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1 Introduction and main results
In this paper, we discuss the following quasilinear elliptic problem with critical Sobolev
exponent and critical Hardy–Sobolev exponent:

⎧
⎨

⎩

–�pu + λ|u|p–2u = Q(x)|u|p∗–2u + P(x) |u|p∗(t)–2u
|x|t , x ∈ Ω ,

|∇u|p–2 ∂u
∂ν

= 0, x ∈ ∂Ω\{0},
(1.1)

where Ω ⊂ RN is a bounded domain with ∂Ω ∈ C2, 0 ∈ ∂Ω , �pu = div(|∇u|p–2∇u) is the
p-Laplace operator, 1 < p < N , p∗ = Np

N–p , p∗(t) = p(N–t)
N–p (0 ≤ t < p) is the so-called critical

Hardy–Sobolev exponent, and ν denotes the unit outward normal vector with respect
to ∂Ω , λ ∈ R is a parameter, the weight functions Q(x), P(x) are continuous on Ω . Such
problems arise in the theory of quasiregular and quasiconformal mapping or in the study of
non-Newtonian fluids. In the latter case, the parameter p is a characteristic of the medium.
Media with p > 2 are called dilatant fluids and those with p < 2 are called pseudoplastics.
If p = 2, they are Newtonian fluids.

The study of semilinear elliptic problems with critical growth terms is one of hot spots
in partial differential equations. In the case of p = 2, problem (1.1) is transformed into the
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following semilinear elliptic problem:

⎧
⎨

⎩

–�u + λu = Q(x)|u|2∗–2u + P(x) |u|2∗(t)–2u
|x|t , x ∈ Ω ,

∂u
∂ν

= 0, x ∈ ∂Ω\{0}.
(1.2)

When functions Q(x) = 1, P(x) = 0, Comte and Knaap [1] established the existence of non-
trivial solution for problem (1.2) by variational method, while Adimurthi et al. [2] proved
the existence of a nonradial positive solution. Chabrowski and Willem [3] obtained the
existence of least energy solutions by solving minimization problem corresponding to

Sλ = inf
u∈H1(Ω),

∫

Ω Q(x)|u|2∗ dx �=0

∫

Ω
(|∇u|2 + λu2) dx

(
∫

Ω
Q(x)|u|2∗ dx)

2
2∗

if the coefficient Q(x) is nonnegative and Hölder continuous. Subsequently, Chabrowski
[4] proved the existence of at least two solutions to (1.2) by the mountain pass principle if
one of the weight functions changes sign. In the paper [5], the authors studied the following
semilinear elliptic problem with Hardy–Sobolev exponent:

⎧
⎨

⎩

–�u – μ u
|x|2 = |u|2∗(t)–2

|x|t u + f (x, u), x ∈ Ω ,
∂u
∂ν

+ α(x)u = 0, x ∈ ∂Ω ,
(1.3)

they obtained the existence of positive solutions by the mountain pass lemma without
(PS)-condition and the strong maximum principle. Other related results on the semilinear
elliptic problems can be seen in [6–12] and the references therein.

As for the quasilinear elliptic problems with critical Sobolev or Hardy–Sobolev expo-
nents, the existence and multiplicity of solutions have also been studied extensively. Abreu
et al. [13] studied the following the nonhomogeneous Neumann boundary problem:

⎧
⎪⎪⎨

⎪⎪⎩

–�pu + λup–1 = uq, x ∈ Ω ,

u > 0, x ∈ Ω ,

|∇u|p–2 ∂u
∂v = ϕ, x ∈ ∂Ω ,

(1.4)

where p – 1 < q ≤ p∗ – 1, ϕ ∈ Cα(Ω), 0 < α < 1, ϕ �≡ 0. They proved that there exists a
λ∗ > 0 such that problem (1.4) has at least two positive solutions if λ > λ∗, has at least
one positive solution if λ = λ∗, and has no positive solution if λ < λ∗ relying on the lower
and upper solutions method and variational approach. Subsequently, Deng and Jin [14]
also obtained the existence of solutions to problem (1.4) if uq is replaced by uq

|x|t , where
p – 1 < q ≤ p∗(t) – 1, 0 ≤ t < p – 1. Li and Xia [15] studied the existence of multiple so-
lutions for quasilinear Neumann problem with critical Sobolev exponent. With regard to
the multiple critical exponents, Filippucci et al. [16] investigated the quasilinear elliptic
problem involving multiple critical terms on the whole space and obtained the existence
of positive solutions by using the existence of extremals of some Hardy–Sobolev type em-
bedding. Li et al. [17] showed the existence and multiplicity of solutions to the quasilin-
ear elliptic equations with Dirichlet boundary conditions and combined critical Hardy–
Sobolev terms on bounded smooth domains by employing Ekeland’s variational principle.
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Bhakta [18] studied the existence and multiplicity of sign-changing solutions to Dirich-
let problem for semilinear elliptic equation involving critical Sobolev and Hardy–Sobolev
exponents. For more relevant information as regards the corresponding problems, the in-
terested reader may refer to [19–26].

