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Abstract
In this paper, a class of boundary value problems for fractional differential equations
with a parameter is studied via the variational methods. Firstly, we present a result
that the boundary value problems have at least one weak solution under the
quadratic condition and the superquadratic condition, respectively. Additionally, we
obtain the existence of at least one nontrivial solution by using the famous mountain
pass lemma without the Ambrosetti–Rabinowitz condition. Finally, by a recent critical
points theorem of Bonanno and Marano, the existence of at least three solutions is
established.
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1 Introduction
Fractional-order derivatives and integrals are more suitable to describe the properties of
real materials than those of integer-order, so fractional-order differential equations are
more and more widely used in simulating the mechanical and electrical characteristics
of real materials, dynamic system control theory, rock rheological properties, and many
other fields (see [1–10] and their references). The existence of solutions for boundary value
problems of fractional differential equations is also studied in various ways, such as some
fixed point theorems, the fixed point index theory in cones, methods of upper and lower
solutions, coincidence degree theory, topological degree theory, etc. (see [11–16]). Later,
with the introduction of the mountain pass theorem, variational methods have become a
new and effective tool to study the existence of solutions for boundary value problems (see
[17–19] and their references). In addition, nonlinear terms are often required to satisfy the
Ambrosetti–Rabinowitz (A-R for short) condition when variational methods are applied.
For example, in [20], Zhao and Tang studied a class of boundary value problems for frac-
tional differential equations and obtained the existence of at least one weak solution by
using the critical point theory under satisfying the A-R condition.
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Chen and Liu [21] considered the following boundary value problems of fractional dif-
ferential equations and obtained the existence of at least one weak solution under the A-R
condition:

⎧
⎨

⎩

tDα
Tφp(0Dα

t u(t)) = f (t, u(t)), t ∈ [0, T],

u(0) = u(T) = 0,
(1.1)

where 0Dα
t and tDα

T are the left and right Riemann–Liouville fractional derivatives of order
α ∈ (0, 1] respectively. f : [0, T] ×R→ R. The result is as follows.

Theorem 1.1 ([21], Theorem 4.2) Let 1
p < α ≤ 1. Assume that

(V1) f ∈ C([0, T] ×R,R).
(V2) There exist constants μ ∈ (0, 1

p ) and M > 0 such that

0 < F(t, x) ≤ μxf (t, x), ∀t ∈ [0, T], x ∈R with |x| ≥ M.

(V3) For t ∈ [0, T] and x ∈R, we have

lim sup
|x|→0

F(t, x)
|x|p <

(Γ (α + 1))p

pTαp .

Then BVP (1.1) admits at least one nontrivial weak solution.

Motivated by the above mentioned works, we are interested in the following fractional
differential boundary value problem:

⎧
⎨

⎩

tDα
Tφp(0Dα

t x(t)) = λf (t, x(t)), a.e. t ∈ [0, T],

x(0) = x(T) = 0,
(1.2)

where 0 < α ≤ 1, 0Dα
t and tDα

T denote the left and right Riemann–Liouville fractional
derivatives of order α, respectively. λ > 0 is a parameter. φp : R → R is the p-Laplacian
defined by φp(s) = |s|p–2s if s �= 0, φp(0) = 0, 1 < p < ∞. f : [0, T] × R → R and F(t, x) =
∫ x

0 f (t, s) ds. The existence and multiplicity of solutions for boundary value problem (BVP
for short) (1.2) will be derived by the critical point theory.

In the following proofs, we assume that f (t, x) and F(t, x) satisfy some of the following
conditions:

(A0) F(t, x) is measurable in t for every x ∈R and continuously differentiable in x for a.e.
t ∈ [0, T], and there exist k1 ∈ C(R+,R+) and k2 ∈ L1([0, T],R+) such that

∣
∣F(t, x)

∣
∣ ≤ k1

(|x|)k2(t),
∣
∣f (t, x)

∣
∣ ≤ k1

(|x|)k2(t)

for all x ∈R and a.e. t ∈ [0, T].
(A1) There exist a constant 0 ≤ θ < p and a function η1(t) ∈ C([0, T]) with ess infη1 > 0

such that

lim sup
|x|→∞

F(t, x)
|x|θ < η1(t)

uniformly for a.e. t ∈ [0, T].
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(A2) There is a function η2(t) ∈ C([0, T]) with ess infη2 > 0 such that

lim sup
|x|→∞

F(t, x)
|x|p < η2(t)

uniformly for a.e. t ∈ [0, T].
(A3) lim sup|x|→0

F(t,x)
|x|p = 0 uniformly for a.e. t ∈ [0, T].

