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Abstract
In this article, we consider the pullback attraction in H1

0 of pullback attractor for
semilinear heat equation with domains expanding in time. Firstly, we establish
higher-order integrability of difference about variational solutions; then, we prove the
continuity of variational solution in H1

0(Ot). As application of continuity, we obtain the
pullback Dλ1 attraction in H1

0-norm.
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1 Introduction
Let {Ot}t∈R be a family of nonempty bounded open subsets of RN such that

Os ⊂Ot , s < t. (1)

Define

Qτ ,T :=
⋃

t∈(τ ,T)

Ot × {t}, Q̃τ ,T :=
⋃

t∈(τ ,T)

OT × {t} for any T > τ (2)

and

Qτ :=
⋃

t∈(τ ,+∞)

Ot × {t}, ∀τ ∈R,

Στ ,T :=
⋃

t∈(τ ,T)

∂Ot × {t}, Στ :=
⋃

t∈(τ ,+∞)

∂Ot × {t}, ∀τ < T .

We consider the following initial boundary value problem with homogeneous Dirichlet
boundary condition:

⎧
⎪⎪⎨

⎪⎪⎩

∂u
∂t – �u + g(u) = f (t) in Qτ ,

u = 0 on Στ ,

u(τ , x) = uτ (x), x ∈Oτ ,

(3)
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where uτ : Oτ → R and f : Qτ → R are given for τ ∈ R, and g ∈ C1(R,R) satisfies the
conditions: there exist nonnegative constants α1, α2, β , l, and p ≥ 2 such that

–β + α1|s|p ≤ g(s)s ≤ β + α2|s|p, ∀s ∈R (4)

and

g ′(s) ≥ –l, ∀s ∈R. (5)

For later observe that there exist nonnegative constants α̃1, α̃2, β̃ such that

–β̃ + α̃1|s|p ≤ G(s) ≤ β̃ + α̃2|s|p, ∀s ∈R, (6)

where

G(s) :=
∫ s

0
g(r) dr.

For each T > τ , consider the auxiliary problem

⎧
⎪⎪⎨

⎪⎪⎩

∂u
∂t – �u + g(u) = f (t) in Qτ ,T ,

u = 0 on Στ ,T ,

u(τ , x) = uτ (x), x ∈Oτ ,

(7)

where uτ : Oτ →R for τ ∈R, g satisfies (4)–(5) and f ∈ L2
loc(R; L2(Ot)).

The issue of non-cylindrical region usually refers to the problem that spatial region
changes with time, also known as the problem of variable region. Variable region problems
are applied widely in physics, chemistry, and cybernetics, so have been focused on rele-
vant experts. Compared with the invariant regional system, the study of variable regional
problem can vividly describe the actual phenomena. In addition, the problem defined in
the variable region is essentially non-autonomous, so the discussion of variable regional
problem adds vitality to the development and perfection of theory of non-autonomous
system.

Based on the actual requirement, many mathematical researchers began to focus on the
variable region problems, for example, see [1, 4–8, 15, 16] and so on. Recently, the exis-
tence and uniqueness of variational solution of system (3) have been considered in [6] with
monotonic increase region, and then (L2, L2) pullback Dλ1 attractor has been established.
In 2009, by means of differ-morphism, a similar conclusion of system (3) was obtained in
[7]. Later, in [11], by the solution orbit being shifted via a fixed complete orbit, the authors
obtained the pullback Dλ1 attraction of L2 pullback attractor in higher-order integrable
spaces.

The continuity of solution plays an important role in the study of dynamic systems,
especially in pullback attraction, fractal dimension, and so on. For the invariant region,
the continuity of strong solution with respect to the initial data in H1

0 (O) was considered
for the space dimension N ≤ 2, and the nonlinear term exponent p ≥ 2, but p ≤ 4 for
N = 3 was required. For an autonomous system, in order to obtain continuity in H1

0 (O) and
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Lp(O), the concept of norm-to-weak continuity was given in [12], and then the existence
of global attractor was established. Then, the norm-to-weak continuity concept to the case
of a non-autonomous system was studied in [10]. However, for a long time, the continuity
of solution in H1

0 (O) with respect to initial data has still been an open problem. Until 2008,
when the nonlinear term f of autonomous system satisfying (4) and (5) was introduced,
the author obtained the uniform boundedness of tu(t) by differentiating equation about
time t, then considered the continuity of solution about initial data, see details in [14].
However, for a non-autonomous system, we cannot differentiate equation, so the method
in [14] cannot be shifted to solve non-autonomous problems. In order to overcome the
difficulties deriving from the non-autonomous character, in 2015, for the case of random
equation, [2] discussed the continuity in H1

0 (O) by studying the higher-order integrability
of solutions difference near the initial time. Then, a natural problem arose: Does it still
hold for variable domains? As far as the author knows, the continuity of solution in H1

0 (Ot)
about initial data is still unknown.

Enlightened by the above, we consider the continuity of variational solution in H1
0 (Ot)

with respect to initial data when the region of system (3) is monotonically increasing. As
an application of continuity, we establish the pullback Dλ1 attraction in H1

0 (Ot) for any
t ∈R.

This paper is organized as follows. In Sect. 2, we recall some concepts and related results
about variational solution. In Sect. 3, we prove higher-order integrability of difference of
variational solutions near initial data (Theorem 3.3) and the continuity in H1

0 (Ot) (Theorem
3.4), then establish the pullback Dλ1 attraction in H1

0 (Ot) (Theorem 3.5).

2 Variational solutions
For each t ∈ R, denoted by (·, ·)t and | · |t the usual inner product and related norm in
L2(Ot) and by ((·, ·))t and ‖ · ‖t the usual gradient inner product and associated norm in
H1

0 (Ot). The usual duality product between H1
0 (Ot) and H–1(Ot) is denoted by 〈·, ·〉t . And

(·, ·)t and ‖ ·‖Lp(Ot ) represent the duality product between Lp(Ot) and Lq(Ot) with 1
p + 1

q = 1
and the associated norm.

We consider a process U on a Banach space X, i.e., a family {U(t, τ ); –∞ < τ ≤ t < +∞}
of continuous mappings U(t, τ ) : X → X such that

U(τ , τ )x = x and U(t, τ ) = U(t, s)U(s, τ ) for all τ ≤ s ≤ t and x ∈ X.

Suppose that D is a nonempty class of parameterized sets D̂ = {D(t) : t ∈ R} ⊂ P(X),
where P(X) denotes the family of all nonempty subsets of X.