However, as far as we know, there are few results of the Neumann boundary condition
for quasilinear elliptic equations with the critical Sobolev exponent and critical Hardy–
Sobolev exponent. Motivated by the results of the above-mentioned papers, in this paper
we aim to show the existence of nontrivial nonnegative solution to problem (1.1) by the
variational method. The special features of this problem are the following. Firstly, due
to the lack of compactness of the embedding of W 1,p(Ω) ↪→ Lp∗ (Ω) and W 1,p(Ω) ↪→
Lp∗(t)(Ω , |x|–t), we cannot use the standard variational argument directly. In order to over-
come this difficulty and obtain the existence of solutions, we have to add restrictions on the
weight functions Q(x) and P(x) to prove that the corresponding functional of problem (1.1)
satisfies the (PS)c-condition in a suitable range by the Lions concentration-compactness
principle. Secondly, when λ ≤ 0, the weight function P(x) is allowed to change sign and the
space W 1,p(Ω) is not suitable for our problem. In order to obtain the existence of solution,
we have to introduce a suitable space. This result is an extension of a work by Li and Xia
[15].

Throughout this paper, we define QM = maxx∈∂Ω Q(x), QM = maxx∈Ω Q(x), Qm =
minx∈Ω Q(x), PM = maxx∈Ω P(x), the main results of this paper are the following theorems.

Theorem 1.1 Suppose that λ > 0, and the coefficients Q(x), P(x) are positive continuous on
Ω . Then there exists a constant λ∗ > 0 such that Problem (1.1) has at least one nontrivial
nonnegative solution for 0 < λ < λ∗, where

λ∗ = |Ω|–1 max

{

N
p
N
(
c∗) p

N

(∫

Ω

Q(x) dx
) N–p

N
,

(
p(N – t)

p – t

) p–t
N–t (

c∗) p–t
N–t

(∫

Ω

P(x)
|x|t dx

) N–p
N–t

}

,

c∗ = min

{
S

N
p

N2
N+p

p Q
N–p

p (0)
,

(p – t)S
N–t
p–t

H

p(N – t)2
N+p–2t

p–t P
N–p
p–t (0)

,
S

N
p

NQ
N–p

p
M

,
S

N
p

2NQM
N–p

p

}

.

Theorem 1.2 Suppose that λ > 0, the functions Q(x), P(x) are positive continuous functions

on Ω , QM ≤ 2
p

N–p QM , Q(0) ≤ 2
–N

N–p QM , P(0) ≤ ( N(p–t)S
N–t
p–t

H

p(N–t)S
N
p 2

N–t
p–t

QM
N–p

p )
p–t
N–p . If there exists y ∈

∂Ω such that QM = Q(y) and |Q(y) – Q(x)| = o(|x – y|σ ) for x → y, where 1 < σ < N
p–1 , then

Problem (1.1) has at least one nontrivial nonnegative solution for each λ > 0 and N > 2p–1.

Theorem 1.3 Suppose that λ ≤ 0, and the coefficients Q(x), P(x) satisfy the following con-
ditions:

(A1) Q(x) is a positive continuous function on Ω ;
(A2) P(x) is a continuous and changing sign function on Ω , satisfying

∫

Ω

P(x)
|x|t dx < 0.

Then there exists a constant μ∗ > 0 such that Problem (1.1) has at least one nontrivial
nonnegative solution for all 0 ≤ μ < μ∗, where μ = –λ, and μ∗ will be given in Sect. 4.
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The outline of this paper is as follows. In Sect. 2, we present some necessary preliminar-
ies. Section 3 is devoted to the proofs of Theorems 1.1 and 1.2. The proof of Theorem 1.3
is given in Sect. 4.

2 Preliminaries
Let W 1,p(Ω) be the Sobolev space with norm ‖u‖ = (

∫

Ω
(|∇u|p + |u|p) dx)

1
p , the best Sobolev

constant and the best Hardy–Sobolev constant are defined by

S = inf
D1,p(RN )\{0}

∫

RN |∇u|p dx

(
∫

RN |u|p∗ dx)
p

p∗
, SH = inf

D1,p(RN )\{0}

∫

RN |∇u|p dx
∫

RN ( |u|p∗(t)

|x|t dx)
p

p∗(t)
,

where D1,p(RN ) = {∇u ∈ Lp(RN ), u ∈ Lp∗ (RN )}. The constant S is achieved by the functional
uε given by

uε(x) = CNpε
N–p
p2 (

ε + |x – y| p
p–1

) p–N
p ,

where the constant CNp is chosen such that –�puε = |uε|p∗–1 in RN .
Next, we give the definition of the weak solution to Problem (1.1).

Definition 2.1 A function u ∈ W 1,p(Ω) is said to be a weak solution of Problem (1.1) if it
satisfies

∫

Ω

|∇u|p–2∇u∇ϕ dx + λ

∫

Ω

|u|p–2uϕ dx

=
∫

Ω

Q(x)|u|p∗–2uϕ dx +
∫

Ω

P(x)
|u|p∗(t)–2u

|x|t ϕ dx, ∀ ϕ ∈ W 1,p(Ω).

The corresponding nonnegative solutions of Problem (1.1) are equivalent to the critical
points of the energy functional

Jλ(u) =
1
p

∫

Ω

|∇u|p dx +
λ

p

∫

Ω

|u|p dx –
1
p∗

∫

Ω

Q(x)|u|p∗
dx –

1
p∗(t)

∫

Ω

P(x)
|u|p∗(t)

|x|t dx.

In order to obtain the existence of solution to Problem (1.1), we need the following lem-
mas.