(A4) F(t, x) ≥ 0 for all t ∈ [0, T] and x ∈R.
(A5) There is a constant ϑ > p such that

lim sup
|x|→∞

ϑF(t, x) – f (t, x)x
|x|p ≤ 0

uniformly for a.e. t ∈ [0, T].
(A6) There exists a subset Ω of [0, T] with meas(Ω) > 0 such that

lim inf|x|→∞
F(t, x)
|x|p > 0

uniformly for a.e. t ∈ Ω .

Remark 1.1 By (A1), there exists a constant L1 > 0 such that

F(t, x) ≤ η1(t)|x|θ + L1 (1.3)

for a.e. t ∈ [0, T] and x ∈R.

Similarly, (A2) implies that there is a constant L2 > 0 such that

F(t, x) ≤ η2(t)|x|p + L2 (1.4)

for a.e. t ∈ [0, T] and x ∈R.
The following arrangement of the article is as follows. In the second part, the basic def-

initions, some properties and lemmas of fractional calculus are given. Additionally, the
related fractional derivative space and the variational structure of BVP (1.2) is established.
In the third part, we give the existence and multiplicity theorems of nontrivial solutions
of BVP (1.2) under some appropriate conditions.

2 Preliminaries
In order to obtain the existence of solutions to BVP (1.2), we need to recall some necessary
definitions and related properties of fractional calculus, which will be used in the proofs
later in this paper.

Definition 2.1 ([22, 23]) Let u be a function defined on [a, b]. The left and right Riemann–
Liouville fractional integrals of order γ for the function u denoted by aD–γ

t u(t) and
tD–γ

b u(t), respectively, are defined by

aD–γ
t u(t) =

1
Γ (γ )

∫ t

a
(t – s)γ –1u(s) ds, t ∈ [a, b],γ > 0
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and

tD–γ

b u(t) =
1

Γ (γ )

∫ b

t
(s – t)γ –1u(s) ds, t ∈ [a, b],γ > 0,

provided the right-hand sides are pointwise defined on [a, b], where Γ > 0 is the gamma
function.

Definition 2.2 ([22, 23]) Let u be a function defined on [a, b]. The left and right Riemann–
Liouville fractional derivatives of order γ for the function u denoted by aDγ

t u(t) and
tDγ

b u(t), respectively, are defined by

aDγ
t u(t) =

(

aDγ –n
t u(t)

)(n) =
1

Γ (n – γ )
dn

dtn

(∫ t

a
(t – s)n–γ –1u(s) ds

)

and

tDγ

b u(t) = (–1)n(

tD
γ –n
b u(t)

)(n) =
1

Γ (n – γ )
(–1)n dn

dtn

(∫ b

t
(s – t)n–γ –1u(s) ds

)

,

where t ∈ [a, b], n – 1 ≤ γ < n, and n ∈N.

Remark 2.1 ([22, 23]) If 0 ≤ γ < 1, then

aDγ
t u(t) =

(

aDγ –1
t u(t)

)′ =
1

Γ (1 – γ )
d
dt

(∫ t

a
(t – s)–γ u(s) ds

)

, t ∈ [a, b]

and

tDγ

b u(t) = –
(

tD
γ –1
b u(t)

)′ = –
1

Γ (1 – γ )
d
dt

(∫ b

t
(s – t)–γ u(s) ds

)

, t ∈ [a, b].

Remark 2.2 ([19]) For n ∈N, if γ = n – 1, according to Definition 2.2, we find that

aDn–1
t u(t) = u(n–1)(t),

tDn–1
b u(t) = (–1)n–1u(n–1)(t),

where u(n–1)(t) is the usual derivative of order n – 1.

Now, we present the rule for fractional integration by parts.

Property 2.1 ([23]) If u ∈ Lp([a, b],RN ), v ∈ Lq([a, b],RN ) and p ≥ 1, q ≥ 1, 1
p + 1

q ≤ 1 + γ

or p �= 1, q �= 1, 1
p + 1

q = 1 + γ . Then

∫ b

a

[

aD–γ
t u(t)

]
v(t) dt =

∫ b

a

[

tD
–γ

b v(t)
]
u(t) dt, γ > 0.