Definition 2.1 ([3]) The family ˆA = {A (t) : A (t) ∈ P(X), t ∈ R} is said to be a pullback
D-attractor for the process U(·, ·) if

(1) A (t) is compact in X for all t ∈ R;
(2) ˆA is pullback D-attracting, i.e.,

lim
τ→–∞ distX

(
U(t, τ )D(τ ),A (t)

)
= 0 for all D̂ ∈ D and all t ∈R;

(3) ˆA is invariant, i.e.,

U(t, τ )A (τ ) = A (t) for any –∞ < τ ≤ t < ∞.
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Fix T > τ , for each t ∈ [τ , T] denoted by

H1
0 (Ot)

⊥ =
{

v ∈ H1
0 (OT ) :

(
(v, w)

)
T = 0,∀w ∈ H1

0 (Ot)
}

is the orthogonal subspace of H1
0 (Ot) with respect to the inner product in H1

0 (OT ). We
may identify w with its null-expansion and by P(t) ∈ L(H1

0 (OT )) the orthogonal projection
operator from H1

0 (OT ) to H1
0 (Ot)⊥, which is defined as

P(t)v ∈ H1
0 (Ot)⊥, v – P(t)v ∈ H1

0 (Ot)

for each v ∈ H1
0 (OT ). Consider the family p(t; ·, ·) of symmetric bilinear forms on H1

0 (OT )
defined by

p(t; v, w) :=
((

P(t)v, w
))

T , ∀v, w ∈ H1
0 (OT ),∀t ≥ τ .

It can be proved that the mapping [τ , +∞) � t → p(t; v, w) is measurable for all v, w ∈
H1

0 (OT ). For each integer k ≥ 1 and t ≥ τ , define

pk(t; v, w) := k
∫ 1

k

0
p(t + r; v, w) dr ∀v, w ∈ H1

0 (OT ),∀t ≥ τ ,

and denote by Pk(t) ∈ L(H1
0 (OT )) the associated operator defined by

((
Pk(t)v, w

))
:= pk(t; v, w), ∀v, w ∈ H1

0 (OT ),∀t ≥ τ .

Then we know from the above that, for any integers 1 ≤ h ≤ k, any t ≥ τ , and any v, w ∈
H1

0 (OT ),

0 ≤ ph(t; v, v) ≤ pk(t; v, v) ≤ p(t; v, v) =
∥∥P(t)v

∥∥2
T ≤ ‖v‖2

T . (8)

For each T > τ , denote

Uτ ,T :=
{
φ ∈ L2(τ , T ; H1

0 (OT )
) ∩ Lp(τ , T ; Lp(OT )

)
,φ′ ∈ L2(τ , T ; L2(OT )

)

and φ(τ ) = φ(T) = 0,φ(t) ∈ H1
0 (Ot) for a.e. t ∈ (τ , T)

}
.

Definition 2.2 A variational solution of equation (7) is a function u such that
(C1) u ∈ L2(τ , T ; H1

0 (OT )) ∩ Lp(τ , T ; Lp(OT ));
(C2) u(t) ∈ H1

0 (Ot) a.e. t ∈ (τ , T);
(C3) for all φ ∈ Uτ ,T ,

∫ T

τ

[
–
(
u(t),φ′(t)

)
T +

((
u(t),φ(t)

))
T +

(
g
(
u(t)

)
,φ(t)

)
T

]
dt =

∫ T

τ

(
f (t),φ(t)

)
T dt;

(C4) limt→τ
1

t–τ

∫ t
τ

∣∣u(s) – u(τ )
∣∣2
T ds = 0.

The existence and uniqueness of variational solution for equation (7) have been derived
as follows.
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Theorem 2.3 ([6]) Suppose that (1), (2), (4), and (5) hold; for f ∈ L2(τ , T ; L2(OT )) and uτ ∈
L2(Oτ ), there exists a unique variational solution u ∈ L2(τ , T ; H1

0 (OT )) ∩ Lp(τ , T ; Lp(OT ))
of equation (7), which satisfies energy equality a.e. t ∈ [τ , T], that is,

∣∣u(t)
∣∣2
T + 2

∫ t

τ

∥∥u(s)
∥∥2

T ds + 2
∫ t

τ

(
g
(
u(s)

)
, u(s)

)
T ds = |uτ |2T + 2

∫ t

τ

(
f (s), u(s)

)
T ds (9)

holds for a.e. t ∈ [τ , T]. In addition, u ∈ C([τ , T]; L2(OT )) and satisfies the energy equality
for all t ∈ [τ , T]. Moreover, if uτ ∈ H1

0 (Oτ ) ∩ Lp(Oτ ), then u also satisfies

u ∈ L∞(
τ , T ; H1

0 (OT )
) ∩ L∞(

τ , T ; Lp(OT )
)
, u′ ∈ L2(τ , T ; L2(OT )

)
.

Remark 2.4 ([6]) If T2 > T1 > τ and u is a variational solution of (7) with T = T2, then the
restriction of u to Qτ ,T1 is a variational solution of (7) with T = T1.

We can also obtain the following result.

Theorem 2.5 Under the assumptions of Theorem 2.3, if uτ ∈ H1
0 (Oτ ) ∩ Lp(Oτ ), then u ∈

L2(τ , T ; H2(OT )).

Proof One can take an orthonormal Hilbert basis {wj} of L2 and H1
0 formed by the ele-

ments of H1
0 ∩ Lp ∩ H3 such that the vector space generated by {wj} is dense in H1

0 and
Lp. Then one takes a sequence {uτn} such that uτn → uτ in H1

0 (Oτ ) with uτn in the vector
space spanned by the n first wj.

Consider the equality

(
∂ukn(t)

∂t
,ωj

)

T
+

〈
Ak(t)ukn(t),ωj

〉
T +

(
g
(
ukn(t)

)
,ωj

)
T =

(
f (t),ωj

)
T (10)

for a.e. t ∈ [τ , T].
Multiplying (10) by λjrkn,j(t) and summing from j = 1 to n, we know that

(
∂ukn(t)

∂t
, –�ukn(t)

)

T
+

〈
Ak(t)ukn, –�ukn(t)

〉
T +

(
g
(
ukn(t)

)
, –�ukn(t)

)
T

=
(
f (t), –�ukn(t)

)
T

for a.e. t ∈ [τ , T].
According to (5), it follows

∫

OT

g
(
ukn(t)

)(
–�ukn(t)

)
dx =

∫

OT

g ′(ukn(t)
)∣∣∇ukn(t)

∣∣2 dx ≥ –l
∣∣∇ukn(t)

∣∣2
T . (11)

Combining (11) and Hölder’s inequality, we have

d
dt

∣∣∇ukn(t)
∣∣2
T +

∣∣�ukn(t)
∣∣2
T + 2k

((
Pk(t)∇ukn(t),∇ukn(t)

