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Abstract
In this paper, we investigate the existence of solutions for the fractional p-Laplace
equation

(–�)spu + V(x)|u|p–2u = h1(x)|u|q–2u + h2(x)|u|r–2u in R
N ,

where N > sp, 0 < s < 1 < p, 1 < q < p < r < p∗
s :=

Np
N–sp , and the potential function

V(x) > 0 and h1(x), h2(x) are allowed to change sign in R
N . By using variant fountain

theorem, we prove that the above equation admits infinitely many small and high
energy solutions.
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1 Introduction and main result
In this paper, we consider the existence and multiplicity of solutions for the following
elliptic problem:

(–�)s
pu + V (x)|u|p–2u = h1(x)|u|q–2u + h2(x)|u|r–2u in R

N , (1.1)

where (–�)s
p is the fractional p-Laplacian operator with 0 < s < 1 < p and sp < N , 1 < q <

p < r < p∗
s := Np

N–sp and potential function V (x) > 0, h1 and h2 are sign-changing weight
functions. The exact assumptions will be given below.

The fractional p-Laplacian operator (–�)s
p is defined along a function u ∈ C∞

0 (RN ) as
follows:

(–�)s
pu(x) = 2 lim

ε→0+

∫
RN \Bε (x)

|u(x) – u(y)|p–2(u(x) – u(y))
|x – y|N+ps dy (1.2)

for x ∈R
N , where Bε(x) = {y ∈R

N : |x – y| < ε}, see [1–3] and the references therein.
In the last years, since the nonlinear equations involving fractional powers of the Lapla-

cian played an increasingly important role in physics, probability, and finance, a great at-
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tention has been focused on the study of problems involving the fractional Laplacian. So
there has been a lot of interest in the study of the fractional Schrödinger equation

(–�)su + V (x)u = f (x, u), x ∈R
N , (1.3)

where the nonlinearity f satisfies some general conditions, see for instance [4–19] and the
references therein.

More recently, Xiang et al. [3] investigated the fractional p-Laplacian equation

(–�)s
pu + V (x)|u|p–2u = λa(x)|u|r–2u – b(x)|u|q–2u in R

N , (1.4)

where λ > 0, p < r < min{q, ps∗}, and a(x) and b(x) are related by the condition
a(a/b)(r–p)(q–r) ∈ LN/ps(RN ). By using a direct variational method and the mountain pass
theorem, the authors proved the existence of two nontrivial weak solutions of (1.4) for
λ > λ∗ (λ∗ > 0 is a given constant).

There are also a lot of works about problem (1.3) with concave-convex nonlinearities.
Goyal and Sreenadh in [20] considered the following p-fractional Laplace equation:

⎧⎨
⎩

(–�)s
pu = λh(x)|u|q–2u + b(x)|u|r–2u in Ω ,

u = 0 on ∂Ω ,
(1.5)

where Ω is a bounded domain in R
N with Lipschitz boundary, p ≥ 2, n > pα, 1 < q < p <

r < p∗
s , λ > 0, h and b are sign-changing smooth functions. They proved that there exists

λ0 > 0 such that problem (1.5) has at least two nonnegative solutions for all λ ∈ (0,λ0).
In [21], the authors considered the problem as follows:

M
(
[u]p

s,p
)
(–�)s

pu = λh1(x)|u|q–2u + h2(x)|u|r–2u + h(x) in R
N , (1.6)

where M(t) = a + btθ–1, θ > 1, a, b ≥ 0, a + b > 0, λ > 0, and 1 < q < p < θp < r < p∗
s . The func-

tions h1(x), h2(x), and h(x) may change sign on R
N . Note that problem (1.6) is reduced to

the fractional p-Laplacian equation with a = 1 and b = 0. Under some suitable conditions,
they obtained the existence of two nontrivial entire solutions by applying the mountain
pass theorem and Ekeland’s variational principle.