In order to deal with BVP (1.2), we introduce appropriate function spaces and the related
variational structure.
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Let Lp([0, T],R) (1 ≤ p < ∞) and C([0, T],R) be the p-Lebesgue space and the continu-
ous function space, respectively, with the norms

‖u‖Lp =
(∫ T

0

∣
∣u(t)

∣
∣p dt

) 1
p

, u ∈ Lp([0, T],R
)
(1 ≤ p < ∞)

and

‖u‖∞ = max
t∈[0,T]

∣
∣u(t)

∣
∣, u ∈ C

(
[0, T],R

)
.

To set up the variational structure of BVP (1.2), we need to construct the appropriate
function space first.

Definition 2.3 Let 0 < α ≤ 1 and 1 < p < ∞. The fractional derivative space Eα,p
0 is defined

as the closure of C∞
0 ([0, T],R), that is, Eα,p

0 = C∞
0 ([0, T],R) with the norm

‖x‖α,p =
(∫ T

0

∣
∣0Dα

t x(t)
∣
∣p dt +

∫ T

0

∣
∣x(t)

∣
∣p dt

) 1
p

. (2.1)

Remark 2.3 The fractional derivative space Eα,p
0 is the space of functions x(t) ∈ Lp([0, T],R)

with an α-order Riemann–Liouville fractional derivative 0Dα
t x(t) ∈ Lp([0, T],R) and x(0) =

x(T) = 0.

Remark 2.4 From [19], the fractional derivative space Eα,p
0 (0 < α ≤ 1, 1 < p < ∞) is a re-

flexive and separable Banach space.

Lemma 2.1 ([19]) Let 0 < α ≤ 1 and 1 < p < ∞. For any x ∈ Eα,p
0 , we have

‖x‖Lp ≤ Tα

Γ (α + 1)
∥
∥0Dα

t x
∥
∥

Lp . (2.2)

If α > 1
p and 1

p + 1
q = 1, then

‖x‖∞ ≤ Tα– 1
p

Γ (α)((α – 1)q + 1)
1
q

∥
∥0Dα

t x
∥
∥

Lp . (2.3)

We denote G = Tα– 1
p

Γ (α)((α–1)q+1)
1
q

.

Remark 2.5 According to formula (2.2), let x ∈ Eα,p
0 , the norm ‖x‖α,p is equivalent to

‖x‖α,p =
(∫ T

0

∣
∣0Dα

t x(t)
∣
∣p dt

) 1
p

. (2.4)

In the following discussion, we denote ‖x‖ = ‖x‖α,p.

Lemma 2.2 ([19]) Let 0 < α ≤ 1 and 1 < p < ∞. Assume that α > 1
p and the sequence {xn}

converges weakly to x in Eα,p
0 , that is, xn ⇀ x as n → ∞. Then xn → x in C([0, T],R) as

n → ∞, that is, ‖xn – x‖∞ → 0 as n → ∞.
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Definition 2.4 The weak solution of BVP (1.2) is a function x ∈ Eα,p
0 satisfying the follow-

ing equation:

∫ T

0
φp

(
0Dα

t x(t)
)

0Dα
t y(t) dt = λ

∫ T

0
f
(
t, x(t)

)
y(t) dt, ∀y ∈ Eα,p

0 .

For the sake of convenience, the solution of BVP (1.2) mentioned later is the weak solu-
tion of BVP (1.2).

For ∀x ∈ Eα,p
0 , we consider the functional I : Eα,p

0 →R as follows:

I(x) =
1
p

∫ T

0

∣
∣0Dα

t x(t)
∣
∣p dt – λ

∫ T

0
F
(
t, x(t)

)
dt

=
1
p
‖x‖p – λ

∫ T

0
F
(
t, x(t)

)
dt. (2.5)

From [25], we can know that I ∈ C1(Eα,p
0 ,R) and

I ′(x)y =
∫ T

0
φp

(
0Dα

t x(t)
)

0Dα
t y(t) dt – λ

∫ T

0
f
(
t, x(t)

)
y(t) dt, ∀y ∈ Eα,p

0 . (2.6)

It follows from Definition 2.4 and (2.6) that if x ∈ Eα,p
0 is a solution of I ′(x) = 0, x is a weak

solution of BVP (1.2).