))
T

≤ 2l
∫

OT

∣∣∇ukn(t)
∣∣2 dx +

∣∣f (t)
∣∣2
T
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a.e. t ∈ (τ , T), integrate the inequality above from τ to t,

∣∣∇ukn(t)
∣∣2
T +

∫ t

τ

∣∣�ukn(s)
∣∣2
T ds + 2k

∫ t

τ

((
Pk(s)∇ukn(s),∇ukn(s)

))
T ds

≤ 2l
∫ t

τ

∣∣∇ukn(s)
∣∣2
T ds +

∫ t

τ

∣∣f (s)
∣∣2
T ds +

∣∣∇ukn(τ )
∣∣2
T a.e. t ∈ (τ , T), (12)

so, we have

∣∣∇ukn(t)
∣∣2
T ≤ ce2l(t–τ )

(∣∣∇ukn(τ )
∣∣2
T +

∫ t

τ

∣∣f (s)
∣∣2
T ds

)
(13)

and

∫ t

τ

∣∣∇ukn(s)
∣∣2
T ds ≤ cel(t–τ )

(∣∣∇ukn(τ )
∣∣2
T +

∫ t

τ

∣∣f (s)
∣∣2
T ds

)
. (14)

Note (8), we have

∫ t

τ

((
Pk(s)∇ukn(s),∇ukn(s)

))
T ds ≥ 0.

By (12)–(14), we obtain

∣∣∇ukn(t)
∣∣2
T +

∫ t

τ

∣∣�ukn(s)
∣∣2
T ds ≤ cel(t–τ )

(∣∣∇ukn(τ )
∣∣2
T +

∫ t

τ

∣∣f (s)
∣∣2
T ds

)

for a.e. t ∈ (τ , T), where c may be different from line to line, recall that ukn(τ ) = uτn, uτn →
uτ in H1

0 (Oτ ) as n → ∞. So, {ukn} is bounded in L2(τ , T ; H2(OT )) ∩ L∞(τ , T ; H1
0 (OT )),

there exists a subsequence, denoted still by {ukn}, such that as n → ∞

ukn ⇀ uk weakly in L2(τ , T ; H2(OT )
)
,

ukn ⇀ uk weakly star in L∞(
τ , T ; H1

0 (OT )
)
,

therefore,

∣∣∇uk(t)
∣∣2
T +

∫ t

τ

∣∣�uk(s)
∣∣2
T ds ≤ cel(t–τ )

(
‖uτ‖2

T +
∫ t

τ

∣∣f (s)
∣∣2
T ds

)
,

and also {uk} is bounded in L2(τ , T ; H2(OT )) ∩ L∞(τ , T ; H1
0 (OT )). There exists a subse-

quence, denoted still by {uk}, such that it is convergent weakly, convergent weakly star
to the uniqueness variational solution u of (7) in L2(τ , T ; H2(OT )) ∩ L∞(τ , T ; H1

0 (OT )) as
k → ∞. �

Theorem 2.6 ([15]) Suppose that uτ ∈ L∞(Oτ )∩H1
0 (Oτ ), f ∈ L∞(Q̃τ ,T ) hold and g satisfies

(4). Then there exists a positive constant K which depends on ‖uτ‖L∞(Oτ ), ‖f ‖L∞(Q̃τ ,T ), β and
α1 such that the variational solution u of (7) satisfies

‖u‖L∞(Q̃τ ,T ) ≤ K .
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3 Pullback Dλ1 attraction in H1
0(Ot)

By Theorem 2.3 and Remark 2.4, we know that, for any τ ∈ R and any uτ ∈ L2(Oτ ), there
exists a unique variational solution u(·; τ , uτ ) satisfying energy equality for a.e. t ∈ (τ , T)
and any T > τ . Moreover, u ∈ C([τ , T]; L2(OT )) satisfying energy equality for all t ∈ (τ , T)
with any T > τ .

Define

U(t, τ )uτ := u(t; τ , uτ ), –∞ < τ ≤ t < ∞, uτ ∈ L2(Oτ ). (15)

By the uniqueness of variational solution for (7) and u ∈ C([τ , T]; L2(OT )) satisfying energy
equality for all t ∈ (τ , T) with any T > τ , we know U(·, ·) defined by (15) is a process for
the family of Hilbert spaces {L2(Ot), t ∈R}.

To obtain main results, the following lemma is necessary.

Lemma 3.1 ([11]) For any k > 0 and any φ ∈ H1
0 (Ot)∩L∞(Ot), the following equality holds:

∫

Ot

∇φ · ∇(|φ|kφ)
dx = (k + 1)

(
2

k + 2

)2 ∫

Ot

∣∣∇|φ| k+2
2

∣∣2 dx, (16)

where · stands for the usual inner product in R
N .

In the following, suppose

f ∈ L2
loc

(
R

N+1) and uτ , vτ ∈ L2(Oτ ). (17)

Due to the density of L∞(Ot) in L2(Ot), there exist sequences {uτm}, {vτm} ⊂ L∞(Oτ ),
{fm} ⊂ L∞(Q̃τ ,T ) such that

uτm → uτ , vτm → vτ in L2(Oτ ), m → +∞,

fm → f in L2
loc

(
R

N+1), m → +∞
(18)

and it can be done that, for each m = 1, 2, . . . ,

|uτm|2τ ≤ 2|uτ |2τ + 1, |vτm|2τ ≤ 2|vτ |2τ + 1. (19)

Based on the above, applying the interpolation inequality to estimate the L2p–2-norm of
approximation solution, we can establish the higher-order integrability near initial time τ

for approximation solution as follows.

Theorem 3.2 Suppose that (1), (2), (4), and (5) hold, f ∈ L2
loc(R; L2(Ot)), uτ , vτ ∈ L2(Oτ ).

Then, for any T ≥ τ , any k = 1, 2, . . . , there exists a positive constant Mk = M(T –
τ , k, N , l, |uτ |L2(Oτ ), |vτ |L2(Oτ )) such that

(t – τ )
N

N–2
∥∥(t – τ )bk wm(t)

∥∥2( N
N–2 )k

L2( N
N–2 )k (OT )

≤ Mk for all t ∈ [τ , T] (Ak)
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and

∫ T

τ

(∫

OT

∣∣(t – τ )bk+1 · wm(t)
∣∣2( N

N–2 )k+1
dx

) N–2
N

dt ≤ Mk , (Bk)

where wm(t) = um(t) – vm(t) = U(t, τ )uτm – U(t, τ )vτm,

b1 = 1 +
1
2

, b2 = 1 +
1
2

+ 1 and bk+1 = bk +
1 + N

N–2

2( N
N–2 )k+1

for k = 2, 3, . . . , (20)

and all constants Mk(k = 1, 2, . . .) are independent of m.

