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Abstract
In this paper, we study the existence of infinitely many nontrivial solutions for the
following semilinear Schrödinger equation:

{
–�u + V(x)u = f (x,u), x ∈R

N ,

u ∈ H1(RN),

where the potential V is continuous and is allowed to be sign-changing. By using a
variant fountain theorem, we obtain the existence of infinitely many high energy
solutions under the condition that the nonlinearity f (x,u) is of super-linear growth at
infinity. The super-quadratic growth condition imposed on F(x,u) =

∫ u
0 f (x, t)dt is

weaker than the Ambrosetti–Rabinowitz type condition and the similar conditions
employed in the references.
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1 Introduction and main result
In the present paper, we are concerned with the existence of infinitely many nontrivial
solutions for the following semilinear Schrödinger equation:

⎧⎨
⎩–�u + V (x)u = f (x, u), x ∈R

N ,

u ∈ H1(RN ).
(1.1)

Due to the strong background of (1.1) in many fields, such as physics, optics, etc., it has
attracted a great deal of interest in the past several decades. Here we point out that a
variety of types of existent results on solutions for (1.1) have been considered by different
assumptions on potential V (x) and nonlinearity f (x, u) by applying variational methods.
For the case of V (x) and f (x) being nonperiodic, many authors have studied the existence
of nontrivial solutions for problem (1.1) with f (x) being superlinear in [1–3], sublinear
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in [4], and asymptotically linear in [5]. Some special types of solution to (1.1) have also
been considered in this direction. For instance, the existence of bound state solutions was
considered in [6]. Bump type nodal solutions and sigh-changing solutions were studied in
[7–10]. For the case of V (x) and f (x, u) being periodic, the authors in [11, 12] obtained the
existence of nontrivial solutions for (1.1).

In this paper, we focus on the existence of infinitely many nontrivial solutions of (1.1) by
applying variational methods. In variational theory, lots of tools can be used to obtain mul-
tiple solutions for equations which have variational structures, such as D.C. Clark’s theory
for functionals bounded below [13, 14] and mountain pass theorem for even functionals
[15]. Among these tools, fountain theorem is an important one. Fountain theorem and
its dual form were established by Bartsch in [16] and by Bartsch and Willem in [17] (see
also [18]) respectively. They are powerful tools to find multiple critical points for vari-
ational functionals. Zou in [19] (see also in [20]) established variant fountain theorems
without (P.S.) condition, which is a crucial condition for fountain theorem and its dual
form. By using the variant fountain theorems given in [19, 20], Zhang and Xu obtained
the existence of infinitely many nontrivial solutions of (1.1) in [21], where they did not
suppose the common used condition that f (x,u)

u → 0 as u → 0, which was used in [19].
Then in [22], Tang weakened some conditions in [21] and gave some more general super-
quadratic conditions near infinity for the primitive of f (x, u), and finally showed that (1.1)
possesses infinitely many nontrivial solutions by applying a result in [15]. Motivated by the
work in [21, 22], we try to establish the existence of infinitely many high energy solutions
of (1.1) under a more general super-quadratic condition than those in [21, 22]. So-called
infinitely high energy solutions for (1.1) are solution sequences {un} of (1.1) such that the
corresponding energy denoted by the energy functional of (1.1) goes to infinity as n → ∞.

To state our result of the present paper, we make the following assumptions on the po-
tential V and nonlinearity f :

(V1) V (x) ∈ C(RN ,R) is bounded below.
(V2) For every M > 0,

meas
({

x ∈R
N : V (x) ≤ M

})
< ∞,

where meas(·) denotes the Lebesgue measure in R
N .

(S1) f (x, u) ∈ C(RN ×R) and f (x, –u) = –f (x, u), ∀(x, u) ∈R
N ×R.

(S2) There exist constants c1, c2 > 0, p, q ∈ (1, 2) and 2 < p < 2∗ such that

∣∣f (x, u)
∣∣ ≤ c1|u| + c2|u|p–1, ∀(x, u) ∈ R

N ×R.

(S3) lim|u|→∞ f (x,u)
u = ∞.

