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1 Introduction

In many real-life situations, system reliability plays a very important role. With an increas-
ing complexity of industrial systems, the reliability-related problems are quite challenging
due to the diversity of factors that can lead to failures in industrial systems. Throughout
the history of reliability theory, a large number of problems were solved by using reliability
models. These models can be developed by means of different methods. Among them we
can highlight the supplementary variable technique, introduced in 1955 by Cox [1], due
to the fact that this technique outperforms imbedded Markov chains in the steady-state
case. The supplementary variable technique was firstly applied in Gaver [2]; subsequently,
other authors, such as Linton [3], Goel et al. [4], Gupta and Sharma [5], Shi and Li [6],
Chung [7], Yuan [8], Dhillon and Cheng [9], Ram et al. [10], Zhang and Wang [11], Ke et
al. [12], followed this line of research.

The supplementary variable technique allows to transform a continuous-time non-
Markovian process into a Markovian one by including one or more supplementary vari-
ables. However, this technique leads to mathematical models described by partial differen-
tial equations with integral boundary conditions, and therefore, there are significant diffi-
culties to obtain exact solutions. Due to this fact, some papers related to reliability models
assume that time-dependent solutions converge to their steady-state solutions, but they
do not answer whether this assumption holds. Hence, we need a study of the existence of
© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other

third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by

L]
@ Sprlnger statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a

copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.


https://doi.org/10.1186/s13661-020-01366-9
http://crossmark.crossref.org/dialog/?doi=10.1186/s13661-020-01366-9&domain=pdf
mailto:ehmetkasim@163.com

Kasim and Gupur Boundary Value Problems (2020) 2020:71 Page 2 of 37

time-dependent solutions of reliability models, of time-dependent reliability indices, and
of their asymptotic behavior. In 2001, Gupur [13] firstly did dynamic analysis for reliability
models, which was established by the supplementary variable technique, by means of the
Co-semigroup theory. After that, he and his coauthors studied several reliability models.
For example, Gupur and Li [14] considered the system which consists of a reliable ma-
chine, an unreliable machine, and a storage buffer with infinite capacity and obtained the
existence of a unique positive time-dependent solution of the system. By using Greiner’s
idea, Gupur and Wang [15] studied spectra of the operator on the imaginary axis and
proved that the time-dependent solution of the system strongly converges to its steady-
state solution. In [16], Gupur described the point spectrum of the operator which corre-
sponds to the system. In 2003, Gupur [17] investigated the well-posedness of a repairable,
standby, human, and machine system. Gupur [18] studied asymptotic behavior of the sys-
tem and obtained that the time-dependent solution of the system converges strongly to
its steady-state solution. Aili and Gupur [19] did further analysis and concluded that the
time-dependent solution of the system exponentially converges to its steady-state solu-
tion. Ehmet and Gupur [20] examined the k-out-of-N:G redundant system with repair and
multiple critical and noncritical errors and proved that the corresponding Cy-semigroup
is quasi-compact and converges exponentially to a projection operator. Further, Ablet and
Gupur [21] gave the explicit expression of the above projection operator and deduced that
the time-dependent solution of the system exponentially converges to its steady-state solu-
tion when the repair rates are constant. In combination with the above-mentioned results,
these research ideas and methods were introduced in detail in Gupur’s book [22]. During
the past decade, inspired by the new research methods, many authors have done remark-
able contributions on the dynamic analysis of different reliability models, see [23—26] and
the references therein.

The maintenance of system equipment is a key factor for the smooth operation of an in-
dustrial system that usually requires the design of various methods and means in order to
improve the availability of the system. One of these methods is to assign priority according
to the nature of components of the system. Govil [27] considered the system composed of
two types (denoted hereafter as Type I and II) of components, in which Type I component
has the priority with preemptive repeat repair disciplines. The model proposed in that pa-
per was based on the supplementary variable technique and gave the Laplace transform
of the probability generating function which was defined by the time-dependent solution.
The effect of different repair priorities on the pointwise availability of the system was in-
vestigated for a special case with numerical examples. To the best of our knowledge, there
are no further results related to this work. In this paper, we do dynamic analysis for the
Govil [27] model.

First of all, we convert the corresponding system into an abstract Cauchy problem in
a Banach space and prove the well-posedness of the system by showing that the under-
lying operator generates contraction Cy-semigroup, i.e., the system has a unique posi-
tive time-dependent solution which satisfies the probability condition. Then, we inves-
tigate the asymptotic behavior of the time-dependent solution and obtain that the Cy-
semigroup generated by the underlying operator is a quasi-compact operator. We also
prove that 0 is an eigenvalue of the operator with algebraic multiplicity one, and therefore,
the Cy-semigroup converges exponentially to a projection operator. Hence, we deduce
that the time-dependent solution of the system converges strongly to its steady-state so-
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lution. Next, we use an idea taken from Gupur [19, 28] to show that the essential growth
bound of the Cy-semigroup is less than a negative number, thus we deduce that 0 is an
isolated eigenvalue of the operator and pole of order 1. In addition, by using the residue
theorem, we determine the expression of the projection operator and conclude that the
time-dependent solution of the system converges exponentially to its steady-state solu-
tion. Finally, we discuss the asymptotic behavior of the time-dependent reliability indices,
such as time-dependent availability, failure frequency, renewal frequency, and reliability
of the system, and illustrate, with numerical examples, the effect of changes in the system
parameters on those indices in a particular case.

2 Mathematical model of the system

In this section we firstly give a detailed description of the system and then present a model
for it based on the supplementary variables technique. Next, we convert the model into
an abstract Cauchy problem.

2.1 Assumptions and description of the model
The assumptions of our mathematical model are the following.

(1) Inthe system there are two types of components denoted as Type I and Type II.

(2) Component of Type I is always given preference over Type Il component.

(3) Non-failed component cannot fail when the system fails.

(4) The failure behavior of Type I component is unaffected by the failure of Type II
component, if any.

(5) On failure of Type II component, the system works in a degraded state, but does not
fail.

(6) The system can fail completely due to failure of Type I component.