Proof For any fixed τ ∈ (–∞, T], denote

wm(t) := um(t) – vm(t), τ ≤ t ≤ T , (21)

where um(t), vm(t) are the variational solutions of equation (7) corresponding to the data
(uτm, fm), (vτm, fm) satisfying (18) respectively. By Theorem 2.3 and Theorem 2.6, we know

wm ∈ L2(τ , T ; H1
0 (OT )

) ∩ L∞(Q̃τ ,T )

and

∫ T

τ

[
–
(
wm(t),φ′(t)

)
T +

((
wm(t),φ(t)

))
T +

(
g
(
um(t)

)
– g

(
vm(t)

)
,φ(t)

)
T

]
dt = 0 (22)

for any φ ∈ Uτ ,T .
For any θ > 0, we have

|wm|θ wm ∈ L2(τ , T ; H1
0 (OT )

) ∩ L∞(Q̃τ ,T ),

and choose any η ∈ C1
c (τ , T) to get

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

η|wm|θ wm ∈ L2(τ , T ; H1
0 (OT )) ∩ L∞(Q̃τ ,T ),

d
dt (η|wm|θ wm) ∈ L2(τ , T ; L2(OT )),

η(T)|wm(T)|θ wm(T) = η(τ )|wm(τ )|θ wm(τ ) = 0,

η(t)|wm(t)|θ wm(t) ∈ H1
0 (Ot) a.e. t ∈ (τ , T).

Hence, we can choose η|wm|θ wm as a test function to have

∫ T

τ

[
–
(
wm(t),

(
η(t)

∣∣wm(t)
∣∣θ wm(t)

)′)
T +

((
wm(t),η(t)

∣∣wm(t)
∣∣θ wm(t)

))
T

+
(
g
(
um(t)

)
– g

(
vm(t)

)
,η(t)

∣∣wm(t)
∣∣θ wm(t)

)
T

]
dt = 0,

note that

∫ T

τ

[(
w′

m(t),
∣∣wm(t)

∣∣θ wm(t)
)

T +
((

wm(t),
∣∣wm(t)

∣∣θ wm(t)
))

T
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+
(
g
(
um(t)

)
– g

(
vm(t)

)
,
∣∣wm(t)

∣∣θ wm(t)
)

T

]
η(t) dt = 0

for any η ∈ C1
c (τ , T) holds. Therefore, for a.e. t ∈ (τ , T),

(
w′

m(t),
∣∣wm(t)

∣∣θ wm(t)
)

T +
((

wm(t),
∣∣wm(t)

∣∣θ wm(t)
))

T

+
(
g
(
um(t)

)
– g

(
vm(t)

)
,
∣∣wm(t)

∣∣θ wm(t)
)

T = 0.

By (5), for a.e. t ∈ (τ , T), we have

1
θ + 2

d
dt

∥∥wm(t)
∥∥θ+2

Lθ+2(OT ) –
1

θ + 2

∫

∂OT

∣∣γ wm(t)
∣∣θ+2 dS

+ (θ + 1)
(

2
θ + 2

)2 ∫

OT

∣∣∇∣∣wm(t)
∣∣1+ θ

2
∣∣2 dx ≤ l

∥∥wm(t)
∥∥θ+2

Lθ+2(OT ),

thanks to wm(t) ∈ H1
0 (Ot) for a.e. t ∈ (τ , T), so γ wm(t) = 0 for a.e. t ∈ (τ , T), it follows

1
θ + 2

d
dt

∥∥wm(t)
∥∥θ+2

Lθ+2(OT ) + (θ + 1)
(

2
θ + 2

)2 ∫

OT

∣∣∇∣∣wm(t)
∣∣1+ θ

2
∣∣2 dx

≤ l
∥∥wm(t)

∥∥θ+2
Lθ+2(OT ). (23)

In the following, we separate our proof into two steps.
Step 1. k = 1
Firstly, taking φ = wm in (22), from the definition of variational solution and (5), we ob-

tain that

1
2

d
dt

|wm|2T +
∫

OT

∣∣∇wm(t)
∣∣2 dx = –

∫

OT

(
g(um) – g(vm)

)
wm dx

≤ l
∣∣wm(t)

∣∣2
T a.e. t ∈ (τ , T),

which implies that

∣∣wm(t)
∣∣2
T ≤ e2l(t–τ )∣∣wm(τ )

∣∣2
T ,

and then,

∫ T

τ

∣∣∇wm(t)
∣∣2
T dt ≤ l

∫ T

τ

∣∣wm(s)
∣∣2
T ds +

1
2
∣∣wm(τ )

∣∣2
T ≤ 1

2
(
e2l(T–τ ) + 1

)∣∣wm(τ )
∣∣2
T .

Consequently, combining with the embedding

(∫

Os

|v| 2N
N–2 dx

) N–2
N ≤ cN ,τ ,T

∫

Os

|∇v|2 dx, ∀v ∈ H1(Os),∀s ∈ [τ , T], (24)

we can deduce that

∫ T

τ

(∫

OT

∣∣(t – τ )b1 wm(t)
∣∣ 2N

N–2 dx
) N–2

N
dt
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≤ (T – τ )2b1
cN ,τ ,T

2
(
e2l(T–τ ) + 1

)∣∣wm(τ )
∣∣2
T , (25)

note that here the embedding constant cN ,τ ,T in (24) depends only on the domain OT .
Secondly, take θ = 2N

N–2 – 2 in (23), by Lemma 3.1, we have that

1
2

(
N – 2

N

)
d
dt

∥∥wm(t)
∥∥ 2N

N–2

L
2N

N–2 (OT )
+

2N
N–2 – 1
( N

N–2 )2

∫

OT

∣∣∇∣∣wm(t)
∣∣ N

N–2
∣∣2 dx

≤ l
∥∥wm(t)

∥∥ 2N
N–2

L
2N

N–2 (OT )
a.e. t ∈ (τ , T).

In the following we denote by c, ci (i = 1, 2, . . .) the constants which depend only on N , T –τ ,
and l, which may differ from line to line. Then the above inequality can be written as

d
dt

∥∥wm(t)
∥∥ 2N

N–2

L
2N

N–2 (OT )
+ c1

∫

OT

∣∣∇∣∣wm(t)
∣∣ N

N–2
∣∣2 dx ≤ c2

∥∥wm(t)
∥∥ 2N

N–2

L
2N

N–2 (OT )
, (26)

and by multiplying both sides with (t – τ )
3N

N–2 , we obtain that

d
dt

∥∥(t – τ )b1 wm(t)
∥∥ 2N

N–2

L
2N

N–2 (OT )
+ c1

∫

OT

∣∣∇∣∣(t – τ )b1 wm(t)
∣∣ N

N–2
∣∣2 dx

≤ c2
∥∥(t – τ )b1 wm(t)

∥∥ 2N
N–2

L
2N

N–2 (OT )
+ c3(t – τ )

3N
N–2 –1‖wm‖

2N
N–2

L
2N

N–2 (OT )

≤ c
(

1 +
1

t – τ

)∥∥(t – τ )b1 wm(t)
∥∥ 2N

N–2

L
2N

N–2 (OT )
, (27)

here b1 = 1 + 1
2 .