(S4) There exist a constant μ > 2 and a function ν(x) > 0 with |ν|L∞ < ∞ such that

μF(x, u) ≤ uf (x, u) + ν(x)u2, ∀(x, u) ∈R
N ×R.

Then the main result of this paper can be read as follows.

Theorem 1.1 Assume that V and f satisfy (V1), (V2) and (S1)–(S4). Then problem (1.1)
possesses infinitely many high energy solutions.



Cheng and Wu Boundary Value Problems         (2020) 2020:60 Page 3 of 9

Remark 1.2 Comparing with the multiple existent results on nontrivial solutions of (1.1)
in [21, 22], Theorem 1.1 obtains infinitely many high energy solutions for (1.1) not only
for infinitely many nontrivial solutions. Moreover, we do not make more assumptions on
primitive F(x, u) of f (x, u). Specifically, Zhang and Xu in [21] assumed that F(x, u) ≥ 0 for
∀(x, u) ∈R

N ×R and lim|u|→∞ F(x,u)
|u|2 = ∞. In [22], Tang improved the conditions in [21] and

employed a condition that F(x, u) ≥ 0 for |u| ≥ r0 ≥ 0 and lim|u|→∞ F(x,u)
|u|2 = ∞. However,

we only assume the condition in this paper that

lim|u|→∞
f (x, u)

u
= ∞. (1.2)

It is worth mentioning that the condition lim|u|→∞ F(x,u)
|u|2 = ∞ was also used in [12]. It was

also supposed there that f (x,t)
|t| was strictly increasing and f (x, t) = o(|t|) as |t| → 0 uniformly

for x ∈R
N .

Remark 1.3 To obtain the boundedness of (PS) sequence, Zhang and Xu in [21] introduced
that there exists a constant ϑ ≥ 1 such that

ϑ F̃(x, u) ≥ F̃(x, su), ∀(x, u) ∈R
N ×R, s ∈ [0, 1], (1.3)

where F̃(x, u) = uf (x, u) – 2F(x, u). Then Tang in [22] improved the super-quadratic con-
ditions in [21] and supposed that there exist c0 > 0 and κ > max{1, N

2 } such that

∣∣F(x, u)
∣∣κ ≤ c0|u|2κF (x, u), ∀(x, u) ∈R

N ×R, |u| ≥ r0, (1.4)

where F (x, u) = 1
2 uf (x, u) – F(x, u) ≥ 0.

In [22], Tang also imposed another super-quadratic condition that there exist two con-
stants μ > 2 and ρ > 0 such that

μF(x, u) ≤ uf (x, u) + ρu2, ∀(x, u) ∈R
N ×R. (1.5)

Condition (1.5) can be weakened. Thus in this paper we assume condition (S4) where ν > 0
is a function instead of ρ > 0 being a constant.

Remark 1.4 It is not difficult to verify that the functions

f (x, u) = a(x)u ln
(
1 + |u|), (1.6)

f (x, u) = a(x)
(
u

3
2 + u3 cos u

)
(1.7)

satisfy (S1)–(S4), where a(x) is a continuous bounded function with positive lower bound.

Remark 1.5 By (V1), V (x) is bounded below. Thus there exists a positive constant V̄ such
that Ṽ (x) = V (x) + V̄ ≥ V0 > 0. Let f̃ (x, u) = f (x, u) + Ṽ u for all (x, u) ∈ R

N × R. Consider
the following system:

⎧⎨
⎩–�u + Ṽ (x)u = f̃ (x, u), x ∈R

N ,

u ∈ H1(RN ).
(1.8)
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It is easy to check that (1.8) is equivalent to (1.1). Therefore, in what follows we always
assume that V (x) has a positive lower bound.

2 Proof of Theorem 1.1
We work in the Hilbert space E = {u ∈ H1(RN ) :

∫
RN (|∇u|2 + V (x)u2) dx < +∞} equipped

with inner product 〈u, v〉 =
∫
RN (∇u∇v + V (x)uv) dx. The associated norm is ‖u‖ =

(
∫
RN (|∇u|2 + V (x)u2) dx) 1

2 , which is equivalent to the standard norm in H1(RN ) by (V1)
and Remark (1.5). We will find solutions of (1.1) in E. In what follows, we use ‖ · ‖ and
‖ · ‖p to denote the norms in E and Lp(RN ), respectively.