In this paper, we are interested in the multiplicity of solutions to equation (1.1) and find
sufficient conditions to guarantee the existence of infinitely many solutions.

The present article is motivated by the papers [6, 7], as well as by the fact that we do not
find in the literature any paper dealing with the existence of infinitely many solutions to
equation (1.1). The main tools employed in our works are the variant fountain theorems
established in [22]. They are effective tools for studying the existence of infinitely many
large or small energy solutions. Moreover, the results about the existence of solutions in
the above papers are all related to the number λ. So we are also interested in whether the
restriction on λ can be taken out.

Throughout this paper, we make the following assumptions:
(H1) V (x) ∈ C(RN ) and there exists V0 > 0 such that V (x) ≥ V0 in R

N ;
(H2) h1(x) ∈ Lτ (RN ), where τ ∈ [ p∗

s
p∗

s –q , p
p–q ] is a positive constant;

(H3) There exists μ ∈ [ p∗
s

p∗
s –r ,∞) such that h2(x) ∈ Lμ(RN );
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(H ′
3) h2(x) ∈ L∞(RN ) and h2(x) → 0 as |x| → ∞.

Our main results in this paper are stated as follows.

Theorem 1.1 Assume (H1), (H2), (H3) (or (H ′
3)), and h1(x) > 0, then problem (1.1) admits

infinitely many small energy solutions uk ∈ E satisfying I(uk) → 0– as k → ∞.

Theorem 1.2 Let (H1), (H2), and (H3) (or (H ′
3)) hold. If h2(x) > 0 is satisfied, then problem

(1.1) possesses infinitely many high energy solutions uk ∈ E such that I(uk) → ∞ as k → ∞.

The functional I that appeared in Theorems 1.1–1.2 is the energy functional for problem
(1.1), which will be given below.

By combining Theorems 1.1–1.2, the following corollary is immediate.

Corollary 1.3 Let (H1), (H2), and (H3) (or (H ′
3)) hold. If h1(x), h2(x) > 0, then problem (1.1)

has two sequences {uk} and {uk} of nontrivial solutions such that

I(uk) → 0–, I(uk) → ∞ as k → ∞.

The rest of the paper is organized as follows. In the forthcoming section, we set up the
variational framework for (1.1) and state the variant fountain theorems that will be used
later. In Sect. 3, we study problem (1.1) and give the proof of Theorem 1.1. Section 4 is
devoted to the proof of Theorem 1.2.

2 Preliminaries
First of all, we give some basic results of fractional Sobolev space that will be used in the
next sections. Let 0 < s < 1 < p be real numbers. The fractional Sobolev space W s,p(RN ) is
defined as follows:

W s,p(
R

N)
=

{
u ∈ Lp(

R
N)

:
∫
RN ×RN

|u(x) – u(y)|p
|x – y|N+sp dx dy < ∞

}
(2.1)

equipped with the norm

‖u‖W s,p(RN ) =
(

‖u‖p
Lp(RN ) +

∫
RN ×RN

|u(x) – u(y)|p
|x – y|N+sp dx dy

) 1
p

. (2.2)

Then (W s,p(RN ),‖u‖W s,p(RN )) is a uniformly convex Banach space and the embedding

W s,p(
R

N)
↪→ Lt(

R
N)

is continuous for t ∈ [p, p∗
s ]. Moreover, the embedding is locally compact whenever 1 ≤

t < p∗
s , see [1] for details.