One direct result of (27) is that

(t – τ )
d
dt

∥∥(t – τ )b1 wm(t)
∥∥ 2N

N–2

L
2N

N–2 (OT )
≤ c

∥∥(t – τ )b1 wm(t)
∥∥ 2N

N–2

L
2N

N–2 (OT )
,

and so

(t – τ )
d
dt

∥∥(t – τ )b1 wm(t)
∥∥2

L
2N

N–2 (OT )
≤ c

N – 2
N

∥∥(t – τ )b1 wm(t)
∥∥2

L
2N

N–2 (OT )
. (28)

Consequently, for any t ∈ [τ , T], integrating (28) over [τ , t], we obtain that

(t – τ )
∥∥(t – τ )b1 wm(t)

∥∥2

L
2N

N–2 (OT )
≤

(
c

N – 2
N

+ 1
)∫ T

τ

∥∥(s – τ )b1 wm(s)
∥∥2

L
2N

N–2 (OT )
ds

≤ c
∣∣wm(τ )

∣∣2
T (by (25)),

hence,

(t – τ )
N

N–2
∥∥(t – τ )b1 wm(t)

∥∥ 2N
N–2

L
2N

N–2 (OT )
≤ c

∣∣wm(τ )
∣∣ 2N

N–2
T for any t ∈ [τ , T]. (29)

Then, multiplying (27) by (t – τ )
2N

N–2 , we obtain that: for a.e. t ∈ (τ , T),

(t – τ )
2N

N–2
d
dt

∥∥(t – τ )b1 wm(t)
∥∥ 2N

N–2

L
2N

N–2 (OT )
+ c1

∫

OT

∣∣∇∣∣(t – τ )b1+1wm(t)
∣∣ N

N–2
∣∣2 dx
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≤ c(t – τ )
N+2
N–2

∥∥(t – τ )b1 wm(t)
∥∥ 2N

N–2

L
2N

N–2 (OT )

≤ c
∣∣wm(τ )

∣∣ 2N
N–2
T .

Integrating the above inequality over [τ , T] with respect to t, we obtain that

∫ T

τ

∫

OT

∣∣∇∣∣(t – τ )b2 wm(t)
∣∣ N

N–2
∣∣2 dx dt ≤ c

∣∣wm(τ )
∣∣ 2N

N–2
T .

Consequently, applying embedding (24) again, we can deduce that

∫ T

τ

(∫

OT

∣∣(t – τ )b2 wm(t)
∣∣2( N

N–2 )2
dx

) N–2
N

dt ≤ cN ,τ ,T c1
∣∣wm(τ )

∣∣ 2N
N–2
T . (30)

Therefor, noticing (18) and (19), from (29) and (30) we know that there is a positive
constant M1, which depends only on N , τ , T , l, |uτ |τ , |vτ |τ such that (A1) and (B1) hold.

Step 2. Assume (Ak) and (Bk) hold for k ≥ 1, in the following, we will show that (Ak+1)
and (Bk+1) hold.

Take θ = 2( N
N–2 )k+1 – 2 in (23), we obtain that

d
dt

∥∥wm(t)
∥∥2( N

N–2 )k+1

L2( N
N–2 )k+1

(OT )
+ c

∫

OT

∣∣∇∣∣wm(t)
∣∣( N

N–2 )k+1 ∣∣2 dx

≤ c1
∥∥wm(t)

∥∥2( N
N–2 )k+1

L2( N
N–2 )k+1

(OT )
a.e. t ∈ (τ , T). (31)

Multiplying both sides of (31) with (t – τ )2( N
N–2 )k+1·bk+1 , we deduce that

d
dt

(
(t – τ )2( N

N–2 )k+1·bk+1‖wm‖2( N
N–2 )k+1

L2( N
N–2 )k+1

(OT )

)
+ c

∫

OT

∣∣∇∣∣(t – τ )bk+1 · wm(t)
∣∣( N

N–2 )k+1 ∣∣2 dx

≤ c1
∥∥(t – τ )bk+1 · wm(t)

∥∥2( N
N–2 )k+1

L2( N
N–2 )k+1

(OT )

+ c2(t – τ )2( N
N–2 )k+1·bk+1–1∥∥wm(t)

∥∥2( N
N–2 )k+1

L2( N
N–2 )k+1

(OT )
,

i.e.,

d
dt

∥∥(t – τ )bk+1 · wm(t)
∥∥2( N

N–2 )k+1

L2( N
N–2 )k+1

(OT )
+ c

∫

OT

∣∣∇∣∣(t – τ )bk+1 · wm(t)
∣∣( N

N–2 )k+1 ∣∣2 dx

≤
(

c1 +
c2

t – τ

)∥∥(t – τ )bk+1 · wm(t)
∥∥2( N

N–2 )k+1

L2( N
N–2 )k+1

(OT )
. (32)

At first, from (32) we have

(t – τ )
d
dt

∥∥(t – τ )bk+1 · wm(t)
∥∥2( N

N–2 )k+1

L2( N
N–2 )k+1

(OT )
≤ c

∥∥(t – τ )bk+1 · wm(t)
∥∥2( N

N–2 )k+1

L2( N
N–2 )k+1

(OT )
, (33)

and so,

(t – τ )
d
dt

∥∥(t – τ )bk+1 · wm(t)
∥∥2( N

N–2 )k

L2( N
N–2 )k+1

(OT )
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≤ c
N – 2

N
∥∥(t – τ )bk+1 · wm(t)

∥∥2( N
N–2 )k

L2( N
N–2 )k+1

(OT )
. (34)

Integrating (34) over [τ , t] and applying (Bk), we deduce that

(t – τ )
∥∥(t – τ )bk+1 · wm(t)

∥∥2( N
N–2 )k

L2( N
N–2 )k+1

(OT )

≤
(

c
N – 2

N
+ 1

)∫ T

τ

∥∥(s – τ )bk+1 · wm(s)
∥∥2( N

N–2 )k

L2( N
N–2 )k+1

(OT )
ds

≤
(

c
N – 2

N
+ 1

)
Mk for all t ∈ [τ , T],

which implies that

(t – τ )
N

N–2
∥∥(t – τ )bk+1 · wm(t)

∥∥2( N
N–2 )k+1

L2( N
N–2 )k+1

(OT )

≤
[(

c
N – 2

N
+ 1

)
Mk

] N
N–2

for all t ∈ [τ , T]. (35)

Multiplying both sides of (32) by (t – τ )1+ N
N–2 , we obtain that

(t – τ )1+ N
N–2

d
dt

∥∥(t – τ )bk+1 · wm(t)
∥∥2( N

N–2 )k+1

L2( N
N–2 )k+1

(OT )

+ c
∫

OT

∣∣∇∣∣(t – τ )
bk+1+

1+ N
N–2

2( N
N–2 )k+1 · wm(t)

∣∣( N
N–2 )k+1 ∣∣2 dx

≤ c3(t – τ )
N

N–2
∥∥(t – τ )bk+1 · wm(t)

∥∥2( N
N–2 )k+1

L2( N
N–2 )k+1

(OT )
.