(7) When the Type II component is failed, its repair is interrupted (preempted) when
Type I component fails (and the system thus fails). When the Type I component is
finally repaired, repair of the Type II component begins all over, as if the Type II
component has just failed (the previous repair time was for naught). This implies
that the repair of the Type II component—when rebegun—is considered as the repair
of the freshly failed component.

(8) All the failures follow the exponential distribution, A, A" denote the failure rates of
components of Type I and Type II, respectively.

(9) All the repairs follow the general distribution. n(x) represents the repair rate of a
component of Type I and satisfies n(x) > 0, fooo n(x) dx = 00. (x) represents the
repair rate of a component of Type II and satisfies ¢(x) > 0, fooo o(x) dx = 0.

(10) All the above random variables are independent. The switching device is perfect.

Let S(¢) be a random variable representing the state of the system at time t. Since the

distributions of the repair time are assumed as general distributions, S(¢) is not Markovian
in continuous time. However, after introducing supplementary variables Y (¢), the process
{S(¢), Y(¢)|t > 0} becomes Markovian, where Y () is the elapsed repair time of the failed
component. According to the previous assumptions, this system has the following possible
states:

S(t) = 0: All components are good, the system is operating.

S(t) =1: The component of Type Il is failed, the system is degraded.

S(t) = 2: The component of Type L is failed, the system is failed.
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Figure 1 State transition diagram of the system '
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|:] Good State O Degraded State O Failed State

S(t) = 3: The component of Type I is failed and the component of Type II is waiting
repair, the system is failed.

The transitions between states of the system are shown in Fig. 1.

Before presenting the model, we need the following definitions:

Py(2) is the probability that at time t the system is operating in normal efficiency.

P;(x, £) Ax is the probability that at time ¢ the system is in the degraded state due to the
failure of a component of Type II, and the elapsed repair time lies in the interval (x, x + Ax).

P (x, £) Ax is the probability that at time t the system is in the failed state due to the failure
of a component of Type I, and the elapsed repair time lies in the interval (x,x + Ax).

P3(x, £) Ax is the probability that at time t the system is still failed due to the failure of
a component of Type I; and the elapsed repair time lies in the interval (x,x + Ax) at the
instant when it preempted in the repair facility and Type II, which had been in service, is
waiting repair.

By the supplementary variable technique, the above system can be described by the fol-

lowing system of partial differential equations (see Govil [27]):

d. o .
Zz;),ft) - —(A + )J)Po(t) +f0 Py (x, t)p(x) dx +f0 Py(x, )(%) dx,
aP; 3(;c £) + 8P18 (;c t) _ —(A + @())P1(x, ), 01
APi(x,t) OPi(x,t

00 D i, -2

with the integral boundary conditions:

Pi(0,8) = M Py(t) + / OoPg(x, t)n(x) dx,
0
PZ(Or t) = )\PO(t)¢ (22)

P3(0,) = A /OooPl(x, t) dx,
and the initial conditions:

Py(0)=1,  Pix0)=0, i=1,2,3, (2.3)
where (x, £) € [0,00) x [0, 00).

2.2 Reset the model
In this subsection, we convert the above model into an abstract Cauchy problem on a suit-

able Banach space by introducing underlying operators and their domains. For simplicity,
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we introduce the following notation:

e* 0 0 0
A‘/ —X
y_ e 0 0 nx)
rxe™ 0 0 0
0 A0 0

We take a state space as follows:

X:[p

It is obvious that X is a Banach space. Now we define operators and their domain as fol-

PeR x L1[0,00) x L'[0,00) x L'[0, c0)
IPIl = [Pol + 371 1Pl 110,00 < O©- '

lows:
% € L'[0, 00), Pi(x) are absolutely
D) =Pecx ;
continuous and P(0) = [~ T'P(x) dx
Py (A+2) 0 0 0 Py
AlP@_] 0 —E-Grew 0 Py(x)
Py (x) 0 0 -4 @) 0 Pyw) |
P5(x) 0 0 0 —4 —nx)/) \Ps@)
P, IS Pix)p(x) dx + [)° Pa(x)n(x) dx
o) R I 0 , DE)=X
Pz(x) 0
Pg(x) 0

Then the above system of equations (2.1)—(2.3) can be written as the following abstract

Cauchy problem in the Banach space X'

% =(A+E)P(z), te€(0,00),
P(0) = (1,0,0,0)".

(2.4)

3 Well-posedness of system (2.4)

In this section, we first prove that A + E generates a positive contraction Cy-semigroup
T(t) on X, then we determine the dual space of X, and prove that A + E is a conservative
operator, which together with the Fattorini theorem [29, P. 155] allows us to deduce that
T(¢t) is isometric. Finally, from these results we present the well-posedness of system (2.4).

Theorem 3.1 If ¢(x) and n(x) satisfy ¢ = Sup,c(o ) 9(*) < 00 and 1 = sup,¢ (o~ 1(x) < 00,
then A + E generates a positive contraction Cy-semigroup T(t).

A detailed proof of Theorem 3.1 can be found in the Appendix. It is not difficult to verify
that X', the dual space of &, is as follows:

Q" = (Q5, Qi (%), Q5 (%), Q5(x)"

" = Q* * * * !
Q"M = sup{IQpl, sup; <;<3 1 Qf 1z [0,00)} < 00
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Clearly, X* is a Banach space. In X we define the subset

Y:{PeX

Then Theorem 3.1 ensures that T(¢)Y C Y. For P € D(A) N Y, we choose g*(x) =
IP|I(1,1,1,1)7, then ¢* € X* and

P(x) = (P(),Pl(x),Pz(x),Pg(x)),
Py >0,P;(x) >0,i=1,2,3,Vx € [0,00) |

(A +E)P,q") = [P {—(x +V)po+ fo ()1 (x) dx + /0 n@pa(x) dx}

®f d
+ P fo {— ’Zf) —Apl(x)—w(x)pl(x)}dx
2 dpi(x)
+ ||P||§f0 {—% —n(x)p,-(x)}dx
||P||{( N)po + f o (x)p () dx + /0 n(x)pz(x)dx}

+||P||{x’po+ n(@)pa () dx - /0 () dx /0 go(xm(x)dx}

+||P||{xp o) dx - /0 D3P () o - /0 n(x)p3(x)dx}

which implies that A + E is conservative with respect to the set
O®) = {q" € X"|(P,q") = 121 = [|¢°]|*}-

Since the initial value P(0) € D(A%) N Y, by using the Fattorini theorem [29, P. 155], we
deduce the following result.