For our problem (1.1), consider the subspace X ⊂ W s,p(RN ) given by

X =
{

u ∈ W s,p(
R

N)
:
∫
RN

V (x)|u|p dx < ∞
}

. (2.3)
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Then X is a separable Banach space with the norm

‖u‖ =
(∫

RN ×RN

|u(x) – u(y)|p
|x – y|N+sp dx dy +

∫
RN

V (x)|u|p dx
) 1

p
. (2.4)

As usual, for t ≥ 1, we let

|u|t =
(∫

RN
|u|t dx

) 1
t
, u ∈ Lt(

R
N)

. (2.5)

By the embedding X ↪→ Lt(RN ), we know that there exists a constant St > 0 such that

|u|t ≤ St‖u‖, t ∈ [
p, p∗

s
]
. (2.6)

Definition 2.1 A function u ∈ X is said to be a (weak) solution of (1.1) if, for any v ∈ X,
we have

∫
RN ×RN

|u(x) – u(y)|p–2(u(x) – u(y))(v(x) – v(y))
|x – y|N+sp dx dy +

∫
RN

V (x)|u|p–2uv dx

=
∫
RN

h1(x)|u|q–2uv dx +
∫
RN

h2(x)|u|r–2uv dx. (2.7)

Let I(u) : X →R be the energy functional associated with (1.1) defined by

I(u) =
1
p
‖u‖p –

1
q

∫
RN

h1(x)|u|q dx –
1
r

∫
RN

h2(x)|u|r dx. (2.8)

Using (2.6), it follows from conditions (H1), (H2), and (H3) (or (H ′
3)) that the functional

I is well defined and I ∈ C1(X,R) with

I ′(u)v =
∫
RN ×RN

|u(x) – u(y)|p–2(u(x) – u(y))(v(x) – v(y))
|x – y|N+sp dx dy

+
∫
RN

V (x)|u|p–2uv dx –
∫
RN

h1(x)|u|q–2uv dx –
∫
RN

h2(x)|u|r–2uv dx (2.9)

for any v ∈ X. It is standard to verify that the weak solutions of (1.1) correspond to the
critical points of I .

Finally, we give the variant fountain theorems.
Let X be a Banach space with the norm ‖ · ‖ and X =

⊕∞
j=1 Xj with dim Xj < ∞, j ∈ Z.

Define

Yk =
k⊕

j=1

Xj, Zk =
∞⊕
j=k

Xj. (2.10)

Consider the following C1-functional Iλ : X →R defined by

Iλ(u) := A(u) – λB(u), λ ∈ [1, 2]. (2.11)

The following two variant fountain theorems were established in [22].
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Theorem 2.2 Assume that the functional Iλ defined above satisfies
(A1) Iλ maps bounded sets into bounded sets uniformly for λ ∈ [1, 2], and Iλ(–u) = Iλ(u)

for all (λ, u) ∈ [1, 2] × X ;
(A2) B(u) ≥ 0 for all u ∈ X , and B(u) → ∞ as ‖u‖ → ∞ on any finite dimensional sub-

space of X ;
(A3) There exist ρk > rk > 0 such that

ak(λ) := inf
u∈Zk ,‖u‖=ρk

Iλ(u) ≥ 0, bk(λ) := max
u∈Yk ,‖u‖=rk

Iλ(u) < 0, ∀λ ∈ [1, 2]

and

dk(λ) := inf
u∈Zk ,‖u‖≤ρk

Iλ(u) → 0, as k → ∞ uniformly for λ ∈ [1, 2].

Then there exist λn → 1, un(λn) ∈ Yn such that

I ′
λn |Yn

(
u(λn)

)
= 0, and Iλn

(
u(λn)

) → ck as n → ∞,

where ck ∈ [dk(2), bk(1)]. In particular, if {u(λn)} has a convergent subsequence for every k,
then I1 has infinitely many nontrivial critical points {uk} ∈ X \ {0} satisfying I1(uk) → 0–

as k → ∞.

Theorem 2.3 Assume that the functional Iλ defined above satisfies:
(B1) Iλ maps bounded sets into bounded sets uniformly for λ ∈ [1, 2], and Iλ(–u) = Iλ(u)

for all (λ, u) ∈ [1, 2] × X ;
(B2) B(u) ≥ 0, A(u) → ∞ or B(u) → ∞ as ‖u‖ → ∞ (or B(u) ≤ 0, B(u) → –∞ as ‖u‖ →

∞);
(B3) There exist ρk > rk > 0 such that

bk(λ) = inf
u∈Zk ,‖u‖=rk

Iλ(u) > ak(λ) = max
u∈Yk ,‖u‖=ρk

Iλ(u), ∀λ ∈ [1, 2].