Then, from (35) and the definition of bk+2, we obtain that

(t – τ )1+ N
N–2

d
dt

∥∥(t – τ )bk+1 · wm(t)
∥∥2( N

N–2 )k+1

L2( N
N–2 )k+1

(OT )

+ c
∫

OT

∣∣∇∣∣(t – τ )bk+2 · wm(t)
∣∣( N

N–2 )k+1 ∣∣2 dx

≤ c3

[(
c

N – 2
N

+ 1
)

Mk

] N
N–2

for all t ∈ [τ , T].

Integrating the above inequality over [τ , T] and using (35) again, we deduce that

∫ T

τ

∫

OT

∣∣∇∣∣(t – τ )bk+2 · wm(t)
∣∣( N

N–2 )k+1 ∣∣2 dx dt ≤ c4

[(
c

N – 2
N

+ 1
)

Mk

] N
N–2

. (36)

Combining (36) with the embedding inequality (24), we obtain that

∫ T

τ

(∫

OT

∣∣(t – τ )bk+2 · wm(t)
∣∣2( N

N–2 )k+2
dx

) N–2
N

dt ≤ c5

[(
c

N – 2
N

+ 1
)

Mk

] N
N–2

. (37)
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Therefore, by setting

Mk+1 = (1 + c5)
[(

c
N – 2

N
+ 1

)
Mk

] N
N–2

,

(35) and (37) implies that (Ak+1) and (Bk+1) hold respectively. �

Next, we start to establish the higher-order integrability near the initial time τ for the
variational solution of equation (7). This result shows some decay rate of variational solu-
tion in L2( N

N–2 )k+1 -norm near the initial time τ .

Theorem 3.3 Suppose that (1), (2), (4), and (5) hold, f ∈ L2
loc(R; L2(Ot)), uτ , vτ ∈ L2(Oτ ).

Then, for any T ≥ τ , any k = 1, 2, . . . , there exists a positive constant Mk = M(T –
τ , k, N , l, |uτ |L2(Oτ ), |vτ |L2(Oτ )) such that

(t – τ )
N

N–2
∥∥(t – τ )bk w(t)

∥∥2( N
N–2 )k

L2( N
N–2 )k (OT )

≤ Mk for all t ∈ [τ , T],

where w(t) = U(t, τ )uτ – U(t, τ )vτ and

b1 = 1 +
1
2

, b2 = 1 +
1
2

+ 1 and

bk+1 = bk +
1 + N

N–2

2( N
N–2 )k+1

for k = 2, 3, . . . .

Proof For any (fixed) τ ∈R and T ≥ τ , choose two sequences (uτm, fm) and (vτm, fm) satis-
fying (18), (19).

Then from Theorem 3.2 (Ak) we have that, for any k = 1, 2, . . . , there exists a positive
constant Mk = M(T – τ , k, N , l, |uτ |L2(Oτ ), |vτ |L2(Oτ )) such that

(t – τ )
N

N–2
∥∥(t – τ )bk

(
um(t) – vm(t)

)∥∥2( N
N–2 )k

L2( N
N–2 )k (OT )

≤ Mk for all t ∈ [τ , T], (38)

where um and vm are the unique variational solutions of (3) corresponding to the regular
data (uτm, fm) and (vτm, fm) on the interval [τ , T] respectively.

On the other hand, from [6] Proposition 11, there exist a subsequence {umj} of {um} and
{vmj} of {vm} such that

umj (t) → u(t) and vmj (t) → v(t) a.e. on OT as j → ∞.

Hence, by applying Fatou’s lemma,

(t – τ )
N

N–2
∥∥(t – τ )bk

(
u(t) – v(t)

)∥∥2( N
N–2 )k

L2( N
N–2 )k (OT )

= (t – τ )
N

N–2

∫

OT

lim inf
j→∞

∣∣(t – τ )bk
(
umj (t) – vmj (t)

)∣∣2( N
N–2 )k

dx

≤ lim inf
j→∞ (t – τ )

N
N–2

∫

OT

∣∣(t – τ )bk
(
umj (t) – vmj (t)

)∣∣2( N
N–2 )k

dx
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≤ Mk(t). �

The following result is the continuity of variational solution in H1
0 (Ot) w.r.t. initial data

in L2(Oτ ), which is necessary to deduce (L2, L2) pullback Dλ1 attractor in the topology
H1

0 (Ot).

Theorem 3.4 (Continuity) Assume that (1), (2), (4), and (5) hold, f ∈ L2
loc(R; L2(Ot)). For

any τ ∈R and any t > τ , if uτ , vτ ∈ L2(Oτ ) and |uτ – vτ |L2(Oτ ) → 0, then

U(t, τ )uτ → U(t, τ )vτ .

More precisely, the following estimate holds:

∥∥U(t, τ )uτ – U(t, τ )vτ

∥∥2
H1

0 (Ot )

≤ cr0,t–τ ,l|uτ – vτ |2τ + cr0,Mk0 ,p,M0,t–τ ,θ ,l|uτ – vτ |2θ
τ , (39)

where θ ∈ (0, 1) is the exponent of the interpolation ‖ · ‖L2p–2 ≤ ‖ ·‖1–θ

L2( N
N–2 )k0 ‖ · ‖θ

L2 with some

k0 ∈ N satisfying 2( N
N–2 )k0 > 2p – 2, and r0 = ( N

N–2 ) 2–2θ

2( N
N–2 )k0

+ (2 – 2θ )bk0 ; the constant M0

depends only on t – τ , Ot , λ1,t ,
∫ t
τ
|f (s)|2s ds, β , α1, |uτ |τ , p, uniform bound of {uτn}∞n=1 in

L2(Oτ ) and Mk0 .