Theorem 3.2 T(t) is isometric for the initial value of system (2.4), that is,
IT@®PO)| = |PO)|, V¢el0,00). (3.1)
From Theorem 3.1 and Theorem 3.2 we obtain the well-posedness of system (2.4).

Theorem 3.3 If p(x) and n(x) satisfy ¢ = SUp,(g,00) P(%) < 00 and 1 = SUP, (9.0 N(*x) < 00,
then system (2.4) has a unique positive time-dependent solution P(x, t) satisfying

[P =1, Vee0,00).
Proof Since the initial value P(0) € D(A2)NY, from Theorem 3.1 and [22, Theorem 1.81],
we know that system (1.4) has a unique positive time-dependent solution P(x,¢) which

can be expressed as

P(x,t) = T(t)P(0), t€[0,00). (3.2)
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From (3.1) and (3.2) we derive

[P, 0| = [T@PO)| = ||PO)| =1, Vte[0,00). (3.3)

Expression (3.3) reflects the physical background of P(x, £).

4 Asymptotic behavior of the time-dependent solution of system (2.4)

A trivial verification, based on the proof of Theorem 3.1 in the Appendix, shows that the
operator A also generates a positive contraction Cp-semigroup S(£). In the following, we
first prove that S(¢) is a quasi-compact operator and then, by using the compactness of
[E, we obtain that T(¢) is a quasi-compact operator. Next we prove that 0 is an eigenvalue
of A + E and (A + E)* with geometric multiplicity 1, thus by using [22, Theorem 1.90]
we deduce that T(£) converges exponentially to a projection operator Pr, and thereafter
determine its explicit expression. Lastly, combining these results, we obtain that the time-

dependent solution of system (2.4) converges exponentially to its steady-state solution.

Lemma 4.1 IfP(x,t) = (S(¢)0)(x) is a solution of the following system

dP
- AP(t), te[0,00), (4.1)

P(0) =% € D(A),
then

Do e—(A+A’)t
P1(0, £ — x)e~**Jo e()dr
Py(0,t —x)e” Jo () de
P3(0, ¢ —x)e Jo 04

Do e*()»+)n/)t

, whenx<t,

P(x, ) = (S(t)9) () =

B (x — t)e—kt—f;t o(t)dt

. , whenx>t,
Do (x — t)e™ Je1(Dde

93 — £)e et n(Dr

where P;(0,t — x) (i = 1,2,3) is given by boundary conditions (2.2).

Proof Since P(x,t) = (S(t)0)(x) is a solution of system (4.1), P(x, t) satisfies

dPo(t) ,
— = —(A + 1) Po(), ws)
aP; (x, P (x,

18(26 £) + 18(5: t) _ _()L + go(x))Pl (x, 1), 3)
0Pi(x,t) 0Pi(x,t

la(j )+ %(z )=—77(x)P;(x, ), j=2,3 (4.4)

P1(0) = M/ Py(t) + / Ps(x, £)n(x) dx, (4.5)
0

Page 7 of 37
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P5(0,£) = APo(2), (4.6)
o0
P3(0,t) = )»/ Py(x,t)dx, (4.7)
0
Py(0) = ¥, Pi(x,0) = Di(x), i=1,2,3. (4.8)

Take w =x — t and Q;(¢) = Pj(w + t,£),i = 1,2, 3, then (4.3)—(4.4) gives

d?;t(t) = (h+ 00+ D) Q) (4.9)
d .
3’:” - @+ DQW®), j=2.3. (4.10)

If w < O(i.e,x < £), then by integrating (4.9)—(4.10) from —w to t separately and using
Qi(~w) = P;(0,-w) = P;(0,t —x),i = 1, 2,3, we have

Pi(®,1) = Qu(t) = Q(-w)e L vlorods

X=w+T P,(0, £ — x)e—)»x—/g‘ﬂ(f)dr, (4.11)
Pi(x,t) = Q;(t) = Q/(—w)e_f‘t“’ wernde

=Py(0,t —x)e o 1T jo9 3, (4.12)
Combining (4.2) with (4.8) we obtain
Py(t) = e+, (4.13)

If w > 0(i.e., x > ), then integrating (4.9)—(4.10) from O to ¢ and using the relations Q;(0) =
Pi(w,0) = 9;(t —x),i = 1,2,3, and a similar argument to (4.11)—(4.12) we deduce

Pi(@,1) = Qu(t) = Qu (0)e - ovlown e

= w+t
0=w+T o (x _ t)e’“‘fw (o) do

= 9y (x — t)e M S pdT i
Py(x,£) = Qi(t) = Qj(0)e” Jo nwrrmdr

LET (- t)e S o

= 9(x - t)e 1@, jo03, (4.15)
(4.11)—(4.15) complete the proof. d

Now, we will prove that S(¢) is a quasi-compact operator on X. To this end, we define

the following two operators for P € X:

x € [0,¢),

(V(&)P)(x) =
S@OP)x), x € [t,00),

Page 8 of 37
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(S(P)(x), «x€[0,1),

(W()P)(x) =
0, x € [t,00).

Obviously,
(S(t)P) (%) = (V(t)P) (%) + (W(t)P) x), VPeAX.
From [22, Th. 1.35], it is not difficult to obtain the following result.