Then

bk(λ) ≤ ck(λ) := inf
γ∈Γk

max
u∈Bk

Iλ
(
γ (u)

)
, ∀λ ∈ [1, 2],

where Bk = {u ∈ Yk : ‖u‖ ≤ ρk} and Γk = {γ ∈ C(Bk , X) : γ is odd,γ |∂Bk =id} (k ≥ 2). More-
over, for almost every λ ∈ [1, 2], there exists a sequence uk

n(λ) such that

sup
n

∥∥uk
n(λ)

∥∥ < ∞, I ′
λ

(
uk

n(λ)
) → 0 and Iλ

(
uk

n(λ)
) → ck(λ) as n → ∞.

3 Proof of Theorem 1.1
In this section, we use Theorem 2.2 to complete the proof.

For the notation in Theorem 2.2, we define the functional A, B, and Iλ on our working
space X by

A(u) =
1
p
‖u‖p –

1
r

∫
RN

h2(x)|u|r dx, B(u) =
1
q

∫
RN

h1(x)|u|q dx, (3.1)



Chen et al. Boundary Value Problems         (2020) 2020:63 Page 6 of 13

and

Iλ(u) = A(u) – λB(u)

=
1
p
‖u‖p –

1
r

∫
RN

h2(x)|u|r dx –
λ

q

∫
RN

h1(x)|u|q dx, λ ∈ [1, 2]. (3.2)

Since X is a separable and reflexive Banach space, then there exist {ei}∞i=1 ⊂ X and {e∗
i }∞i=1 ⊂

X∗ such that

X = span{e1, e2, . . .}, X∗ = span
{

e∗
1, e∗

2, . . .
}

(3.3)

and

〈
e∗

i , ej
〉

=

⎧⎨
⎩

1, if i = j,

0, if i �= j.
(3.4)

Let Xi = Rei, and Yk and Zk be defined as (2.10).
In the proof of our results, we need the following limits.

Lemma 3.1 Assume (H1), (H2), and (H3) (or (H ′
3)), and let

αk := sup
u∈Zk ,‖u‖=1

(∫
RN

|h1||u|q dx
) 1

q
, βk := sup

u∈Zk ,‖u‖=1

(∫
RN

|h2||u|r dx
) 1

r
, (3.5)

then αk ,βk → 0 as k → ∞.

Proof It is clear that 0 < αk+1 ≤ αk , so αk → α0 ≥ 0 as k → ∞. For every k ∈ N
+, taking

uk ∈ Zk such that ‖uk‖ = 1 and

(∫
RN

|h1||uk|q dx
) 1

q
>

1
2
αk > 0. (3.6)

As X is reflexive, {uk} has a weakly convergent subsequence, without loss of generality,
suppose uk ⇀ u weakly in X. Then, for every i ∈N

+, we have

〈
e∗

i , u
〉

= lim
k→∞

〈
e∗

i , uk
〉

= 0, (3.7)

which implies that u = 0 and uk ⇀ 0 weakly in X.
Let (H2) hold, then for any given small ε > 0, we may find R > 0 big enough such that

|h1|Lτ (Bc
R) <

ε

2Sq
qτ ′

, (3.8)

where BR = {x ∈R
N : |x| < r}, Bc

R = R
N \ BR, and Sqτ ′ is the embedding constant in (2.6).
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If p∗
s

p∗
s –q < τ ≤ p

p–q , since the embedding X ↪→ Lqτ ′ (BR) is compact, then uk → 0 in Lqτ ′ (BR)
and hence there exists K1 > 0 such that

|uk|Lqτ ′ (BR) <
ε

2|h1|τ (3.9)

for k > K1.
Using (3.8) and (3.9), for all k > K1, we get

∫
RN

|h1||uk|q dx =
∫

BR

|h1||uk|q dx +
∫

Bc
R

|h1||uk|q dx

≤ |h1|Lτ (BR)|uk|qLqτ ′ (BR)
+ |h1|Lτ (Bc

R)|uk|qLqτ ′ (Bc
R)