3 Existence and multiplicity of solutions of BVP (1.2)
Definition 3.1 Let E be a real Banach space and J ∈ C1(E,R). If any sequence {xn} ⊂ E for
which {J(xn)} is bounded and J ′(xn) → 0 as n → +∞ possesses a convergent subsequence,
then we say that J satisfies the Palais–Smale condition (P.S. condition for short).

Lemma 3.1 ([24]) Let E be a real reflexive Banach space. If the functional J : E → R is
weakly lower semicontinuous and coercive, i.e., lim‖x‖→∞ J(x) = +∞, then there exists x∗ ∈ E
such that J(x∗) = infx∈E J(x). Moreover, if J is also Fréchet differentiable on E, then J ′(x∗) = 0.

Lemma 3.2 ([25] Mountain pass theorem) Let E be a real Banach space and J ∈ C1(E,R)
satisfy the P.S. condition. Suppose that

(1) J(0) = 0.
(2) There exist ρ > 0 and σ > 0 such that J(x0) ≥ σ for all x0 ∈ E with ‖x0‖ = ρ .
(3) There exists x1 ∈ E with ‖x1‖ ≥ ρ such that J(x1) < σ .

Then z = infh∈� maxt∈[0,1] J(h(t)) ≥ σ is a critical value of J , where

� =
{

h ∈ C
(
[0, 1], E

)|h(0) = x0, h(1) = x1
}

.

Lemma 3.3 ([26]) Let E be a real reflexive Banach space, Φ : E → R be a sequentially
weakly lower semicontinuous, coercive, and continuously Gâteaux differentiable functional
whose Gâteaux derivative admits a continuous inverse on E∗, Ψ : E →R be a continuously
Gâteaux differentiable functional whose Gâteaux derivative is compact such that

inf
x∈E

Φ(x) = Φ(0) = Ψ (0) = 0.

Assume that there exist r > 0 and ω ∈ E, with r < Φ(ω) such that
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(1) sup{Ψ (x) : Φ(x) ≤ r} < r Ψ (ω)
Φ(ω) ,

(2) for all λ ∈ ( Φ(ω)
Ψ (ω) , r

sup{Ψ (x):Φ(x)≤r} ), the functional Φ – λΨ is coercive.
Then, for each λ ∈ ( Φ(ω)

Ψ (ω) , r
sup{Ψ (x):Φ(x)≤r} ), the functional Φ – λΨ has at least three distinct

critical points in E.

Lemma 3.4 Suppose that (A0) and (A4 – A5) hold, then I satisfies the P.S. condition, i.e.,
for every sequence {xn} ∈ Eα,p

0 , {xn} has a convergent subsequence if

{
I(xn)

}
is bounded and I ′(xn) → 0 as n → ∞. (3.1)

Proof First we prove that {xn} is a bounded sequence in Eα,p
0 .

Without loss of generality, in the next proof of the theorem, the sequence {xn} and its
subsequences are all denoted as {xn}.

Suppose that {xn} is unbounded. Passing to a subsequence, we may assume that ‖xn‖ →
∞. Let �n = xn

‖xn‖ , so that ‖�n‖ = 1. By Lemma 2.2, also passing to a subsequence, we can
suppose that

�n ⇀ �0 weakly in Eα,p
0 ,

�n → �0 strongly in C
(
[0, T],R

)

as n → ∞. Moreover, we have

�̄n =
1
T

∫ T

0
�n(t) dt → 1

T

∫ T

0
�0(t) dt = �̄0 (3.2)

as n → ∞. By (3.1) there exists a constant K1 > 0 such that

(
ϑ

p
– 1

)

‖xn‖p = ϑI(xn) – I ′(xn)xn + λ

∫ T

0

(
ϑF

(
t, xn(t)

)
– f

(
t, xn(t)

)
xn(t)

)
dt

≤ K1
(
1 + ‖xn‖

)
+ λ

∫ T

0

(
ϑF

(
t, xn(t)

)
– f

(
t, xn(t)

)
xn(t)

)
dt.