Lemma 4.2 A bounded subset F C X is relatively compact if and only if the following two
conditions hold simultaneously:

3 00
(1) 111_1)1});/0 Lfn(x+h) —fn(x)|dx:0, uniformly for f = (fo,f1,f2.f3) € F;

3 o0
) hlirr;oZ/h [fu@)| dx =0, uniformly for f = (fo.f, fo.f3) € F.
n=1

Theorem 4.1 Assume that ¢(x) and n(x) are Lipschitz continuous and that there exist
positive constants ¢, ¢ and n,7 such that

O<p=<g) <g<oo, 0<n=nk) <M<oo,
then W(t) is a compact operator on X .
Proof 1t is sufficient to prove condition (1) in Lemma 4.2. For bounded ¢ € X, we set

P(x,t) = (S()9)(x),x € [0,£), then P(x,¢) is a generalized solution of system (4.1). Hence,
according to Lemma 4.1 we have, for x € [0,¢), 1 € (0,t],x + h € [0, ),

3 t
Z/ |Pi(x + 1, t) — Py(x, 8)| dx
i=1 Y0

t
B f P10, —x— e eI 9T _ Dy (0,4 — 5 — eI v
0
+Py(0,£ — x — h)e ™ Jo #0T _py (0, — )¢ fo ¢ | dx
t
x+h "
+ / |P2(0,¢ —x - h)e Jo 104 _p,(0,¢ - x — h)e o 14
0
+Py(0,t —x — lfl)e_f(;C n(r)dr _ P,(0, ¢ — x)e—fg n(r)dr | dx
‘ x+h "
+ / |P3(O, t—x— h)e‘fo n(v)dr _ P3(0,t —x — h)e—fo n(r)dr
0
+P3(0,t —x — h)e_f(;c'l(f)dr —P5(0,¢t _x)e—fg n(t)dr | dx

t
rx+h X
< f |P1(0, f—x— h)| |e—k(x+h)—j p(r)dr _ e—kx—fo o(t)dt | dx
0

t
+/ |PL(0,¢ —x — ) — Py(0,£ — x) || S0 D7 | g
0
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+/0t|P2(O,t—x—h)||€_ 6 e _ g J§ | gy
+ /Ot|P2(0,t—x—h) -Pz(o,t_x)||e<fé‘n<r)dr|dx
+/:‘Pg(o,t—x—h)He‘,éHh’I(f)df_e—fg‘n(r)dr‘dx
+ f0t|P3(o,t—x—h) — P5(0, £ — x)|[e™f0 1T ., (.16

In the following we estimate each term in (4.16). By using the boundary conditions and

properties of the semigroup, we have
’Pl(O,t —x— h)‘ < ’k’Po(t —x— h)| +ﬁ/ ’Pg(s,t—x— h)|ds
0

< max{k’,ﬁ}{|Po(t—x—h)| + /w|P3(s,t—x—h)|ds}
0

= max{k/,ﬁ} ||P(-, t—x— h)”X
= max{\, 7}|S(t —x - )9 () ||X
<max{x,7}9, (4.17)

|Po(0,£ = x = B)| < A|9oe”*+¥ M| < 19, (4.18)
P30t —x— )| < )\/OOO‘Pl(s,t—x—h)]ds <a|PCt-x-B),
=1||SE—x-h)o ()|, <AlP . (4.19)
From (4.17)—(4.19) we can estimate first, third, and fifth term of (4.16) as follows:

x+h

t
f |P1 (0’ f—x— l’l)| !e—}\(x+h)—( 0 Me(t)dr _ e—Ax—fgw(r)dr | dox
0

t
< max{)\‘/’ﬁ} ||'l.9|| / ’e—)u(x+h)_f(~)x+h o(t)dr _ e—kx—fgw(r)dr ‘ dx
0
— 0, as || — 0, uniformly for ¥, (4.20)
t
/ |P/(0,t—x— h)| |e_f6c+h n(t)dr _ e—fécn(r)dr|dx
0
t x+h x
< )L||19||/ |e‘fo n(r)dr _e—fo n(r)dr|dx
0

— 0, as |h| — 0, uniformly for ©,j = 2,3. (4.21)

Similarly, using the boundary condition and noting that n(x) are Lipschitz continuous

(without loss of generality assume that the Lipschitz constant is equal to 1), we have

|P1(0,¢ —x — k) — Py (0, — x)|

< |MPo(t —x—h) = X' Po(t - x)|

Page 10 of 37
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+ /OOOPg(s,t—x—h)n(s)ds—‘/OooPg(s,t—x)n(s)ds

< )L/|29Oe—(k+)/)(t—x—h) _ ﬂoe—(}»+k’)(t—x)|

t—x—h 00
+ / P3(s,t—x—h)n(s)ds+/ P3(s,t —x —h)n(s)ds
0 t—x—h

—/t_ng(s,t—x)n(s)ds—/Oopg(s,t—x)n(s)ds
0 t

—X

t—x—h—s=z,t—x—s=z

k/’ﬂoe—(k+k’)(t—x—h) _ ﬁoe—(k#\’)(t—x)‘

t—x—h
+ / Pi(t—x—-h-zt—x—-hnlt-x-h-2)dz
0

o0
+ / Da(s—t+x+ h)n(s)e’fsftmh n@de g
t—x—h

t—x
—/ Py(t—x—z,t—x)n(t—x—-2)dz
0

o0
- / D3(s — t + x)(s)e” st 14T g
t

—X

< )\/|1}0| ’e—(k+k’)(t—x—h) _ e—(k+A’)(t—x)|

t—x—h
+ / Pi(t—x-h-zt—x-hnlt-x-h-2)dz
0

t—x
—/ Py(t—x—z,t—x)n(t—x—2z)dz
0

+

o0
/ B3(s — £+ 2 + B)y(s)e Sotraen 10147 g
t—x—h

o0
B / D3(s — t + x)(s)e” e 14T g
t

—X

s—t+x+h=z,s—t+x=2

)L/|190| |e—(A+A’)(t—x—h) _ e—(k+l’)(t—x)|

et t—x—h-z
+ f n(t —x —h —z)P3(0,2)e” 1o n@dr g,
0

t—x
- f T)(t - X — Z)P3 (O,Z)e* f(;f n(r)dr dz
0

z+t—x—h
. T g

/00 P3(2)n(z+t—x—h)e
0

—x
n

- / P3(2)n(z + ¢ - x)e‘f;f)r (r)dt dz
0

< )L/|190| |e—(k+)»/)(t—x—h) _ e—(k+k’)(t—x)|

t—x

—x—h-z

+/ n(t—x—h-2)|Ps(0,2)[e o M gz
t—x—h
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o t—x—2z
+/ |P3(0;Z)H7](t—x—h—z)—n(t_x_z)|e— 0 '7(r)drdz
0