≤ |h1|τ |uk|qLqτ ′ (BR)
+ |h1|Lτ (Bc

R)|uk|qqτ ′

≤ ε. (3.10)

If τ = p∗
s

p∗
s –q , since uk ⇀ 0 in E and the compact embedding X ↪→ Lt(BR) (1 ≤ t < p∗

s ), we
can assume that uk → 0 a.e. in BR. For each measurable subset Ω ⊂ BR, we have

∫
Ω

|h1||uk|q dx ≤ |h1|Lτ (Ω)|uk|qLp∗s (Ω)
≤ C|h1|Lτ (Ω). (3.11)

Then {|h1||uk|q} is uniformly integrable, and the Vitali convergence theorem implies

lim
k→∞

∫
BR

|h1||uk|q dx = 0. (3.12)

So, for k big enough, (3.10) still holds.
Then, from (3.6) and (3.10), we conclude that αk → 0 as k → ∞.
Assume (H3). Since μ ∈ [ p∗

s
p∗

s –r ,∞) implies p < rμ′ ≤ p∗
s , arguing as in the above proof,

one has βk → 0 as k → ∞.
Similarly, if assumption (H ′

3) holds, it follows

∫
RN

|h2||uk|r dx =
∫

BR

|h2||uk|r dx +
∫

Bc
R

|h2||uk|r dx

≤ |h2|L∞(RN )|uk|rLr (BR) + |h2|L∞(Bc
R)|uk|rLr (Bc

R). (3.13)

Since h2(x) ∈ L∞(RN ) and h2(x) → 0 as |x| → ∞, βk → 0 can be obtained in a similar way,
and we complete the proof. �

In order to apply Theorem 2.2, we give the following lemma first.

Lemma 3.2 Let (H1), (H2), and (H3) (or (H ′
3)) hold. Then there exist two sequences 0 < rk <

ρk → 0 as k → ∞ such that

ak(λ) = inf
u∈Zk ,‖u‖=ρk

Iλ(u) ≥ 0, bk(λ) = max
u∈Yk ,‖u‖=rk

Iλ(u) < 0, ∀λ ∈ [1, 2]
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and

dk(λ) = inf
u∈Zk ,‖u‖≤ρk

Iλ(u) → 0, as k → ∞ uniformly for λ ∈ [1, 2].

Proof From Lemma 3.1 we see that, for every u ∈ Zk , it holds
∫
RN

|h1||u|q dx ≤ (
αk‖u‖)q,

∫
RN

|h2||u|r dx ≤ (
βk‖u‖)r . (3.14)

Thus

Iλ(u) ≥ 1
p
‖u‖p –

1
r
βr

k‖u‖r –
λ

q
α

q
k‖u‖q. (3.15)

Fix K2 > 0 big enough such that 1
r β

r
k < 1

2p for k > K2, then for u ∈ Zk and ‖u‖ < 1, we have

Iλ(u) ≥ 1
p
‖u‖p –

1
2p

‖u‖r –
λ

q
α

q
k‖u‖q ≥ 1

2p
‖u‖p –

2
q
α

q
k‖u‖q. (3.16)

If we choose ρk = (8pα
q
k /q)

1
p–q , then ρk → 0+ as k → ∞ and for any u ∈ Zk with ‖u‖ = ρk ,

we get that

Iλ(u) ≥ 1
4p

(
8pα

q
k /q

) p
p–q > 0. (3.17)