Notice that ‖xn‖ → ∞, we have

(
ϑ

p
– 1

)

‖�n‖p ≤ K1(1 + ‖xn‖)
‖xn‖p + λ

∫ T
0 (ϑF(t, xn(t)) – f (t, xn(t))xn(t)) dt

‖xn‖p . (3.3)

In view of (A0) and (A5), there exists Ω0 ⊂ [0, T] with meas(Ω0) = 0 such that

∣
∣F(t, x)

∣
∣ ≤ k1

(|x|)k2(t),
∣
∣f (t, x)

∣
∣ ≤ k1

(|x|)k2(t) (3.4)

for all x ∈R and t ∈ [0, T] \ Ω0 and

lim sup
|x|→∞

ϑF(t, x) – f (t, x)x
|x|p ≤ 0

uniformly for t ∈ [0, T] \ Ω0. This yields

lim sup
n→∞

ϑF(t, xn(t)) – f (t, xn(t))xn(t)
‖xn‖p ≤ 0 (3.5)
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for t ∈ [0, T] \ Ω0. Otherwise, there exist t0 ∈ [0, T] \ Ω0 and a subsequence of {xn} such
that

lim sup
n→∞

ϑF(t0, xn(t0)) – f (t0, xn(t0))xn(t0)
‖xn‖p > 0. (3.6)

If {xn(t0)} is bounded, then there exists a positive constant K2 such that |xn(t0)| ≤ K2 for
all n ∈N. By (3.4) we find

ϑF(t0, xn(t0)) – f (t0, xn(t0))xn(t0)
‖xn‖p ≤ (ϑ + K2) maxs∈[0,K2] k1(s)k2(t0)

‖xn‖p → 0

as n → ∞, which contradicts (3.6). So, there is a subsequence of {xn(t0)} such that
|xn(t0)| → ∞ as n → ∞.

lim sup
n→∞

ϑF(t0, xn(t0)) – f (t0, xn(t0))xn(t0)
‖xn‖p

= lim sup
n→∞

ϑF(t0, xn(t0)) – f (t0, xn(t0))xn(t0)
|xn(t0)|p

∣
∣�n(t0)

∣
∣p

= lim sup
n→∞

ϑF(t0, xn(t0)) – f (t0, xn(t0))xn(t0)
|xn(t0)|p lim

n→∞
∣
∣�n(t0)

∣
∣p ≤ 0.

This contradicts (3.6). Thus, (3.5) holds. From (3.3) and (3.5) we obtain

lim sup
n→∞

(
ϑ

p
– 1

)

‖�n‖p ≤ 0.

Since ϑ > p, we get

‖�n‖p → 0 as n → ∞, (3.7)

but ‖�n‖ = 1. This is a contradiction. Hence, {xn} is a bounded sequence in Eα,p
0 .

Since Eα,p
0 is a reflexive space, there exists a weakly convergent subsequence such that

xn ⇀ x in Eα,p
0 . Hence, we have

〈
I ′(xn) – I ′(x), xn – x

〉

=
〈
I ′(xn), xn – x

〉
–

〈
I ′(x), xn – x

〉

≤ ∥
∥I ′(xn)

∥
∥∗‖xn – x‖ –

〈
I ′(x), xn – x

〉

→ 0 (3.8)

as n → ∞. Combining Lemma 2.2 with (2.3), we obtain that {xn} converges to x strongly
in C([0, T],R), i.e., ‖xn – x‖ → 0 as n → ∞, which implies that

∫ T

0

(
f
(
t, xn(t)

)
– f

(
t, x(t)

))(
xn(t) – x(t)

)
dt → 0 (3.9)

as n → ∞. Note that

〈
I ′(xn) – I ′(x), xn – x

〉
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=
∫ T

0

(
φp

(
0Dα

t xn(t)
)

– φp
(

0Dα
t x(t)

))(
0Dα

t xn(t) – 0Dα
t x(t)

)
dt

– λ

∫ T

0

(
f
(
t, xn(t)

)
– f

(
t, x(t)

))(
xn(t) – x(t)

)
dt.