t—x
—x—h-z —x—2
+/ n(t—x—z)}Pg(O,z)He’-fOt n0dr _ o= f3 ”(T)df|dz
0

[o¢]
z+t—x—h

+ / P3@)|Inz+t—x—-h)—n(z+t-x) o 2T (o de dz

0

o0

Z+t—x—h Z+ x

—/ n(z +t—x) ﬁg(z)||e I e )z = )dr|dz

0

< N[ | e—()u—)/)(t—x—h) _ e—(A+A’)(t—x)|

—x—h-z
"’)L”ﬁ”{ﬁlhl sup e o n(t)dr

z€[0,00)

=x t-x—h-z
+ IhI/ e fo 04T gy
0

_ = ft—x—h—z (v)d fz—x—z (v)d
+7 |e’(0 et _emJo - MT r|dz
0

#1911l sup ek

z€[0,00)

+7 sup |e )

Z+t—x—h r)dt fz+t—x n(t)dr | }
z€[0,00)

— 0, as|h| — 0, uniformly for ¥.
P20, —x — ) = Py(0, ¢ — )|

< A| Do e-(mx/)(t-x-h) — % e—(x+x/)(t—x)|

— 0, as|h| — 0, uniformly for 9.

|P3(0,£ —x— h) — P3(0, £ — )|

=X

o0 [o¢]
/ Pl(s,t—x—h)ds—/ Pi(s,t —x)ds
0 0

<A

—x—h 00
/ Pl(s,t—x—h)ds+f Pi(s,t —x—h)ds
0 t—x—h

t—x [ee]
—/ Pl(s,t—x)ds—f Pi(s,t —x)ds
0 t

—X

t—x—h—s=z,t—x—s=z

t—x—h
Af Pi(t—-x-h—-z,t—x-h)dz
0

oo
+/ D1(s — £ +x + B)e M 00T g
t—x—h

t—x
—/ Pi(t—-x—z,t—x)dz
0

o0
- / 01 (s — £ + x)e D[ e dr g
t

—X

(4.22)

(4.23)
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t—x—h
EA/ Pi(t—-x—h—-zt—-x-h)dz
0

t—x
—f Pi(t—-x—-2zt—x)dz
0

o0
+A / N(s—t+x+ h)e_’\(t”‘_h)_fss—ﬂwh e(D)dr g
t

—x—h

o0
- / D1 (s — £ + x)e DL e@dr g
t

—X

s—t+x+h=z,s—t+x=2

t—x—h e
oy / Py(0,2)e M=l w0 g
0

t—.
- / " P10, 2)e I vt g
0

+ A

o z+t—x—h
/ ™ (Z)e—k(t—x—h)—fz o(t)dt dz
0

9]
_/ ﬁl(z)e—k(t—x)— ZZH_x(p(t)dr dz
0

e t-x—h-z
= )\f |P1(O, z)‘e_)‘(t_x‘h)‘fo p()dr g,
t—x—h

t—x
+ )»/ ‘Pl (0’ Z)‘ ’e—)»(t—x—h)—féfxfhfz(p(r)dt _ e—)\(t—x)—fot*xfzw(r)dr ’ dz
0
o0 z+t—-x—h Z+t—x
" )L/ |01 (Z)| |e—k(t—x—h)—fz p(r)dr _ e—k(t—x)—fz o(t)dt | dz
0

—x—h-z
fkmaX{/\Cﬁ}llﬁll{lhl sup e Ml v dr

z€[0,00)
o MR- [EFIE (AT at-x)- [T () de
+ |e 0 ¢ —e o ¢ |dz
0

A9 sup | o Mt=x=h)- S @y dr o M=) [ r](r)dr|

z€[0,00)

— 0, as |h| — 0, uniformly for ¥.

(4.24)

From (4.22)—(4.24) we deduce the estimation of the second, fourth, and sixth term of

(4.16).

t "X
/ |P1(0,t—x— h) —Pl(O,t—x)| |e—xx—jo w(r)dz|dx
0
— 0, as|h| — 0, uniformly for ¥,
t
/ |P](O, t—x— h) - Pj((),t _x)| |e—f0 n(r)dr | dx
0

— 0, as|h| — 0, uniformly for ¥,j = 2,3.

(4.25)

(4.26)

Page 13 of 37
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Combining (4.20)—(4.21) and (4.25)—(4.26) with (4.16), we conclude, for x € [0,t),h €
0,t],x + h €[0,1),

3 t
Z/ |P,-(x +h,t) — Pi(x, t)’ dx as |h| — 0, uniformly for . (4.27)
i=1 0

If 1 € [-t,0),x + h € [0, £), then, by using a similar argument, we can get the same result as
(4.27), and the proof is finished. O

Theorem 4.2 If the conditions of Theorem 4.1 hold, then V(t) satisfies
[V@D ] < emneARentg )y, Ve e X,

Proof For any ¢ € &, from the definition of V() we estimate

[V@D O] 5 = [P

00

* / |191(x - t)ef)“tffx—t‘p(f)df | dx

t

00 i o ]
+ / |192(x - t)e_ fx—t n(r)dr | dx + / il?‘g(x — t)e_/x—t n(r)dr | dx
' t
]
< [9ole” )" 4 e’(“@t/ |01 (x — )| dx
t

+e_ﬁt/ |z92(x—t)|dx+e_ﬁt/ |l93(x_t)|dx
t t

= |190|e’(’\+'\ 4 ef()‘%)t"l?l ll21[0,00)
+ e D21 p000) + € 193111170,

< e—min{M—k’,)ﬁg,ﬂ}t”ﬁ”X' 0
From Theorems 4.1 and 4.2 we get
|S@®) - W) = |[V(@©)| <& mn+4ent 0, ¢ oo,

which together with the definition of quasi-compact operator (see Gupur [22, Defini-
tion 1.85]) allows us to obtain the following result.