This inequality implies that

ak(λ) = inf
u∈Zk ,‖u‖=ρk

Iλ(u) > 0, ∀λ ∈ [1, 2]. (3.18)

In addition, for all λ ∈ [1, 2], k > K2 and u ∈ Zk with ‖u‖ ≤ ρk , we have

Iλ(u) ≥ –
2
q
α

q
k‖u‖q ≥ –

2
q
α

q
kρ

q
k → 0, as k → ∞. (3.19)

Obviously,

dk(λ) = inf
u∈Zk ,‖u‖≤ρk

Iλ(u) ≤ Iλ(0) = 0. (3.20)

So we have dk(λ) → 0 as k → ∞ uniformly for λ ∈ [1, 2].
For all u ∈ Yk , λ ∈ [1, 2], by the equivalence of any norm in a finite dimensional space,

we can derive

Iλ(u) ≤ 1
p
‖u‖p +

1
r

∫
RN

|h2||u|r dx –
1
q

∫
RN

h1(x)|u|q dx

≤ 1
p
‖u‖p +

C1

r
‖u‖r –

C2

q
‖u‖q, (3.21)

where C1 ≥ 0, C2 > 0. Notice q < p < r, so we can choose rk > 0 small enough satisfying
rk < ρk such that

bk(λ) = max
u∈Yk ,‖u‖=rk

Iλ(u) < 0. (3.22)

The proof is completed. �
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Proof of Theorem 1.1 At first, we confirm conditions (A1)–(A2) in Theorem 2.2. It follows
from (H1)–(H3) that Iλ maps bounded sets into bounded sets uniformly for λ ∈ [1, 2]. Evi-
dently, Iλ(–u) = Iλ(u) for all (λ, u) ∈ [1, 2]×X. B(u) ≥ 0 for all u ∈ X, and by the equivalence
of any norm in a finite dimensional space, we know that B(u) → ∞ as ‖u‖ → ∞ on any
finite dimensional subspace of X. So (A1) and (A2) hold.

From Lemma 3.2, we see that (A3) in Theorem 2.2 are verified. Consequently, for any
k ∈ Z

+, there exist λn → 1, u(λn) ∈ Yn such that

I ′
λn |Yn

(
u(λn)

)
= 0, and Iλn

(
u(λn)

) → ck ∈ [
dk(2), bk(1)

]
as n → ∞. (3.23)

Equation (3.23) implies I ′
λn (u(λn)) → 0 as n → ∞. Then, for large n, from (H1)–(H3) and

(2.6) we have

c + 1 +
∥∥u(λn)

∥∥ ≥ Iλn

(
u(λn)

)
–

1
r

I ′
λn

(
u(λn)

)
u(λn)

=
(

1
p

–
1
r

)∥∥u(λn)
∥∥p – λn

(
1
q

–
1
r

)∫
RN

h1(x)
∣∣u(λn)

∣∣q dx

≥
(

1
p

–
1
r

)∥∥u(λn)
∥∥p – 2Sq

qτ ′

(
1
q

–
1
r

)
|h1|τ

∥∥u(λn)
∥∥q. (3.24)

Since p > 1, p > q > 0, the above inequality implies that {u(λn)} is bounded in X.
Then there exist a constant M > 0 and u ∈ X, and a subsequence {u(λn)}, denoted by {un},

such that ‖u‖,‖un‖ ≤ M and un ⇀ u weakly in X. Arguing as in the proof of Lemma 3.1,
we have

lim
n→∞

∫
RN

|h1||un – u|q dx = 0, lim
n→∞

∫
RN

|h2||un – u|r dx = 0. (3.25)

Using the Hölder inequality, we have

∫
RN

|h1||un|q–2un(un – u) dx ≤
(∫

RN
|h1||un|q dx

) q–1
q

(∫
RN

|h1||un – u|q dx
) 1

q
(3.26)

and

∫
RN

|h2||un|r–2un(un – u) dx ≤
(∫

RN
|h2||un|q dx

) r–1
r

(∫
RN

|h2||un – u|r dx
) 1

r
. (3.27)