Thus, from (3.8) and (3.9) we have

∫ T

0

(
φp

(
0Dα

t xn(t)
)

– φp
(

0Dα
t x(t)

))(
0Dα

t xn(t) – 0Dα
t x(t)

)
dt → 0 (3.10)

as n → ∞. For any s1, s2 ∈ R, it is well known that (see Lemma 4.2 in [27]) there exists
a1 > 0 such that

〈|s1|p–2s1 – |s2|p–2s2, s1 – s2
〉 ≥

⎧
⎨

⎩

a1|s1 – s2|p, p ≥ 2,

a1
|s1–s2|2

(|s1|+|s2|)2–p , 1 < p ≤ 2.
(3.11)

Following (3.11), we obtain that there exist c1, c2 > 0 such that

∫ T

0

(
φp

(
0Dα

t xn(t)
)

– φp
(

0Dα
t x(t)

))(
0Dα

t xn(t) – 0Dα
t x(t)

)
dt

≥
⎧
⎨

⎩

c1
∫ T

0 |0Dα
t xn(t) – 0Dα

t x(t)|p dt, p ≥ 2,

c2
∫ T

0
|0Dα

t xn(t)–0Dα
t x(t)|2

(|0Dα
t xn(t)|+|0Dα

t x(t)|)2–p dt, 1 < p < 2.
(3.12)

When 1 < p < 2, one has

∫ T

0

∣
∣0Dα

t xn(t) – 0Dα
t x(t)

∣
∣p dt

≤
(∫ T

0

|0Dα
t xn(t) – 0Dα

t x(t)|2
(|0Dα

t xn(t)| + |0Dα
t x(t)|)2–p dt

) p
2
(∫ T

0

(∣
∣0Dα

t xn(t)
∣
∣ +

∣
∣0Dα

t x(t)
∣
∣
)p dt

) 2–p
2

.

Thus, noting that (b1 + b2)γ ≤ 2γ –1(bγ
1 + bγ

2 ), where b1, b2 ≥ 0, γ ≥ 1 (see [28]), we have

∫ T

0

∣
∣0Dα

t xn(t) – 0Dα
t x(t)

∣
∣p dt

≤ c3
(‖xn‖p + ‖x‖p)

2–p
2

(∫ T

0

|0Dα
t xn(t) – 0Dα

t x(t)|2
(|0Dα

t xn(t)| + |0Dα
t x(t)|)2–p dt

) p
2

,

where c3 = 2
(p–1)(2–p)

2 , which, together with (3.12), implies

∫ T

0

(
φp

(
0Dα

t xn(t)
)

– φp
(

0Dα
t x(t)

))(
0Dα

t xn(t) – 0Dα
t x(t)

)
dt

≥ c2c
– 2

p
3

(‖xn‖p + ‖x‖p)
p–2

p ‖xn – x‖2, 1 < p < 2. (3.13)

When p ≥ 2, by (3.12) we get

∫ T

0

(
φp

(
0Dα

t xn(t)
)

– φp
(

0Dα
t x(t)

))(
0Dα

t xn(t) – 0Dα
t x(t)

)
dt
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≥ c1‖xn – x‖p, p ≥ 2. (3.14)

It follows from (3.10), (3.13), and (3.14) that

‖xn – x‖ → 0

as n → ∞, that is, {xn} converges strongly to x in Eα,p
0 . The proof is completed. �

Theorem 3.1 Assume that (A0) and one of the following conditions hold, then BVP (1.2)
admits at least one nontrivial solution.

(1) (A1) holds and λ ∈ (0,∞).
(2) (A2) holds and λ ∈ (0, 1

pGp ∫ T
0 η2(t) dt

).

Proof We shall prove this theorem by Lemma 3.1.
Notice that

lim inf
n→∞ ‖xn‖ ≥ ‖x‖.

Let {xn} converge weakly to x in Eα,p
0 , then xn converges uniformly to x in [0, T]. There-

fore

lim inf
n→∞ I(xn) = lim inf

n→∞

{
1
p
‖xn‖p – λ

∫ T

0
F
(
t, xn(t)

)
dt

}

≥ 1
p
‖x‖p – λ

∫ T

0
F
(
t, x(t)

)
dt

= I(x),

which means that I(x) is weakly lower semicontinuous.
If (A1) holds, it follows from (1.3) and (2.5) that

I(x) =
1
p
‖x‖p – λ

∫ T

0
F
(
t, x(t)

)
dt

≥ 1
p
‖x‖p – λGθ‖x‖θ

∫ T

0
η1(t) dt – λL1T .

Because of 0 ≤ θ < p, we obtain that I(x) → ∞ as ‖x‖ → ∞, which indicates that I is
coercive. Therefore, by Lemma 3.1, there is x0 ∈ Eα,p

0 such that I(x0) = infx∈Eα,p
0

I(x) and
I ′(x0) = 0.