Theorem 4.3 Under the same condition of Theorem 4.1, S(¢) is a quasi-compact operator
on X.

Since E is a compact operator on X, by Theorem 4.3 and Proposition 2.9 in Nagel [30,
P. 215], we have the following result.

Corollary 4.1 Under the same condition of Theorem 4.1, T(¢) is a quasi-compact operator
onX.

Consider now the spectral properties of the operator A + E.

Lemma 4.3 0 is an eigenvalue of A + E with geometric multiplicity one.
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Proof Consider the equation (A + E)P =0, i.e.,

(A +2")Pg =/0 @ (x)P;(x) dx+/0 n(x)Py(x) dx,

dl:;f’ =~ (h+ 9 @)P1(x),
dp) .
L~ n@h@, =12,

PO =KPo+ [ Pa
P5(0) = AP,
P3(0) = A/OOOPl(x) dx.

By solving (4.29)-(4.30), we have

Py(x) = ale—)\x—fg(p(r)dr’

Pi(x) = aje_féc n@de 9.3,

(4.28)

(4.29)

(4.30)

(4.31)
(4.32)

(4.33)

(4.34)

(4.35)

Combining (4.34) and (4.35) with (4.28) and noting that fooo n(x)e‘fé‘ N4t gy = 1, we de-

duce
o0
(A+1)Py = / @(x)e ™ Jo O gy 1 3P,
0
=
)\'/
fooc (p(x)e—kx—fo" p()dt g,

(05} P().

From (4.32)—(4.33) and (4.36) we have
Oy = )\Po,

00
o3 = Pg(O) = )\,al / e—kx—fo o(t)dt dox
0

A.)\.,fooo e_)‘x‘fg(ﬂ(f)dr dax

T oo e Eemar . hor
J57 pa)elo v@dr gy

Combining (4.34)—(4.35) with (4.36)—(4.38) yields

121l = 1Pol + 1Pl z1[0,00) + P2l 21 [0,00) + 1Pl 2170,00)

o0
<Pl +fo] [ e gy
0

o0 % d o0 % d
+ |a2|/ e Jondr gy o |a3|/ e Jondr gy
0 0

A /‘000 e—kx—fg o(t)dt dx

00
X Pyl + A e_fg n(t)dr dx P
oo o gy / -

<|Po| +

(4.36)

(4.37)

(4.38)
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A f()oo e—)nx—fgw(r)dr dx fo‘X’ e—fg n(t)dr dx
+

/‘000 (p(x)e—kx—f(fgo(r)dr dx

This shows that 0 is an eigenvalue of A + E. Moreover, it is easy to see from (4.36)—(4.38)
that the eigenvectors corresponding to the eigenvalue zero span a one-dimensional linear

space, that is to say, the geometric multiplicity of 0 is one. d
Lemma 4.4 (A + E)* is given by

(A+Ey'Q = (G+F)Q", Q" eD((A+E)*)=D(@),

where
—(A+ 1) 0 0 0 0
c-| 0 & Gre@ 0 0 Q@ |
0 0 & —nx) 0 Qi (x)
0 0 0 Z-nw/ \Q5)
0 A 1 0 Q;
FQ* - px) 0 0 A]]Q(0) ,
nx) 0 0 0f][Q;0)
0 nx 0 0/ \Qi0)

Q) exists and Q;(00) = ¢ (i=1,2, 3)}’

D(G) = {Q* e x| =

and ¢ in D(G) is a constant which is independent of i.
Lemma 4.5 0 is an eigenvalue of (A + E)* with geometric multiplicity one.

Proof We consider the equation (A + E)*Q* = 0, which is equivalent to

—(A+ 1) Q + Qi (0) + 2Q5(0) =0, (4.39)
d%;(x) - (A + 0(x))Q () + 0(x)Qj + AQ5(0) = 0, (4.40)
in(x) -n(x)Q;3(x) + n(x)Qq = 0, (4.41)
T8 @@ + ;0 =0, (@42)
Qi (00) = Q3(c0) = Q5(00) = €. (4.43)

By solving (4.40)—(4.42) we deduce

Qi) = prelo e

_ pliptend / [0(€)Q; + AQ(0)]e o Gredr ge. (4.44)
0
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Q3(x) = paeld 10"
_elo n(r)drf ,7(§)Q(’;e—fo‘é ndr ge (4.45)
0
Q3(x) = el 74"

el [T ye)gioe 10 dg. (2.46)
0

Through multiplying the two sides of (4.44) by e~ JoGre(mdr and multiplying e~ Jonoydr by
both sides of (4.45)—(4.46), we derive

b= [ Lo+ Q50 0o (4.47)

Ba :/ n(é)Qée‘fOS nedr e (4.48)
0

B = /O 1(E)Q;(0)e 5 104 g (449)

Substituting (4.47)—(4.49) into (4.44)—(4.46) separately, we have
x *° £
Qi(x) = JoGrp(r)dr / [‘P(*‘?)QS + AQ;(O)]e’fO (A+o(r)) dr dk, (4.50)
X

Q;(x) = Qéefg n(t)dr / n(%-)e—fg n(r)dr dk

_ Qrelinnar (_e—f(f ") _ g, (4.51)

Q}(x) = Qi (0)elo 1 / N n(E)e o 14 dg = Q¥(0). (4.52)

X

On the other hand, inserting (4.50) into (4.39) we obtain

-(A+2)Q5 +2'Q1(0) + AQ5 =0

—

Qi(0) = Qp.
Thus

Q3(0) = Q1(0) = Q;. (4.53)
Substituting (4.52) into (4.50) we get

X 00 >E
Qi(x) = QeldGrotdr / [1+ (E)]e o e g
= Qielttetmnar (_e—J;f ot de | _ g (4.54)

Altogether we estimate

I = supfl 3],

Qi HLoc[o,oo)’ Q ||L°°[0,oo)’ H Q ||L°°[O,oo)} = |QZ§| < 00,



Kasim and Gupur Boundary Value Problems (2020) 2020:71 Page 18 of 37

which shows that 0 is an eigenvalue of (A + E)*. Moreover, from (4.53), (4.55), and (4.56)
it is not difficult to see that the geometric multiplicity of 0 is one. g

Combining Lemmas 4.3 and 4.5 with Theorem 3.3, we know that the algebraic multiplic-
ity of 0 is one and the spectral bound of A + E is zero, that is, s(A + E) = 0. Consequently,
by combining Theorem 3.3, Lemma 4.3, Lemma 4.5, and Corollary 4.1 with [22, Theo-

rem 1.90], we conclude the following result.

