα→0 Iλ,αvα =

c > 0.
Similarly, by Theorem 3.7, there exists u∗ ∈ H1

0 (Ω) such that uα → u∗ and Iα(u∗) =
limα→0 Iλ,α(uα) = d < 0.

Therefore, u∗, v∗ are two different positive solutions of problem (2.2). And (u∗,φu∗ ),
(v∗,φv∗ ) are two pairs of different positive solutions of system (1.1). This completes the
proof of Theorem 1.1. �
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