For λ ∈ [1, 2], we define a functional on E

Iλ(u) =
1
2

∫
RN

(|∇u|2 + V (x)u2)dx – λ

∫
RN

F(x, u) dx

=
1
2
‖u‖2 – λ

∫
RN

F(x, u) dx

= A(u) – λB(u). (2.1)

Since 2 < p < 2∗, E can be imbedded continuously into Lp(RN ). By conditions (S1) and (S2),
Iλ(u) is well defined. By [23], B(u) ∈ C1(E,R) and B′(u) : E → E∗ is compact, where E∗ is
the dual space of E. Thus one has Iλ(u) ∈ C1(E,R), and for u, v ∈ E,

I ′
λ(u)v = 〈u, v〉 – λB′(u)v = 〈u, v〉 – λ

∫
RN

f (x, u)v dx. (2.2)

By (2.2), solutions of (1.1) correspond to critical points of Iλ with λ = 1.
Let {ej : j ∈ N} be an orthogonal basis of E. ∀j ∈N, write Xj = span{ej}, then E =

⊕
j∈N Xj.

Let Yk =
⊕k

j=1 Xj, Zk =
⊕∞

j=k Xj. Notice that dim Yk < ∞. Now we rewrite Theorem 2.1 of
[19], since the existence of infinitely many nontrivial solutions of (1.1) is based on it.

Theorem 2.1 Suppose that the functional Iλ satisfies:
(F1) ∀(λ, u) ∈ [1, 2] × E, Iλ(–u) = Iλ(u), Iλ maps a bounded set to a bounded set.
(F2) ∀u ∈ E, B(u) ≥ 0, and ‖u‖ → ∞, A(u) → ∞ or B(u) → ∞.
(F3) There exist rk > ρk > 0 such that, for all λ ∈ [1, 2],

αk(λ) = inf
u∈Zk ,‖u‖=ρk

Iλ(u) > βk(λ) = max
u∈Yk ,‖u‖=rk

Iλ(u).

Then ∀λ ∈ [1, 2], one has

αk(λ) ≤ ξk(λ) = inf
γ∈Γk

max
u∈Bk

Iλ
(
γ (u)

)
,

where Bk = {u ∈ Yk : ‖u‖ ≤ rk}, Γk = {γ ∈ C(Bk , E) : γ is odd,γ |∂Bk = id}. For λ ∈ [1, 2], there
exists a sequence {uk

m(λ)}∞m=1 such that

sup
m

∥∥uk
m(λ)

∥∥ < ∞,

and as m → ∞,

I ′
λ

(
uk

m(λ)
) → 0, Iλ

(
uk

m(λ)
) → ξk(λ).
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Now we give several useful lemmas. The first lemma on compact imbedding is well
known and its proof can be found in [15].

Lemma 2.2 By condition (V2) and 2 ≤ p < 2∗, the imbedding E ↪→ Lp(RN ) is compact.

Lemma 2.3 Assume that (V1), (V2), and (S1) hold, then there exist a number k1 ∈ Z
+ and

a sequence {ρk} such that, as ρk → ∞ (k → ∞), it has

αk(λ) = inf
u∈Zk ,‖u‖=ρk

Iλ(u) > 0, ∀k ≥ k1, (2.3)

where αk(λ) ≥ ρ2
k

4 , Zk =
⊕∞

j=k Xj = span{ek , . . .}.