In the same way, if (A2) holds, according to (1.4) and (2.5), we have

I(x) ≥ 1
p
‖x‖p – λGp‖x‖p

∫ T

0
η2(t) dt – λL2T .

On account of 0 < λ < 1
pGp ∫ T

0 η2(t) dt
, then I(x) → ∞ as ‖x‖ → ∞ is the natural result. The

proof is finished. �
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Remark 3.1
(1) By (A3), we know that, for any 0 < ε < 1

λpTGp , there exists δ ∈ (0, ε) such that

∣
∣F(t, x)

∣
∣ ≤ ε|x|p

for a.e. t ∈ [0, T] and x ∈R with |x| ≤ δ.
(2) By (A5) and (A6) there exist constants K3 > 1, � > (ϑ–p)Gp

2λp and a subset of Ω , still
denoted by Ω , with |Ω| = meas(Ω) > 0 such that

ϑF(t, x) – f (t, x)x ≤ �|x|p

and

F(t, x) >
2�

ϑ – p
|x|p

for all |x| ≥ K3 and t ∈ Ω .
It follows from (A0) that

F(t, x) ≤ max
s∈[0,K3]

k1(s)k2(t)

for all |x| ≤ K3 and a.e. t ∈ [0, T].
Therefore, we obtain

F(t, x) >
2�

ϑ – p
(|x|p – Kp

3
)

– max
s∈[0,K3]

k1(s)k2(t)

for all |x| ∈R and t ∈ Ω .

Theorem 3.2 If (A0) and (A3 – A6) hold, then BVP (1.2) admits at least one nontrivial
weak solution for each λ ∈ (0, 1

pεTGp ).

Proof Obviously, it follows from the definition of I that I(0) = 0. Therefore, (1) of
Lemma 3.2 is true.

Let

0 < ρ =
δ

G
(δ is defined by Remark 3.1),

then it follows from (2.3) that

‖x‖∞ ≤ G‖x‖ = Gρ = δ

for all x ∈ Eα,p
0 with ‖x‖ = ρ .

Therefore, for all x ∈ Eα,p
0 with ‖x‖ = ρ = δ

G , from Remark 3.1, we have

I(x) =
1
p
‖x‖p – λ

∫ T

0
F
(
t, x(t)

)
dt
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≥ 1
p
‖x‖p – λεTGp‖x‖p

≥
(

1
p

– λεTGp
)

δp

Gp

= σ .

In view of 0 < λ < 1
pεTGp , we obtain that σ > 0. This implies that (2) in Lemma 3.2 is satisfied.

Choose x0(t) ∈ Eα,p
0 with ‖x0‖ ≤ G and

∫

Ω
|x0(t)|p dt = 1.

And for ς > 0, we have

I(ςu0) =
1
p
‖ςx0‖p – λ

∫ T

0
F
(
t,ςx0(t)

)
dt

≤ 1
p
‖ςx0‖p – λ

∫

Ω

F
(
t,ςx0(t)

)
dt

≤ ςp

p
‖x0‖p –

2λ�ςp

ϑ – p

∫

Ω

∣
∣x0(t)

∣
∣p dt +

2λ�|Ω|
ϑ – p

Kp
3 + λ max

s∈[0,K3]
k1(s)

∫

Ω

k2(t) dt

≤
(

Gp

p
–

2λ�

ϑ – p

)

ςp +
2λ�|Ω|
ϑ – p

Kp
3 + λ max

s∈[0,K3]
k1(s)

∫

Ω

k2(t) dt.

Notice that � > (ϑ–p)Gp

2λp , we can get that I(ςx0) → –∞ as ς → ∞. Hence (3) of Lemma 3.2
holds.

Finally, note that I(0) = 0, while for critical point x, I(x) ≥ σ > 0. So x is a nontrivial weak
solution of BVP (1.2). The proof is completed. �

We then use Lemma 3.3 to show the multiplicity of solutions to BVP (1.2).

Theorem 3.3 Assume that (A0) and (A1) hold. Suppose also that there exist r > 0 and
ω ∈ Eα,p

0 such that 1
p‖ω‖p > r and

λl =
1
p
∫ T

0 |0Dα
t ω(t)|p dt

∫ T
0 F(t,ω(t)) dt

<
r

∫ T
0 maxt≤G p√pr F(t, x) dt

= λr .