Theorem 4.4 If ¢(x) and n(x) are Lipschitz continuous and satisfy
O<p<px)<g<oo, n=nk) <n<oo,

then there exist a positive projection Pr of rank one and suitable constants § > 0,M > 0
such that

||T(t) - ]P’Ir” < Me™¥,

where Pr = ﬁ [7@l — A -E)'dz and T is a circle with center 0 and sufficiently small
radius.

Remark 4.1 From Theorem 3.3, Corollary 4.1, and Lemma 4.3, we know that {y € o (A +
E)|Rey =0} = {0}. In other words, all points on the imaginary axis except zero belong to
the resolvent set of A + E. Therefore we can conclude that, under the same condition of The-
orem 4.4, the time-dependent solution of system (2.4) strongly converges to its steady-state
solution, i.e., lim;_, o P(x,£) = (Q*,P(0))P(x), where Q*(x) and P(x) are the eigenvectors
corresponding to 0 in Lemma 4.5 and 4.3.

In the following, by investigating the growth bound of T(¢) and determining the explicit
expression of the project operator Pr, we provide the main results of this section.

Lemma 4.6 For y € p(A + E), we have

) Yo
wi-A+E | =], vzex,

Z Y2

z3 Y3

where

[e'e) X
Vo = |:)\/ e—(y+k)x—f§w(r)dr/ Zl(t)e(lﬁrk)f—for e@)dé g 1o
0 0

o 00
X/ n(x)e*)/xff(;cn(f)dt dx/ (p(x)e—(yﬁ\)x—fé‘(p(r)dr dx
0 0

o0 X
+ / n(x)e"’"‘fO n(z)de / Zg(r)e“_fo n&VdE g d
0 0

o0
» / o(a)e -l DT gy
0
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o0 X
+ </ go(x)e_("“\)x_fg "’(r)dr/ 71 (7)e? T o €)dE g7 gy
0 0

(o] x
+ / n(x)e 7 lo e / 25(x)e? N0 MEVE g gy 4 zo)
0

0

X {1 - A/ e~ r+h)x=J5 o) de dx/ n(x)e‘V"‘fg n(e)de dx”
0 0
o0 X
/|:<y +A+A - A/ n(x)e r*Jo n@dr dx)
0

00 00
X {1 _ )L/ e*()/+)n)x7f(;c(ﬂ(f)dt dx/ n(x)e—yx—fg n(t)dr dx}
0 0

_ )\/fmw(x)e_(y+x)x—fgw(r)dr dx]’
0

)\'/ (y+A)x fg(p(r)dr

1-— )\f —(y+\)x o(t)dt dxfooo n(x)e—l/x—f(;c n(r)dr dxyo

yi(x) =

)\f ()= [ p(v) dr fx Zl(r)e(y+k)‘rjfg p(&)dE dt dx
1 o [ v o ol V4T e [ m(x)e > Jo 0t gy

o0
> / n(x)efrxfféc N(D)dr gy o=y +1)x=J5 o(r) dr
0

[ n)e v o node [« 5, (p)ert=lo 164 gt dy
1— )»f ~(y+M)x—[§ o(t)dr dxf n(x)e ya—[y n(r)dt dx

—(y+A)x fO(p
x X
1 o3 ey de / 21 (1) Pe=IS Ve g
0

x
vo(x) = )Le—Vx—fé{ ﬂ(r)dryo + e—)/x—féC 'l(r)dr/ Zz(t)eyr—fo’ n(E)ds dr,
0

VK fo ~(y+M)x— [ p(x)dr dxe—yx—fgn
1- )\f —(y+M)x—[§ o(t)dT dxf n(x)e r* J§ n(r)de dx

y3(x) =

A f ~(y+0 2= [§ o(z f" Zl(r)e(“”r‘fo v&)dE o dx
1 A f —(y+A)x—f0 o(t)dr dx f()oo n(x)e—yx—fé‘ n(r)dt dx

% e—yx—fg n(r)dr

A S nx)e =l nedr (% (v)er Tl 1€)4E gt dx
1= fy° e b ~Jo ¢(v)dz dx [ n(x)e” ya=fo n@)dr gy

o0
x/ eI J5 o0 T gemva=fy
0

X
4 eV fo n()dr / Zs(r)eyrffor nE)ds go
0

Proof For any given z € X, we consider the equation (yI — A — E)y = 7, that is,

o]

(v + 2+ X)yo = / o)y () dx + / D)) dx + 2o, (4.55)
0 0
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dy1(x)
dlx = —()/ + A+ (p(x))yl(x) +71(x),
dyj(x) (
ﬁ = —()/ + n(x))yj(x) + Z,-(x), j=2,3,

31(0) = y0 + / n(@)ys() dx,
0
Y2(0) = )LYO,

v3(0) = A / y1(x) dx.
0
By solving (4.56)—(4.57), we have

y1(x) = dle—(yﬁu)x—f(f o(t)dt

X
+e—(y+k)x—f§<p(r)dr/ 2 (2)eV+Pe=Jg v g
0

(%) = djeﬂ/xffé‘ n(r)dr

X
4 e v fo n@dr / Z},(,)ew—ﬁ)’ n&)dé g j=2,3.
0

Considering (4.61)—(4.62) together with (4.58)—(4.60), we get

o0
d; = )Jyo + d3/ n(x)e"’"‘fo n@dr g,
0

o x
+/ ;f](x)e_yx—f(;c’l(f)dr dxf Zg(f)e}/r—for n(&)de dr dx,
0 0

d; = Ayo,

© X
d; = d; / e~ ha=Jg e(o)do ..
0

[o¢] X
+A/ =)=y o f 21 (1) T =Jo v@)do gz gy
0 0

Substituting (4.65) into (4.63), we deduce

o0 00
=y wady [ O gy [T e i gy
0

0

[o¢] X
+A/ e~ -fg e ’)d’/ z1(1)er T ~Jo ¢OE g gy
0 0

oo
x/ n(x)e ™ Jo 10T g1y
0

o0 X
+ / n(x)e"’x_fg n(@dr dx/ Zg(‘[)@yr_for "€V gr dx
0 0

=
A,/

d; =

1- )\f —(y+A)x (o) do dx f()oo n(x)e—yx—fg n(t)

a4y Yo

(4.56)