Lemma 2.1 ([13])
(1) For ε > 0 small enough and N > 2p – 1, we have

∫

Ω

|∇uε|p dx =
1
2

∫

RN
|∇uε|p dx – K1(ε) + o

(
ε

p–1
p

)
,

∫

Ω

|uε|p∗
dx =

1
2

∫

RN
|uε|p∗

dx – K2(ε) + o
(
ε

p–1
p

)
,

(2.1)

where K1(ε), K2(ε) satisfy

lim
ε→0

ε
– p–1

p K1(ε) =
1
2

H(y)Cp
Np

(
N – p
p – 1

)p ∫

RN–1

(
1 +

∣
∣z′∣∣

p
p–1

)–N ∣
∣z′∣∣

3p–2
p–1 dz′
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= K1,

lim
ε→0

ε
– p–1

p K2(ε) =
1
2

H(y)Cp∗
Np

∫

RN–1

(
1 +

∣
∣z′∣∣

p
p–1

)–N ∣
∣z′∣∣2 dz′

= K2,

where H(y) = 1
N–1

∑N–1
i–1 αi, αi (i = 1, 2, . . . , N – 1) are the principal curvatures of ∂Ω

at y.
(2)

∫

Ω

|uε|p dx =

⎧
⎪⎪⎨

⎪⎪⎩

O(ε
N–p

p ), p < N < p2,

O(ε
N–p

p )| ln ε|, N = p2,

O(εp–1), N > p2.

(2.2)

Lemma 2.2 ([14] (Hardy–Sobolev inequality)) Assume that 1 < p < N and p∗(t) = p(N–t)
N–p ,

0 ≤ t ≤ p. Then there exists a constant C > 0 such that, for any u ∈ W 1,p(Ω),

∫

Ω

|u|p∗(t)

|x|t dx ≤ C
(∫

Ω

(|∇u|p + |u|p)dx
) p∗(t)

p
. (2.3)

By Sobolev’s inequality, there exists a constant C1 > 0 such that

∫

Ω

|u|p∗
dx ≤ C1‖u‖p∗

for u ∈ W 1,p(Ω). (2.4)

Now, we prove that the energy functional Jλ(u) satisfies the geometry of mountain pass
lemma.

Lemma 2.3 Assume that coefficients Q(x), P(x) are positive continuous functions on Ω ,
then for each λ > 0, we have

(i) there exist constants β , ρ > 0 such that Jλ(u) ≥ β for ‖u‖ = ρ ;
(ii) there exists u0 ∈ W 1,p(Ω) such that Jλ(u0) < 0 and ‖u0‖ > ρ .

Proof (i) From (2.3) and (2.4), we know that

Jλ(u) ≥ 1
p

min{1,λ}‖u‖p –
QM

p∗

∫

Ω

|u|p∗ dx –
PM

p∗(t)

∫

Ω

|u|p∗(t)

|x|t dx

≥ 1
p

min{1,λ}‖u‖p –
C1QM

p∗ ‖u‖p∗
–

CPM

p∗(t)
‖u‖p∗(t).

Since p < p∗(t) < p∗, then there exist constants ρ , β > 0 such that Jλ(u) ≥ β for u ∈ ∂Bρ =
{u ∈ W 1,p(Ω),‖u‖ = ρ}.

(ii) Choosing u ∈ W 1,p(Ω) and u �≡ 0, we have

Jλ(τu) =
τ p

p

∫

Ω

(|∇u|p dx + λ|u|p)dx –
τ p∗

p∗

∫

Ω

Q(x)|u|p∗
dx

–
τ p∗(t)

p∗(t)

∫

Ω

P(x)|u|p∗(t)

|x|t dx, τ > 0.



Li and Wang Boundary Value Problems         (2020) 2020:57 Page 6 of 16

Because of limτ→+∞ Jλ(τu) = –∞, there exists τ0 > 0 such that ‖τ0u‖ > ρ and Jλ(τ0u) < 0.
Let u0 = τ0u, then condition (ii) holds. The proof of Lemma 2.3 is completed. �

We define

Γ =
{

h ∈ C
(
[0, 1]

)
, W 1,p(Ω)|h(0) = 0, h(1) = τ0u = u0

}
, c = inf

h∈Γ
sup

τ∈[0,1]
Jλ

(
h(τ )

)
.

Using Lemma 2.3 and the mountain pass lemma, there exists a (PS)c-sequence {un} ⊂
W 1,p(Ω) such that Jλ(un) → c, J ′

λ(un) → 0 as n → ∞. Then we have the following lemma.

Lemma 2.4 Assume that λ > 0, and the coefficients Q(x), P(x) are positive continuous
on Ω . Then the energy functional Jλ(u) satisfies the (PS)c condition for c < c∗, where

c∗ = min{ S
N
p

NQ
N–p

p
M

, S
N
p

2NQM
N–p

p
, S

N
p

N2
N+p

p Q
N–p

p (0)
, (p–t)S

N–t
p–t

H

p(N–t)2
N+p–2t

p–t P
N–p
p–t (0)

}.

Proof Let {un} ⊂ W 1,p(Ω) be a (PS)c sequence for Jλ(u) with c < c∗, firstly, we prove that
{un} is bounded. Since Jλ(un) → c, J ′

λ(un) → 0 as n → ∞, we have

Jλ(un) =
1
p

∫

Ω

|∇un|p dx +
λ

p

∫

Ω

|un|p dx –
1
p∗

∫

Ω

Q(x)|un|p∗
dx

–
1

p∗(t)

∫

Ω

P(x)
|un|p∗(t)

|x|t dx

= c + o(1), (2.5)

〈
J ′
λ(un), un

〉
=

∫

Ω

|∇un|p dx + λ

∫

Ω

|un|p dx –
∫

Ω

Q(x)|un|p∗
dx

–
∫

Ω

P(x)
|un|p∗(t)

|x|t dx

= o(1). (2.6)