Proof Observe that by conditions (V1), (V2) and Lemma 3.8 of [18], it holds

lk(q) = sup
u∈Zk ,‖u‖=1

‖u‖q → 0, k → ∞. (2.4)

By condition (S2), there exists a constant c3, c4 > 0 such that, for ∀(x, u) ∈R
N ,

∣∣F(x, u)
∣∣ ≤ c3

(|u|2 + |u|p). (2.5)

(2.5) and (2.1) imply that, for ∀(λ, u) ∈ [1, 2] ×R,

Iλ(u) =
1
2
‖u‖2 – λ

∫
RN

F(x, u) dx

≥ 1
2
‖u‖2 – λ

∫
RN

c3|u|2 + c4|u|p dx

≥ 1
2
‖u‖2 – 2

(
c3‖u‖2

2 + c4‖u‖p
p
)

=
1
2
‖u‖2 – 2

(
c3l2

2(k)‖u‖2 + c4lp
p(k)‖u‖p). (2.6)

By (2.4), there exists k1 such that, for any k > k1, one has l2(k) <
√

1
16c3

. Now we take

ρk = 1
2 ( 1

16c4lpp(k)
)

1
p–2 . Then a direct computation implies Iλ(u) > ρ2

k
4 for u ∈ Zk with ‖u‖ = ρk .

Moreover, by lp
p(k) → 0, it holds ρk → ∞ as k → ∞. �

Next we prove the following lemma.

Lemma 2.4 Suppose that (V1), (V2), (S1)–(S3) hold. Then, for k1 ∈ Z
+ and the sequence

{ρk} in Lemma 2.3, there exists rk > 0 such that, for rk > ρk ,

βk(λ) = max
u∈Yk ,‖u‖=rk

Iλ(u) < 0, ∀k ≥ k1, (2.7)

where k ∈N, Yk =
⊕k

j=1 Xj = span{e1, . . . , ek}.
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Proof By the proof of Lemma 2.6 in [21], for any finite dimensional subspace Ẽ ⊂ E, there
exists a constant ε > 0 such that

meas
{

x ∈R
N :

∣∣u(x)
∣∣ ≥ ε‖u‖} ≥ ε, ∀u ∈ Ẽ, u �= 0. (2.8)

Therefore, by the fact that the dimension of Yk is finite, there exists a constant εk > 0 such
that

meas
(
Ωk

u
) ≥ εk , ∀u ∈ Yk , u �= 0, (2.9)

where Ωk
u = {x ∈ R

N : |u(x)| ≥ εk‖u‖} for all k ∈ N. By (S3), for each k ∈ N and m1 > 1
2 ,

there exists a constant ζk > 0 such that

f (x, u) ≥ 2m1u
ε3

k
, ∀x ∈ R

N , |u| ≥ ζk , (2.10)

which yields that

F(x, u) ≥ m1u2

ε3
k

, ∀x ∈R
N , |u| ≥ ζk . (2.11)

Then, for any k ∈N and λ ∈ [1, 2], one has

Iλ(u) =
1
2
‖u‖2 – λ

∫
RN

F(x, u) dx

≤ 1
2
‖u‖2 – λ

∫
Ωk

u

m1|u|2
ε3

k
dx

≤ 1
2
‖u‖2 – ε2

k ‖u‖2m1
meas(Ωk

u)
ε3

k

≤ 1
2
‖u‖2 – m1‖u‖2 = –

(
m1 –

1
2

)
‖u‖2, (2.12)

where u ∈ Yk with ‖u‖ ≥ ζk
εk

. Choose rk > max{ζk , ζk
εk

} for any k ≥ k1. Then, by m1 > 1
2 , it

holds

βk(λ) = max
u∈Yk ,‖u‖=rk

Iλ(u) ≤ –
(

m1 –
1
2

)
r2

k < 0. (2.13)
�

Now we are ready to give the proof of Theorem 1.1.

Proof of Theorem 1.1 First of all, by (2.1), (2.2), and (2.5), Iλ maps bounded sets to bounded
sets uniformly for λ ∈ [1, 2]. By (S1), we have Iλ(–u) = Iλ(u) for (λ, u) ∈ [1, 2] × E, which
implies that condition (F1) of Theorem 2.1 holds. It is easy to see that (F2) holds by (S3) and
(2.1). Condition (F3) is also true due to Lemma 2.3 and Lemma 2.4. Thus, by Theorem 2.1,
there exists a sequence {uk

m(λ)}∞m=1 for every k ≥ k1 and λ ∈ [1, 2] such that

sup
m

∥∥uk
m(λ)