Proof For any fixed τ ∈ (–∞, T], denote

wn(s) := un(s) – vn(s), τ ≤ t ≤ T ,

where un(s), vn(s) are the variational solutions of equation (7) corresponding to data
(uτn, fn), (vτn, fn) satisfying (18). Then the following holds:

∫ T

τ

[
–
(
wn(s),φ′(s)

)
T +

((
wn(s),φ(s)

))
T +

(
g
(
un(s)

)
– g

(
vn(s)

)
,φ(s)

)
T

]
ds = 0 (40)

for any φ ∈ Uτ ,T .
Noticing un ∈ L2(τ , T ; H1

0 (OT )) ∩ L∞(Q̃τ ,T ), so η|un|θ un (η ∈ C1
c (τ , T), θ > 0) can be se-

lected as a test function, hence, for a.e. s ∈ (τ , T),

(
u′

n(s),
∣∣un(s)

∣∣θ un(s)
)

T +
((

un(s),
∣∣un(s)

∣∣θ un(s)
))

T

+
(
g
(
un(s)

)
,
∣∣un(s)

∣∣θ un(s)
)

T =
(
fn(s),

∣∣un(s)
∣∣θ un(s)

)
T .

By (4) and the standard energy estimate (e.g., see [9]), we have the following a priori esti-
mates:

∫ t

τ

∫

Os

∣∣un(s)
∣∣2p–2 dx ds +

∫ t

τ

∫

Os

∣∣vn(s)
∣∣2p–2 dx ds ≤ M, (41)

where the constant M depends only on g, T – τ , Ot ,
∫ T
τ

|f (s)|2s ds, α1, β , p, uτn, vτn and λ1,T ;

∣∣wn(s)
∣∣2
s ≤ e2l(s–τ )∣∣wn(τ )

∣∣2
τ
, ∀t ≥ τ ; (42)
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and

∫ t

τ

∣∣∇wn(s)
∣∣2
s ds ≤ 1

2λ1,T

∣∣wn(τ )
∣∣2
τ

+
l

λ1,T

∫ t

τ

∣∣wn(s)
∣∣2
s ds, ∀t ≥ τ , (43)

recall that λ1,T is the first eigenvalue of –� on H1
0 (OT ) and the constant l comes from (5).

Noticing un ∈ L2(τ , T ; H2(Ot)) in Theorem 2.5, let φ = –η�wn (η ∈ C1
c (τ , T)) in (40),

then

∫ T

τ

[(
w′

n(s), –�wn(s)
)

T +
∣∣�wn(s)

∣∣2
T +

(
g
(
un(s)

)
– g

(
vn(s)

)
, –�wn(s)

)
T

]
η ds = 0

for any η ∈ C1
c (τ , T). Hence,

–
∫

Os

w′
n�wn dx +

∫

Os

∣∣�wn(s)
∣∣2 dx =

∫

Os

(
g
(
un(s)

)
– g

(
vn(s)

))
�wn(s) dx,

–
∫

Os

w′
n�wn dx =

1
2

d
dt

∫

Os

∣∣∇wn(s)
∣∣2 dx –

∫

Γs

∣∣∇wn(s)
∣∣2w · ns dσ , (44)

where ns is the outside unit normal vector, w is a velocity field. By trace theory and inter-
polation, for all δ ≥ 1

2 (reference [13]),

∣∣∣∣
∫

Γs

∣∣∇wn(s)
∣∣2w · ns dσ

∣∣∣∣ ≤ Cδ

(∫

Os

∣∣�wn(s)
∣∣2 dx

)δ(∫

Os

∣∣∇wn(s)
∣∣2 dx

)1–δ

. (45)

In particular, let δ = 1
2 and by Cauchy’s inequality, for all s ∈ [τ , T], we have

∣∣∣∣
∫

Γs

∣∣∇wn(s)
∣∣2w · ns dσ

∣∣∣∣ ≤ 1
4

∫

Os

∣∣�wn(s)
∣∣2 dx + c2

1
2

∫

Os

∣∣∇wn(s)
∣∣2 dx. (46)

On the other hand, by using (4) we have that

∣∣∣∣
∫

Os

(
g
(
un(s)

)
– g

(
vn(s)

))
�wn(s) dx

∣∣∣∣

≤ c
∫

Os

(
1 +

∣∣un(s)
∣∣p–2 +

∣∣vn(s)
∣∣p–2)∣∣wn(s)

∣∣∣∣�wn(s)
∣∣dx

≤ c
∫

Os

∣∣wn(s)
∣∣∣∣�wn(s)

∣∣dx + c
∫

Os

(∣∣un(s)
∣∣p–2 +

∣∣vn(s)
∣∣p–2)∣∣wn(s)

∣∣∣∣�wn(s)
∣∣dx

≤ 1
4

∫

Os

∣∣�wn(s)
∣∣2 dx + c

∣∣wn(s)
∣∣2
s

+ c
(∥∥un(s)

∥∥2p–4
L2p–2(Os) +

∥∥vn(s)
∥∥2p–4

L2p–2(Os)

)∥∥wn(s)
∥∥2

L2p–2(Os). (47)

Combining (44)–(47), we obtain that

d
ds

|∇wn|2s ≤ c
∣∣wn(t)

∣∣2
s + c

(∥∥un(t)
∥∥2p–4

L2p–2(Os)

+
∥∥vn(t)

∥∥2p–4
L2p–2(Os)

)∥∥wn(t)
∥∥2

L2p–2(Os) a.e. (τ , t).
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Since 2( N
N–2 )k → ∞ as k → ∞, there is k0 ∈ N such that

2
(

N
N – 2

)k0

> 2p – 2.

For this k0, by interpolation, we have

‖wn‖L2p–2(Os) ≤ ‖wn‖1–θ

L2( N
N–2 )k0 (Os)

‖wn‖θ
L2(Os),

where θ ∈ (0, 1) depends only on p, k0.
Therefore, we have that

d
ds

|∇wn|2s ≤ c|wn|2s + c
(‖un‖2p–4

L2p–2(Os)

+ ‖vn‖2p–4
L2p–2(Os)

)‖wn‖2–2θ

L2( N
N–2 )k0 (Os)

· |wn|2θ
s a.e. (τ , t).

Denoting r0 = ( N
N–2 ) 2–2θ

2( N
N–2 )k0

+ (2 – 2θ )bk0 and multiplying the above inequality by (s –
t+τ

2 )r0 , we obtain that

(
s –

t + τ

2

)r0 d
ds

|∇wn|2s

≤ c
(

s –
t + τ

2

)r0(|∇wn|2s + |wn|2s
)

+ c
(‖un‖2p–4

L2p–2(Os) + ‖vn‖2p–4
L2p–2(Os)

)

× (
(s – τ )

N
N–2

∥∥(s – τ )bk0 wn
∥∥2( N

N–2 )k0

L2( N
N–2 )k0 (Os)

) 2–2θ

2( N
N–2 )k0 · |wn|2θ

s ,

where bk0 is given by (20).
On the other hand, thanks to Theorem 3.2, we know that there is a constant Mk0 , which

depends only on t – τ , N , k0, and the H1
0 ∩ Lp-bounds of uτn, vτn such that

(
(s – τ )

N
N–2

∥∥(s – τ )bk0 wn
∥∥2( N

N–2 )k0

L
2( N

N–2 )k0
(Os)

) 2–2θ

2( N
N–2 )k0 ≤ M2–2θ

k0 for all n = 1, 2, . . . , s ∈ [τ , t].