Combining (2.5) with (2.6), it follows from the property of function Q(x) that

c + o(1) = Jλ(un) –
1

p∗(t)
〈
J ′
λ(un), un

〉

=
(

1
p

–
1

p∗(t)

)∫

Ω

(|∇un|p dx + λ|un|p
)

+
(

1
p∗(t)

–
1
p∗

)∫

Ω

Q(x)|un|p∗
dx

≥
(

1
p

–
1

p∗(t)

)∫

Ω

(|∇un|p + λ|un|p
)

dx,

thus, we can get that {un} is bounded in W 1,p(Ω).
Next, we prove that {un} is relatively compact in W 1,p(Ω). Since {un} is bounded in

W 1,p(Ω), we know that there exists a subsequence, still denoted by {un}, such that

un ⇀ u weakly in W 1,p(Ω),
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un ⇀ u weakly in Lp∗
(Ω),

un ⇀ u weakly in Lp∗(t)(Ω , |x|–t),

un → u strongly in Lp(Ω),

un → u almost everywhere in Ω .

By the Lions concentration-compactness principle [27], there exist at most countable set J ,
a set of distinct points {xj}j∈J ⊂ Ω\{0}, sets of nonnegative real numbers {μj}j∈J , {νj}j∈J and
nonnegative real numbers μ0, ν0, γ0 such that

|∇un|p dx ⇀ dμ ≥ |∇u|p dx +
∑

j∈J

μjδxj + μ0δ0,

|un|p∗
dx ⇀ dν = |u|p∗

dx +
∑

j∈J

νjδxj + ν0δ0,

|un|p∗(t)

|x|t dx ⇀ dγ =
|u|p∗(t)

|x|t dx + γ0δ0

(2.7)

in the weak sense of measure, where δx is the Dirac mass at x, and the constants μj, νj, γ0

satisfying

Sν

p
p∗

j ≤ μj, where xj ∈ Ω , j ∈ J ,

2– p
N Sν

p
p∗

j ≤ μj, where xj ∈ ∂Ω , j ∈ J ∪ {0},

2– p–t
N–t SHγ

p
p∗(t)

0 ≤ μ0.

(2.8)

Now, we prove μj = 0 and νj = 0, where j ∈ J . In fact, we choose ε > 0 sufficiently small
such that 0 /∈ Bε(xj) and Bε(xi) ∩ Bε(xj) = ∅ for i �= j, i, j ∈ J . Let φ

j
ε(x) be a smooth cut-off

function centered at xj such that

0 ≤ φj
ε(x) ≤ 1 for |x – xj| < ε, φj

ε(x) =

⎧
⎨

⎩

1, |x – xj| ≤ ε
2 ,

0, |x – xj| ≥ ε,
and

∣
∣∇φj

ε

∣
∣ ≤ 4

ε
.

Noting that

〈
J ′
λ(un), unφ

j
ε(x)

〉

=
∫

Ω

|∇un|pφj
ε(x) dx +

∫

Ω

|∇un|p–2∇un∇φj
ε(x)un dx + λ

∫

Ω

|un|pφj
ε(x) dx

–
∫

Ω

Q(x)|un|p∗
φj

ε(x) dx –
∫

Ω

P(x)
|un|p∗(t)

|x|t φj
ε(x) dx,

and by (2.7), we have that

lim
ε→0

lim
n→∞

∫

Ω

|∇un|pφj
ε(x) dx ≥ μj,

lim
ε→0

lim
n→∞

∫

Ω

|∇un|p–2∇un∇φj
ε(x)un dx = 0,
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lim
ε→0

lim
n→∞

∫

Ω

|un|pφj
ε(x) dx = 0,

lim
ε→0

lim
n→∞

∫

Ω

Q(x)|un|p∗
φj

ε(x) dx = Q(xj)νj,

lim
ε→0

lim
n→∞

∫

Ω

P(x)
|un|p∗(t)

|x|t φj
ε(x) dx = 0.

Thus,

0 = lim
ε→0

lim
n→∞

〈
J ′
λ(un), unφ

j
ε(x)

〉 ≥ μj – Q(xj)νj. (2.9)

If νj �= 0, by (2.8) and (2.9), we find that

νj ≥ S
N
p

Q
N
p (xj)

, xj ∈ Ω ,

νj ≥ S
N
p

2Q
N
p (xj)

, xj ∈ ∂Ω .

On the other hand,

c =
1
N

∫

Ω

Q(x)|u|p∗
dx +

p – t
p(N – t)

∫

Ω

P(x)
|u|p∗(t)

|x|t dx

+
1
N

∑

j∈J

Q(xj)νj +
1
N

Q(0)ν0 +
p – t

p(N – t)
P(0)γ0, (2.10)

this implies c ≥ S
N
p

NQ
N–p

p
M

or c ≥ S
N
p

2NQM
N–p

N
, which is a contradiction. Hence, μj = νj = 0.

Next, we consider the possibility of concentration at the origin. Let ε > 0 be small enough
such that xj /∈ Bε(0), j ∈ J , choose a smooth cut-off function φ0

ε (x) such that

0 ≤ φ0
ε (x) ≤ 1 for |x| < ε, φ0

ε (x) =

⎧
⎨

⎩

1, |x| ≤ ε
2 ,

0, |x| ≥ ε,
and

∣
∣∇φ0

ε

∣
∣ ≤ 4

ε
.