∥∥ < ∞, I ′
λ

(
uk

m(λ)
) → 0, Iλ

(
uk

m(λ)
) → ξk(λ), a.e. on R

N (2.14)
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as m → ∞, where ξk(λ) = infγ∈Γk maxu∈Bk Iλ(γ (u)), Bk = {u ∈ Yk : ‖u‖ ≤ rk}, Γk = {γ ∈
C(Bk , E) : γ is odd,γ |∂Bk = id}. By (2.14), one can choose a sequence {λn} satisfying λn → 1
for each k ≥ k1. Moreover, we obtain a sequence {uk

m(λn)}∞m=1 which satisfies as m → ∞

sup
m

∥∥uk
m(λn)

∥∥ < ∞, I ′
λn

(
uk

m(λn)
) → 0. (2.15)

Note that {uk
m(λn)}∞m=1 is bounded for m. So it follows from the compactness of B′ that

{uk
m(λn)}∞m=1 has a strongly convergent subsequence. We denote it still by {uk

m(λn)}. We
can suppose that

lim
m→∞ uk

m(λn) = uk
n ∈ E, ∀n ∈N, k ≥ k1. (2.16)

Then by (2.15) it holds

I ′
λn

(
uk

n
)

= 0, Iλn

(
uk

n
) ≥ ρ̄k =

ρ2
k

4
. (2.17)

Now we claim that {uk
n}∞n=1 is bounded. We prove the claim by contradiction. For conve-

nience, we write uk
n = un for n ∈ N. Suppose that ‖un‖ → ∞. Write vn = un

‖un‖ . Then it is
obvious that ‖vn‖ = 1 and ‖vn‖p ≤ τ‖vn‖ = τ for 2 ≤ p < 2∗, where τ is a positive constant
by Lemma 2.2. Then by (2.1), (2.2), (2.14), (2.15), and assumption (S4), one has, for n being
large,

c + 1 ≥ Iλ(un) –
1
μ

I ′
λ(un)un

=
μ – 2

μ
‖un‖2 +

∫
RN

(
1
μ

f (x, un)un – F(x, un)
)

dx

≥ μ – 2
μ

‖un‖2 –
|ν|L∞

μ
‖un‖2

2, (2.18)

which means

1 ≤ 2|ν|L∞

μ – 2
lim sup

n→∞
‖vn‖2

2. (2.19)

Passing to a subsequence, we can assume that

vn ⇀ v0 in E;

vn → v0 in Lp(
R

N)
for 2 ≤ p < 2∗;

vn(x) → v0(x) a.e. on R
N .

(2.20)

Therefore it follows from (2.19) and (2.20) that v0 �= 0, which implies that meas(Σ) > 0,
where Σ = {x ∈ R

N : v0(x) �= 0}. Since ‖un‖ → ∞ as n → ∞, we get |un| → ∞ as n → ∞
on the set Σ . Then, by (S3) and (2.17), one has

o(1) = I ′
λn (un)un = ‖un‖2 – λn

∫
RN

f (x, un)un dx, (2.21)
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which implies that

o(1) + 1 = λn

∫
RN

f (x, un)un

‖un‖2 dx

≥ λn

∫
Σ

f (x, un)un

‖un‖2 dx

= λn

∫
Σ

f (x, un)un

|un|2 |vn|2 dx

= λn

∫
Σ

f (x, un)
un

|vn|2 dx → ∞, (2.22)

as n → ∞. This contradiction concludes the boundedness of {un}∞n=1. Thus we get the
claim. By the claim and (2.17), it can be shown by a standard way that there exists a strongly
convergent subsequence of {uk

n}. Suppose that uk
n → uk

0 as n → ∞. Then by (2.17) one
has I ′

1(uk
0) = 0, i.e., uk

0 is a critical point of I1(u). By (2.17) again, one has I1(uk
0) ≥ ρ̄k →

∞ as k → ∞. This fact means that equation (1.1) possesses infinitely many high energy
solutions. The proof of Theorem 1.1 is complete. �
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