Therefore, we have the following estimate for any n = 1, 2, . . . :

(
s –

t + τ

2

)r0 d
ds

|∇wn|2s

≤ c
(

s –
t + τ

2

)r0(|∇wn|2s + |wn|2s
)

+ cM2–2θ
k0

(∥∥un(s)
∥∥2p–4

L2p–2(Os) +
∥∥vn(s)

∥∥2p–4
L2p–2(Os)

) · ∣∣wn(s)
∣∣2θ

s , a.e. s ∈
[

τ + t
2

, t
]

.
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To ensure that the exponent r0 is strictly larger than 1, we may multiply both sides by
(s – t+τ

2 ), and then we obtain that

(
s –

t + τ

2

)1+r0 d
ds

∣∣∇wn(s)
∣∣2
s

≤ c
(

s –
t + τ

2

)1+r0(|∇wn|2s + |wn|2s
)

+ c
(

s –
t + τ

2

)
M2–2θ

k0

(∥∥un(s)
∥∥2p–4

L2p–2(Os) +
∥∥vn(s)

∥∥2p–4
L2p–2(Os)

) · ∣∣wn(s)
∣∣2θ

s ,

a.e. s ∈
[

τ + t
2

, t
]

. (48)

Integrating the inequality above over [ τ+t
2 , t] with respect to s, we finally obtain that, for

any n = 1, 2, . . . ,

(
t – τ

2

)1+r0 ∣∣∇wn(t)
∣∣2
t

≤ (1 + r0)
(

t – τ

2

)r0 ∫ t

τ+t
2

∣∣∇wn(s)
∣∣2
s ds

+ c
(

t – τ

2

)1+r0 ∫ t

τ+t
2

(∣∣∇wn(s)
∣∣2
s +

∣∣wn(s)
∣∣2
s

)
ds

+ c
(

t – τ

2

)
M2–2θ

k0

∫ t

τ+t
2

(∥∥un(s)
∥∥2p–4

L2p–2(Os) +
∥∥vn(s)

∥∥2p–4
L2p–2(Os)

)∣∣wn(s)
∣∣2θ

s ds

:= I1 + I2 + I3. (49)

Note that, from (42)–(43), we have that

I1 + I2 ≤ cr0,t–τ ,l
∣∣wn(τ )

∣∣2
τ
. (50)

For the estimate of I3, by Hölder’s inequality, we have

I3 ≤ c
t – τ

2
M2–2θ

k0 2M
2p–4
2p–2
0

(∫ t

τ+t
2

∣∣wn(s)
∣∣2θ (p–1)
s ds

) 2
2p–2 ≤ cMk0 ,p,M0,t–τ ,θ ,l

∣∣wn(τ )
∣∣2θ

τ
. (51)

Combining with (42)–(49), it implies that

∣∣∇wn(t)
∣∣2
t ≤ cr0,t–τ ,l

∣∣wn(τ )
∣∣2
τ

+ cMk0 ,p,M0,t–τ ,θ ,l
∣∣wn(τ )

∣∣2θ

τ
. (52)

From (52) we know wn is bounded in H1
0 (Ot), so there exists a subsequence {wnj} such

that

wnj ⇀ χ in H1
0 (Ot), as j → ∞. (53)

By [6] Proposition 11 again, it follows

wnj(t) → u(t) – v(t) in L2(Ot), as j → ∞,
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hence, χ = u(t) – v(t).
Combining (52), (53), (21), and (19), we deduce that

∣∣∇(
u(t) – v(t)

)∣∣2
t ≤ lim inf

j→∞
∣∣∇wnj(t)

∣∣2
t

≤ cr0,t–τ ,l|uτ – vτ |2τ + cr0,Mk0 ,p,M0,t–τ ,θ ,l|uτ – vτ |2θ
τ . �

In [15], the existence of pullback Dλ1 attractor defined in time varying domains has
been considered. Then we can establish the regularity attraction of (L2, L2) pullback Dλ1

attractor.

Theorem 3.5 Suppose that U(t, τ ) is the process corresponding to a variational solution
of (3), ˆA = {A (t) : t ∈R} is the (L2, L2) pullback Dλ1 attractor associated with U(t, τ ) and
f ∈ L2

loc(R, L2(Ot)). Then ˆA is pullback Dλ1 attraction in H1
0 .

That is, for any t ∈R, any D̂ = {D(t) : t ∈R} ∈ Dλ1 ,

distH1
0 (Ot )

(
U(t, τ )D(τ ),A (t)

) → 0, τ → –∞.

Proof For each t ∈R, from the definition of the (L2, L2) pullback Dλ1 attractor A , we know
that A (t – 1) is compact in L2(Ot).

By B(t) being the 1-neighborhood of A (t) for each t ∈R under the L2(Ot) norm, B(t) is
bounded in L2(Ot). By (39), let t be fixed, τ = t – 1, and uτ i ∈ B(t – 1) (i = 1, 2), we have

∥∥U(t, t – 1)uτ1 – U(t, t – 1)uτ2
∥∥2

H1
0 (Ot )

≤ c1|uτ1 – uτ2|2t–1 + c2|uτ1 – uτ2|2θ
t–1,

where c1, c2 are two constants. Now, for this fixed t and for any ε > 0, by the definition of
the (L2, L2) pullback Dλ1 attractor again, for any D̂ = {D(t) : t ∈ R} ∈ Dλ1 , there is a time
τ0(< t – 1) which depends only on t, ε, and D̂ such that

U(t – 1, τ )D(τ ) ⊂ B(t – 1) for all τ ≤ τ0,

distL2(Ot )
(
U(t – 1, τ )D(τ ),A (t – 1)

) ≤ ε for all τ ≤ τ0.

Consequently,

distH1
0 (Ot )

(
U(t, τ )D(τ ),A (t)

)

= distH1
0 (Ot )

(
U(t, t – 1)U(t – 1, τ )D(τ ), U(t, t – 1)A (t – 1)

)

≤ c1ε
2 + c2ε

2θ for all τ ≤ τ0.

Noticing the arbitrariness of ε and D̂, the conclusion is proved. �
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