Similarly, we get μ0 ≤ Q(0)ν0 + P(0)γ0. If μ0 �= 0, we have

μ0

2
≤ Q(0)ν0 or

μ0

2
≤ P(0)γ0,

using the above inequalities and combining (2.8) with (2.10), we can deduce that

c ≥ 1
N

Q(0)ν0 ≥ S
N
p

2
N+p

p NQ
N–p

p (0)

or c ≥ p – t
p(N – t)

P(0)γ0 ≥ p – t
p(N – t)

S
N–t
p–t

2
N+p–2t

p–t P
N–p
p–t (0)

,

which is a contradiction with the condition c < c∗. Hence, μ0 = ν0 = γ0 = 0 and un → u
strongly in W 1,p(Ω), |un|p∗(t)

|x|t → |u|p∗(t)

|x|t strongly in Lp∗(t)(Ω). �
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3 Proofs of Theorems 1.1 and 1.2
In order to prove Theorems 1.1 and 1.2, we also need the following lemma.

Lemma 3.1 Assume that λ > 0 and the coefficients Q(x), P(x) are positive continuous func-
tions on Ω , then there exists λ∗ > 0 such that supτ≥0 Jλ(τu) < c∗ for 0 < λ < λ∗.

Proof For u ∈ W 1,p(Ω) \ {0}, we consider the functional

Jλ(τu) =
τ p

p

∫

Ω

(|∇u|p + λ|u|p)dx –
τ p∗

p∗

∫

Ω

Q(x)|u|p∗
dx –

τ p∗(t)

p∗(t)

∫

Ω

P(x)
|u|p∗(t)

|x|t dx

≤ sup
τ≥0

[
τ p

p

∫

Ω

(|∇u|p + λ|u|p)dx

–
τ p∗

p∗

∫

Ω

Q(x)|u|p∗ dx –
τ p∗(t)

p∗(t)

∫

Ω

P(x)
|u|p∗(t)

|x|t dx
]

≤ 1
N

(
∫

Ω
(|∇u|p + λ|u|p) dx)

N
p

(
∫

Ω
Q(x)|u|p∗ dx)

N–p
p

.

Choosing u = A(constant) �= 0, we find that

sup
τ≥0

Jλ(τA) ≤ 1
N

λ
N
p |Ω| N

p

(
∫

Ω
Q(x) dx)

N–p
p

,

which implies supτ≥0 Jλ(τA) < c∗ for 0 < λ < |Ω|–1N
p
N (c∗)

p
N (

∫

Ω
Q(x) dx)

N–p
N .

Similarly,

sup
τ≥0

Jλ(τA) ≤ p – t
p(N – t)

λ
N–t
p–t |Ω| N–t

p–t

(
∫

Ω

P(x)
|x|t dx)

N–p
p–t

< c∗

for 0 < λ < |Ω|–1( p(N–t)
p–t )

p–t
N–t (c∗)

p–t
N–t (

∫

Ω

P(x)
|x|t dx)

N–p
N–t .

Set λ∗ = |Ω|–1 max{N p
N (c∗)

p
N (

∫

Ω
Q(x) dx)

N–p
N , ( p(N–t)

p–t )
p–t
N–t (c∗)

p–t
N–t (

∫

Ω

P(x)
|x|t dx)

N–p
N–t }, then we

have supτ≥0 Jλ(τA) < c∗ for 0 < λ < λ∗, and

0 < β ≤ c = inf
h∈Γ

max
τ∈[0,1]

Jλ
(
h(τ )

) ≤ max
τ≥0

Jλ(τA) < c∗. �

Proof of Theorem 1.1 Applying Lemma 2.4, we know that the functional Jλ(u) satisfies the
(PS)c-condition, by Lemma 3.1 and the mountain pass theorem, we obtain that Problem
(1.1) has at least one nontrivial solution u. On the other hand, since Jλ(u) = Jλ(|u|), then
Problem (1.1) has at least one nontrivial nonnegative solution. The proof of Theorem 1.1
is completed. �

In order to prove Theorem 1.2, we also need the following lemma.

Lemma 3.2 Suppose that λ > 0 and the coefficients Q(x), P(x) are positive continuous func-

tions on Ω , c∗ = S
N
p

2NQM
N–p

p
. If there exists y ∈ ∂Ω such that QM = Q(y) and |Q(y) – Q(x)| =
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o(|x – y|σ ) for x → y, where 1 < σ < N
p–1 . Then, for each λ > 0 and N > 2p – 1, there exists a

nonnegative function v ∈ W 1,p(Ω) and v �≡ 0 such that

sup
τ≥0

Jλ(τv) < c∗.

Proof Firstly, we consider the functional

g(τ ) = Jλ(τuε) =
τ p

p

∫

Ω

(|∇uε|p + λ|uε|p
)

dx –
τ p∗

p∗

∫

Ω

Q(x)|uε|p∗
dx

–
τ p∗(t)

p∗(t)

∫

Ω

P(x)
|uε|p∗(t)

|x|t dx, τ > 0.

Since limτ→∞ g(τ ) = –∞, g(0) = 0, and g(τ ) > 0 for τ → 0+, we know that there exists some
τε > 0 such that

g(τε) = sup
τ≥0

Jλ(τuε) =
τ

p
ε

p

∫

Ω

(|∇uε|p + λ|uε|p
)

dx –
τ

p∗
ε

p∗

∫

Ω

Q(x)|uε|p∗
dx

–
τ

p∗(t)
ε

p∗(t)

∫

Ω

P(x)
|uε|p∗(t)

|x|t dx

≤ 1
N

[ ∫

Ω
|∇uε|p dx

(
∫

Ω
Q(x)|uε|p∗ dx)

N–p
N

] N
p

+ λ
τ

p
ε

p

∫

Ω

|uε|p dx, (3.1)

where τε is uniformly bounded for ε > 0 sufficiently small.
Next, we prove that

∫

Ω
Q(x)|uε|p∗ dx = QM ∫

Ω
|uε|p∗ dx + o(ε

p–1
p ).