Then (3.25) implies

lim
n→∞

∫
RN

h1(x)|un|q–2un(un – u) dx = 0,

lim
n→∞

∫
RN

h2(x)|un|r–2un(un – u) dx = 0.
(3.28)
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Denote

Pn := I ′
λn (un)(un – u)

=
∫
RN ×RN

|un(x) – un(y)|p–2(un(x) – un(y))((un(x) – u(x)) – (un(y) – u(y)))
|x – y|N+sp dx dy

+
∫
RN

V (x)|un|p–2un(un – u) dx +
∫
RN

h1(x)|un|q–2un(un – u) dx

+
∫
RN

h2(x)|un|r–2un(un – u) dx (3.29)

and

Qn :=
∫
RN ×RN

|u(x) – u(y)|p–2(u(x) – u(y))((un(x) – u(x)) – (un(y) – u(y)))
|x – y|N+sp dx dy

+
∫
RN

V (x)|u|p–2u(un – u) dx. (3.30)

Then the fact I ′
λn (u(λn)) → 0 shows that Pn → 0 as n → ∞. Moreover, {un} is a bounded

sequence and un ⇀ u in X, which imply Qn → 0.
Equations (3.29) and (3.30) show that, for large n,

∫
RN ×RN

|un(x) – un(y)|p–2(un(x) – un(y)) – |u(x) – u(y)|p–2(u(x) – u(y))
|x – y|N+sp

× ((
un(x) – u(x)

)
–

(
un(y) – u(y)

))
dx dy

+
∫
RN

V (x)
(|un|p–2un – |u|p–2u

)
(un – u) dx

= Pn – Qn + on(1) → 0. (3.31)

By using the standard inequalities (see [23]) given by

〈|ξ |p–2ξ – |η|p–2η, ξ – η
〉 ≥ Cp|ξ – η|p, p ≥ 2,∀ξ ,η ∈R

N (3.32)

and

〈|ξ |p–2ξ – |η|p–2η, ξ – η
〉 ≥ Cp|ξ – η|2(|ξ | + |η|)p–2, 1 < p < 2,∀ξ ,η ∈R

N , (3.33)

where Cp is a positive constant and 〈·, ·〉 denotes the inner product in R
N , we can easily

deduce that ‖un – u‖ → 0 as n → ∞. Now, from Theorem 2.2, we see that I = I1 possesses
infinitely many nontrivial critical points uk for k ∈ Z

+ satisfying I(uk) → 0– as k → ∞.
Therefore, problem (1.1) possesses infinitely many nontrivial solutions, the proof of The-
orem 1.1 is completed. �

4 Proof of Theorem 1.2
For the notation in Theorem 2.2, we define the functional A, B and Iλ on our working space
X by

A(u) =
1
p
‖u‖p –

1
q

∫
RN

h1(x)|u|q dx, B(u) =
1
r

∫
RN

h2(x)|u|r dx, (4.1)
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and

Iλ(u) = A(u) – λB(u)

=
1
p
‖u‖p –

1
q

∫
RN

h1(x)|u|q dx –
λ

r

∫
RN

h2(x)|u|r dx, λ ∈ [1, 2]. (4.2)

Lemma 4.1 Let (H1)–(H3) hold and h2(x) > 0. Then there exist two sequences ρk > rk > 0
such that

bk(λ) = inf
u∈Zk ,‖u‖=rk

Iλ(u) > ak(λ) = max
u∈Yk ,‖u‖=ρk

Iλ(u), ∀λ ∈ [1, 2].