Then, for λ ∈ (λl,λr), BVP (1.2) admits at least three weak solutions, which are critical
points of the functional I : Eα,p

0 →R.

Proof As far as we know, Eα,p
0 is a real reflexive Banach space. We consider the functionals

Φ : Eα,p
0 →R and Ψ : Eα,p

0 →R defined, respectively, by

Φ(x) =
1
p

∫ T

0

∣
∣0Dα

t x(t)
∣
∣p dt

and

Ψ (x) =
∫ T

0
F
(
t, x(t)

)
dt.
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According to the condition of (A0), we can know that Φ , Ψ are well defined and Gâteaux
differentiable functionals whose Gâteaux derivatives at the point x ∈ Eα,p

0 are the function-
als Φ ′(x), Ψ ′(x) ∈ (Eα,p

0 )∗, given by

Φ ′(x)y =
∫ T

0
φp

(
0Dα

t x(t)
)

0Dα
t y(t) dt

and

Ψ ′(x)y =
∫ T

0
f
(
t, x(t)

)
y(t) dt

for every y ∈ Eα,p
0 . For {xn}, x ∈ Eα,p

0 , xn → x in Eα,p
0 as n → ∞, by Lemma 2.2, we get that

{xn} converges uniformly to x in C([0, T],R). Hence

lim sup
n→∞

Ψ (xn) ≤
∫ T

0
lim sup

n→∞
F(t, xn) dt

=
∫ T

0
F(t, x) dt

= Ψ (x),

which implies that Ψ is sequentially weakly upper semicontinuous.
By (A0), one can get F(t, xn) → F(t, x) as n → ∞. By the Lebesgue control convergence

theorem, Ψ ′(xn) → Ψ ′(x) strongly, which implies that Ψ ′ : Eα,p
0 → Eα,p

0 is strongly contin-
uous on Eα,p

0 , that is, Ψ ′ is a compact operator.
From (A0), it is standard to see that Φ : Eα,p

0 →R is sequentially weakly lower semicon-
tinuous, coercive, and its derivative Φ ′ admits a continuous inverse on (Eα,p

0 )∗.
Moreover, it is clear that infx∈Eα,p

0
Φ(x) = Φ(0) = Ψ (0) = 0.

Put r > 0, for x ∈ Eα,p
0 with Φ(x) = 1

p‖x‖p ≤ r, then ‖x‖p
∞ ≤ Gp‖x‖p ≤ pGpr, we can get

{
x ∈ Eα,p

0 : Φ(x) ≤ r
} ⊆

{

x :
1

pGp ‖x‖p
∞ ≤ r

}

=
{

x : max
t∈[0,T]

∣
∣x(t)

∣
∣ ≤ G p√pr

}
.

Hence, using λ < λr , we have

sup
Φ(x)≤r

Ψ (x) = sup
Φ(x)≤r

∫ T

0
F
(
t, x(t)

)
dt

≤
∫ T

0
max

|x|≤G p√pr
F(t, x) dt

<
r
λ

.

On the other hand, by λ > λl , we get

Ψ (ω) =
∫ T

0
F
(
t,ω(t)

)
dt >

Φ(ω)
λ

.
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Thus

Ψ (ω)
Φ(ω)

>
1
λ

>
sup{Ψ (x) : Φ(x) ≤ r}

r

and (1) of Lemma 3.3 holds.
Then, let us verify that, for λ ∈ (λl,λr), Φ – λΨ is coercive. For x ∈ Eα,p

0 , we obtain

Φ(x) – λΨ (x) =
1
p

∫ T

0

∣
∣0Dα

t x(t)
∣
∣p dt – λ

∫ T

0
F
(
t, x(t)

)
dt

≥ 1
p
‖x‖p – λ

(∫ T

0
η1(t)|x|θ dt +

∫ T

0
L1 dt

)

≥ 1
p
‖x‖p – λGθ‖x‖θ

∫ T

0
η1(t) dt – λL1T .

Notice that 0 ≤ θ < p, so Φ(x) – λΨ (x) → +∞ as ‖x‖ → +∞, that is, Φ – λΨ is coercive.
Obviously, (2) in Lemma 3.3 holds.

Then, by Lemma 3.3, we claim that, for each λ ∈ (λl,λr), I : Eα,p
0 → R given by I = Φ –

λΨ has at least three distinct critical points in Eα,p
0 , that is, BVP (1.2) has at least three

solutions. �
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