Since |Q(x)–Q(y)| = o(|x–y|σ ) for x → y, then there exists δ > 0 such that |Q(x)–Q(y)| ≤
C2|x – y|σ for |x – y| < δ, where C2 > 0 is constant. Moreover, a series of computations yield

∫

Ω

∣
∣Q(x) – Q(y)

∣
∣|uε|p∗

dx

≤
∫

Ω∩|x–y|≤δ

∣
∣Q(x) – Q(y)

∣
∣|uε|p∗

dx +
∫

Ω∩|x–y|≥δ

∣
∣Q(x) – Q(y)

∣
∣|uε|p∗

dx

≤ C2

∫

|x–y|≤δ

|x – y|σ |uε|p∗
dx + 2QM

∫

Ω∩|x–y|≥δ

|uε|p∗
dx

= O
(
ε

(p–1)σ
p

)
+ O

(
ε

N
p
)
.

Noting that N > 2p – 1, 1 < σ < N
p–1 , then we have

∫

Ω

Q(x)|uε|p∗
dx = QM

∫

Ω

|uε|p∗
dx + o

(
ε

p–1
p

)
. (3.2)

Finally, we prove supτ≥0 Jλ(τuε) < c∗. According to (3.1), (3.2), and Lemma 2.1, we have

sup
τ≥0

Jλ(τuε) ≤ S
N
p

2N(QM)
N–p

p

[

1 +
N – p

p
M–1

2 K2(ε) –
N
p

M–1
1 K1(ε)

]

+ o
(
ε

p–1
p

)
,

where M1 = 1
2
∫

R |∇uε|p dx, M2 = 1
2
∫

R |uε|p∗ dx.
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Now, we claim that

lim
ε→0

ε
– p–1

p

(
N – p

p
M–1

2 K2(ε) –
N
p

M–1
1 K1(ε)

)

< 0, (3.3)

which implies supτ≥0 Jλ(τv) < c∗ holds. According to

lim
ε→0

ε
– p–1

p K1(ε) = K1,

lim
ε→0

ε
– p–1

p K1(ε) = K2,

we know that (3.3) is equivalent to N–p
N

M1
M2

< K1
K2

.
From the expressions of K1, K2, M1, M2, and uε , a series of computations yield

K1

K2
=

1
2 H(y)Cp

Np( N–p
p–1 )p ∫

RN–1 (1 + |y′| p
p–1 )–N |y′| 3p–2

p–1 dy′

1
2 H(y)Cp∗

Np
∫

RN–1 (1 + |y′| p
p–1 )–N |y′|2 dy′

= Cp–p∗
Np

(
N – p
p – 1

)p ∫ +∞
0 (1 + r

p
p–1 )–N r

3p–2
p–1 +N–2 dr

∫ +∞
0 (1 + r

p
p–1 )–N rN dr

= Cp–p∗
Np

(
N – p
p – 1

)p ∫ +∞
0 (1 + r2)–N r

2Np+3p–2N–2
p dr

∫ +∞
0 (1 + r2)–N r

2Np+p–2N–2
p dr

,

(N – p)M1

NM2
=

N – p
N

Cp–p∗
Np

(
N – p
p – 1

)p ∫ +∞
0 (1 + r

p
p–1 )–N r

p
p–1 +N–1 dr

∫ +∞
0 (1 + r

p
p–1 )–N rN–1 dr

=
N – p

N
Cp–p∗

Np

(
N – p
p – 1

)p ∫ +∞
0 (1 + r2)–N r

2Np+p–2N
p dr

∫ +∞
0 (1 + r2)–N r

2Np–p–2N
p dr

= Cp–p∗
Np

(
N – p
p – 1

)p

(p – 1).

Integrating by parts, we have

∫ +∞

0

rβ

(1 + r2)n dr =
β – 1

2n – β – 1

∫ +∞

0

rβ–2

(1 + r2)n dr for 2 ≤ β < 2n – 1,

then

K1

K2
= Cp–p∗

Np

(
N – p
p – 1

)p (p – 1)(N + 1)
N – 2p + 1

,

(N – p)M1

NM2
= Cp–p∗

Np

(
N – p
p – 1

)p

(p – 1)

since N+1
N–2p+1 > 1, which implies N–p

N
M1
M2

< K1
K2

holds. Thus,

sup
τ≥0

Jλ(τuε) <
S

N
p

2N(QM)
N–p

p
= c∗. �
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Proof of Theorem 1.2 Applying Lemmas 2.3, 3.2, and 2.4, we have

0 < β ≤ c = inf
h∈Γ

max
τ∈[0,1]

Jλ
(
h(τ )

) ≤ max
τ≥0

Jλ(τuε) < c∗,

and functional Jλ(u) satisfies the (PS)c-condition. Upon an application of mountain pass
theorem, we obtain that Problem (1.1) has at least one nontrivial solution u. On the other
hand, since Jλ(u) = Jλ(|u|), then Problem (1.1) has at least one nontrivial nonnegative so-
lution. The proof of Theorem 1.2 is completed. �

4 Proof of Theorem 1.3
In this section, we study the existence of solution to Problem (1.1) in the case of λ ≤ 0. For
the sake of convenience, we replace λ by –μ, then Problem (1.1) may be rewritten as the
following problem:

⎧
⎨

⎩

–�pu – μ|u|p–2u = Q(x)|u|p∗–2u + P(x) |u|p∗(t)–2u
|x|t , x ∈ Ω ,

|∇u|p–2 ∂u
∂ν

= 0, x ∈ ∂Ω ,
(4.1)

where P(x) changes sign and satisfies
∫

Ω

P(x)
|x|t dx < 0. Then the corresponding energy func-

tional of problem (4.1) is

Jμ(u) =
1
p

∫

Ω

|∇u|p dx –
μ

p

∫

Ω

|u|p dx –
1
p∗

∫

Ω

Q(x)|u|p∗
dx –

1
p∗(t)

∫

Ω

P(x)
|u|p∗(t)

|x|t dx,

u ∈ W 1,p(Ω).

Denote W 1,p(Ω) = V ⊕Span{1} with norm ‖u‖p
V = ‖∇v‖p

p + |s|p, where V = {v ∈ W 1,p(Ω),
∫

Ω
v dx = 0}, then norms ‖u‖V and ‖u‖ are equivalent.

Lemma 4.1 If there exists a constant η > 0 such that ‖∇v‖p = (
∫

Ω
|∇v|p dx)

1
p ≤ η|s| for

s ∈ R, v ∈ V , then

∫

Ω

P(x)|v + s|p∗(t)

|x|t dx ≤ |s|p∗(t)

2

∫

Ω

P(x)
|x|t dx.

Proof The proof is based on V ↪→ Lp∗(t)(Ω , 1
|x|t ), we omit the details here. �

Lemma 4.2 There exist constants μ0 > 0, ρ > 0, β > 0 such that Jμ(u) ≥ β for 0 ≤ μ <
μ0 and ‖u‖V = ρ . Moreover, inf‖u‖V ≤ρ Jμ(u) < 0.

Proof First, we prove that there exist constants μ0 > 0, ρ > 0, β > 0 such that Jμ(u) ≥ β for
0 ≤ μ < μ0 and ‖u‖V = ρ , the proof is divided into two cases:

(i) If there exists a constant η > 0 such that ‖∇v‖p ≤ η|s|, then |s|p ≥ ‖u‖p
V

1+ηp . By
Lemma 4.1, we have

Jμ(u) ≥ α‖u‖p∗(t)
V

p∗(t)(1 + ηp)
p∗(t)

p
–

μ

p

∫

Ω

|u|p dx –
1
p∗

∫

Ω

Q(x)|u|p∗ dx, (4.2)

where α = – 1
2
∫

Ω

P(x)
|x|t dx > 0.
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(ii) If there exists a constant η > 0 such that ‖∇v‖p > η|s|, then
‖u‖p

V = ‖∇v‖p
p + |s|p ≤ (1 + 1

ηp )‖∇v‖p
p. Using Lemma 2.2 and the norms ‖u‖ and

‖u‖V are equivalent, we see that

∫

Ω

P(x)
|u|p∗(t)

|x|t dx ≤ C3‖u‖p∗(t)
V ≤ C3‖∇v‖p∗(t)

p

(

1 +
1
ηp

) p∗(t)
p

,

where constant C3 > 0. Consequently,

Jμ(u) ≥ 1
p
‖∇v‖p

p –
C3

p∗(t)

(

1 +
1
ηp

) p∗(t)
p

‖∇v‖p∗(t)
p –

μ

p

∫

Ω

|u|p dx

–
1
p∗

∫

Ω

Q(x)|u|p∗ dx.

Choosing ‖u‖V = ρ sufficiently small such that 1
p‖∇v‖p

p ≥ 2C3
p∗(t) (1 + 1

ηp )
p∗(t)

p ‖∇v‖p∗(t)
p , we see

that

Jμ(u) ≥ 1
2p

‖∇v‖p
p –

μ

p

∫

Ω

|u|p dx –
1
p∗

∫

Ω

Q(x)|u|p∗
dx

≥ ηp‖u‖p
V

2p(1 + ηp)
–

μ

p

∫

Ω

|u|p dx –
1
p∗

∫

Ω

Q(x)|u|p∗
dx. (4.3)

Let k = min{ α‖u‖p∗(t)
V

p∗(t)(1+ηp)
p∗(t)

p
, ηp‖u‖p

V
2p(1+ηp) }. Using (2.4), (4.2), and (4.3), we derive that

Jμ(u) ≥ k –
μ

p
‖u‖p –

C1

p∗ QM‖u‖p∗ .

Noting that ‖u‖ and ‖u‖V are equivalent, thus there exist constants μ0 > 0, ρ > 0, β >
0 such that Jμ(u) ≥ β for 0 ≤ μ < μ0 and ‖u‖V = ρ .

Next, we prove inf‖u‖V ≤ρ Jμ(u) < 0. Since

Jμ(τ ) = –
μτ p

p
|Ω| –

τ p∗

p∗

∫

Ω

Q(x) dx –
τ p∗(t)

p∗(t)

∫

Ω

P(x) dx,

by (A1) and (A2), we know that Jλ(τ ) < 0 for τ > 0 small enough. Consequently,
inf‖u‖V ≤ρ Jμ(u) < 0. �

Taking αμ = inf‖u‖V ≤ρ Jμ(u). Next, we give the proof of Theorem 1.3.