Proof Similar to the beginning of the proof of Lemma 3.2, by (3.14) we have

Iλ(u) ≥ 1
p
‖u‖p –

1
q
α

q
k‖u‖q –

2
r
βr

k‖u‖r . (4.3)

Fix K3 > 0 big enough such that 2
q α

q
k < 1

2p for k > K3, then for u ∈ Zk and ‖u‖ > 1, we have

Iλ(u) ≥ 1
2p

‖u‖p –
2
r
βr

k‖u‖r . (4.4)

If we choose rk = ( r
8pβr

k
)

1
r–p , then rk → ∞ as k → ∞, and for any u ∈ Zk with ‖u‖ = rk , we

get that

Iλ(u) ≥ 1
4p

rp
k > 0. (4.5)

This inequality implies that

bk(λ) = inf
u∈Zk ,‖u‖=rk

Iλ(u) ≥ 1
4p

rp
k > 0, ∀λ ∈ [1, 2]. (4.6)

For all u ∈ Yk , λ ∈ [1, 2], by the equivalence of any norm in a finite dimensional space,
we can derive

Iλ(u) ≤ 1
p
‖u‖p + C1‖u‖q – C2‖u‖r , (4.7)

where C1 ≥ 0, C2 > 0. Notice q < p < r, then Iλ(u) → –∞ as ‖u‖ → ∞. So we can choose
ρk > rk big enough such that

ak(λ) = max
u∈Yk ,‖u‖=ρk

Iλ(u) < 0. (4.8)

The proof is completed. �

Proof of Theorem 1.2 We complete the proof by Theorem 2.3. Let us verify the conditions
in Theorem 2.3 firstly.

(H1)–(H3) imply that Iλ maps bounded sets into bounded sets uniformly for λ ∈ [1, 2].
Moreover, Iλ(–u) = Iλ(u) for all u ∈ X and λ ∈ [1, 2]. So condition (B1) of Theorem 2.3
holds.
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Evidently, B(u) ≥ 0 for all u ∈ X, and A(u) → ∞ as ‖u‖ → ∞. (B2) in Theorem 2.3 is
verified.

From Lemma 4.1, we see that condition (B3) has been verified. Therefore, by Theo-
rem 2.3, for a.e. λ ∈ [1, 2], there exists a sequence uk

n(λ)∞n=1 such that

sup
n

∥∥uk
n(λ)

∥∥ < ∞, I ′
λ

(
uk

n(λ)
) → 0, and Iλ

(
uk

n(λ)
) → ck(λ) as n → ∞. (4.9)

Moreover, by Theorem 2.3 and (4.6) we see that

ck(λ) ≥ bk(λ) ≥ 1
4p

(
r

8pβr
k

) p
r–p

:= bk → ∞ as k → ∞. (4.10)

Since

ck(λ) = inf
γ∈Γk

max
u∈Bk

Iλ
(
γ (u)

) ≤ max
u∈Bk

I1(u) := ck . (4.11)

Then we have

bk ≤ ck ≤ ck . (4.12)

If we choose a sequence λm → 1, then (4.9) implies that the sequence {uk
n(λm)}∞n=1 is

bounded. Using similar arguments as those in the proof of Theorem 1.1, we can prove
that the sequence {uk

n(λm)}∞n=1 has a strong convergent subsequence as n → ∞. Thus we
may assume that uk

n(λm) → uk(λm) in X as n → ∞ for every m ∈ N. Moreover, by (4.9) and
(4.12) we have

I ′
λ

(
uk(λm)

)
= 0 and Iλm

(
uk(λm)

) ∈ [bk , ck]. (4.13)

As in the proof of Theorem 1.1, we can get the boundedness of {uk(λm)}∞m=1 and prove
it possesses a strong convergent subsequence with the limit uk ∈ X. Therefore, the limit
uk ∈ X is a critical point of I with I(uk) ∈ [bk , ck]. Since bk → ∞ as k → ∞, we get infinitely
many nontrivial critical points of I . Consequently, problem (1.1) possesses infinitely many
nontrivial solutions with high energy. The proof is completed. �
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