Proof of Theorem 1.3 Using Lemma 4.2 and Ekeland’s variational principe, we know that
there exists a sequence {un} such that Jμ(un) → αμ, J ′

μ(un) → 0 in (W 1,p(Ω))∗ as n → ∞.
Since ‖u‖V ≤ ρ and Bρ = {u ∈ W 1,p(Ω)|‖u‖V ≤ ρ} is closed and convex, there exists a
subsequence, still denoted by {un} and u ∈ Bρ , such that

un ⇀ u weakly in W 1,p(Ω),

un ⇀ u weakly in Lp∗
(Ω),
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un ⇀ u weakly in Lp∗(t)(Ω , |x|–t),

un → u strongly in Lp(Ω),

un → u almost everywhere in Ω .

By the Lions concentration-compactness principle [27], we have (2.7) and (2.8) hold. Then,
we prove μj = 0 and νj = 0, where j ∈ J . In fact, we choose ε > 0 sufficiently small such that
0 /∈ Bε(xj) and Bε(xi) ∩ Bε(xj) = ∅ for i �= j, i, j ∈ J . Let φ

j
ε(x) be a smooth cut-off function

centered at xj such that

0 ≤ φj
ε(x) ≤ 1 for |x – xj| < ε, φj

ε(x) =

⎧
⎨

⎩

1, |x – xj| ≤ ε
2 ,

0, |x – xj| ≥ ε,
and

∣
∣∇φj

ε

∣
∣ ≤ 4

ε
.

Using the same argument as that in Lemma 2.4, we have

0 = lim
ε→0

lim
n→∞

〈
J ′
μ(un), unφ

j
ε(x)

〉 ≥ μj – Q(xj)νj,

and from (2.8) we find that μj = 0 or

μj ≥
(

S
p∗
p

QM

) p
p∗–p

, xj ∈ Ω ,

μj ≥
(

S
p∗
p

2
p∗
N QM

) p
p∗–p

, xj ∈ ∂Ω .

If μj �= 0, it follows from Hölder’s inequality and Young’s inequality that

0 > αμ = lim
n→∞

(

Jμ(un) –
1

p∗(t)
〈
J ′
μ(un), un

〉
)

≥ –μ
p∗(t) – p

pp∗(t)
|Ω|

p∗–p
p∗

(∫

Ω

|u|p∗
dx

) p
p∗

+
p∗(t) – p

p∗(t)p
∑

j∈J∪{0}
μj

+
p∗ – p∗(t)

p∗(t)p∗ Qm

∫

Ω

|u|p∗
dx +

p∗ – p∗(t)
p∗(t)p∗

∑

j∈J∪{0}
Q(xj)νj

≥ –
(

μ
p∗(t) – p

pp∗(t)

) p∗
p∗–p |Ω|

(
p∗ – p∗(t)

p∗(t)p∗ Qm

)– p
p∗–p

+
p∗(t) – p

p∗(t)p
∑

j∈J∪{0}
μj

> 0 (4.4)

for μ < μ∗ = min{μ0,μ1}, where μ1 = min{( p(p∗–p∗(t))Qm

p∗(p∗(t)–p)|Ω|
p∗–p

p
)

p
p∗ S

Q
p

p∗
M

, ( p(p∗–p∗(t))Qm

p∗(p∗(t)–p)|Ω|
p∗–p

p
)

p
p∗ ×

S

QM
p

p∗ 2
p
N

, ( p(p∗–p∗(t))Qm

p∗(p∗(t)–p)|Ω|
p∗–p

p
)

p
p∗ S

2Q
p

p∗ (0)
, ( p(p∗–p∗(t))Qm

p∗(p∗(t)–p)|Ω|
p∗–p

p
)

p
p∗ S

p(N–t)
N(p–t)
H

P
p(N–p)
N(p–t) (0)2

p(N–t)
N(p–t)

}, which is a con-

tradiction. Hence, μj = νj = 0.
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Next, we prove μ0 = ν0 = γ0 = 0. Let ε > 0 be small enough such that xj /∈ Bε(0), j ∈ J ,
choose a smooth cut-off function φ0

ε (x) such that

0 ≤ φ0
ε (x) ≤ 1 for |x| < ε, φ0

ε (x) =

⎧
⎨

⎩

1, |x| ≤ ε
2 ,

0, |x| ≥ ε,
and

∣
∣∇φ0

ε

∣
∣ ≤ 4

ε
.

Similarly, we get μ0 ≤ Q(0)ν0 + P(0)γ0. If μ0 �= 0, we have

μ0

2
≤ Q(0)ν0 or

μ0

2
≤ P(0)γ0,

then using (2.8), we can deduce that

μ0 ≥
(

S
p∗
p

2Q(0)2
p∗
N

) p
p∗–p

or μ0 ≥
(

S
p∗(t)

p
H

2P(0)2
p–t
N–p

) p
p∗(t)–p

.

Bringing the above inequalities into (4.4), we see that

0 > αμ ≥ –
(

μ
p∗(t) – p

pp∗(t)

) p∗
p∗–p |Ω|

(
p∗ – p∗(t)

p∗(t)p∗ Qm

)– p
p∗–p

+
p∗(t) – p

p∗(t)p
μ0 > 0

for μ < μ∗, which is a contradiction. Hence, μ0 = ν0 = γ0 = 0 and un → u strongly in
W 1,p(Ω), |un|p∗(t)

|x|t → |u|p∗(t)

|x|t strongly in Lp∗(t)(Ω). So u is a solution of Problem (4.1) and
αμ = Jμ(u). Since Jμ(u) = Jμ(|u|), then Problem (4.1) has at least one nontrivial nonnega-
tive solution. The proof of Theorem 1.3 is completed. �
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