(4.57)

(4.58)
(4.59)

(4.60)

(4.61)

(4.62)

(4.63)

(4.64)

(4.65)
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)\f ~(y+\)x—[§ o(o) do f z1(1)e (y+M\)1-[g @lo)do dt dx
1 )\j‘ ~(y+A\)x—[§ o(o) do dxf n(x)e ya—[o n(t)dc dx

o0
x/ n(x)e_y"_/(f”(t)d’ dx
0

Jo n( (x)e~r*~Jo nw)dr Iy 23(7)e’ ™o 10)do g gy

. (4.66)
1— )Mf ~(y+1\)x—[§ o(o) do dxf n(x)e 7 fEn(myde dx
Substituting (4.66) into (4.65), we derive
)Lk/f ~(y+M)a—[§ o(t)dr dx
d; =
1- )\/‘ —(y+A)x 7)dt dxf 7’](96)6 ya—fo n(t)dc dx
)»f e rHRa=fg e@dr (% 5, (7)elr+h)T ~Jo $€)VE g7
1 )hf —(y+A)x fo o(t)dt dxf n(x)e 7 J§ n(r)de dx
)”fo n(x)e~r*Jo node fx 75(1)e’ ™ Jo 1©)E g gy
1- )\/‘ —(y+M)x—[§ o(t)dr dxf 77 e —yx— 3 n(r)de dx
x / e x=Jfy edr gy (4.67)
0

Combining (4.64), (4.66), and (4.61)—(4.62) with (4.55) yields

(y + A+ X)yo
- / o)y (x) dx + / D)2 () dx + 2
0 0

Az /‘000 —(y+M)x—[§ o(t)dr dx
1 )\j’ —(y+A)x fo go(r Ydt dxf 77 6 yx—fo n(r)dr dx

Yo

)\'f —(y+A x—fo o(t fx ('()3 V‘*)L)T—f(;: p(&)dé dt dx
1 )\‘f e —(y+A)x fo‘ﬂ 7)dt dxf n x)e yx— fo T)dt dx

Xf n(x)e*)/x*fg'l(r)d‘r dx/ w(x)e—(y+k)x—f6‘(p(f)dt dx
0 0

fo n(x)e~r*Jo n fox 73(1)e’™Jo 1OV g gy
+
1— )‘fo e r+a=[g p(D)dr g, fo"o n(x)e v Jo ndr gy

oo
x/ (p(x)e—(yﬂ\)x—fé‘w(r)dr dx
0

o0 X
" / ox)e (y+1)x—[§ o(t / Zl(r)e(yﬂ)r—fo PE)dE g0 ao
0

0

o0
+ Ayof n(x)e o 10T gy
0
o0 "X * T
+ / n(x)e‘yx_fo n(z)d / Zz(t)ey’_fo nEVdE g dx + 7
0 0

=

|:<y +A+A - A/ n(x)er*Jo nrd dx)
0
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0 o )
X {1 _)\.‘/ e~ (r+hx - ¢(x)de dx/ n(x)e—yx—fo n(r)dt dx}
0 0
o X
_)»// q)(x)e*()ﬂ)u)x—fo o(r)dt dx}Yo
0
© . x
= / e—(VJr)L)x—j(;C‘P(I)dI/ 71(1)e (y+\)T-Jg w(&)dE At dx
0 0
o ) 0o )
X] n(x)e*)/xffo n(r)dr dx/ gD(x)e—()/+k)x—fo p(r)dr dx
0 0
o) ) ; )
+/ r’(x)e—)/x—fo W(T)dr/ Z3(‘E)€yr_f0 n(o)do dt dx
0 0
)
x/ @(x)e v =Jo edr g,
0

o0 X
+ (/ o(x)e” (v+h)e=[5 9(0) T/ z1(7)eV T ~Jo €V o gy
0 0

00 x .
+ / r;(x)e‘yx—fo n(o)do / Zg(t)e”f’/O 1 g g + Zo)
0

0

00 0 y
X {1_1\/ e~ (r+ix -5 e(@)dr dx/ n(x)e—yx—fo n(t)de dx}
0 0

-
X
|: ~(y+nx—[§ o r)dr/ Zl(t)e””‘ —JT o dsdtdx
0
x 0o
X/ n(x)e” va=Jfg n(v)dz dx/ w(x)e_(y“\ -J§ e(r)dr dx
0 0
[e¢] x x .
+/ n(x)eﬂ/x—fo n(r)dr/ Zg(r)e”*fo ”(S)”’Edrdx
0 0
o0
X/ Q(x)eVHfo edr gy
0
[09) x x
+ </ @(x)e—(yﬂx)x—fo W(I)dr/ Zl(‘f)e (y+1)T fO (0)do dr du
0 0

(o] x
+ / n(x)e 7 lo nde / 72(v)e’ o 1€V g iy 4 Zo)
0

0

X {1 - Af e r+x=Jg e de a’x/ n(x)e‘V"‘fg n(e)de dx”
0 0
/|:()/ +A+A - A/ n(x)e >l nr)de dx)
0

) o0 )
X {1 —)»/ e ~(y +M)a—[§ o(r)dT dx/ n(x)e—yx—fo n(t)dr dx}
0 0

Y f p(x)e" v +Ir=Jg p(r)d dx]. (4.68)
0

Substituting (4.64), (4.66), and (4.67) into (4.61)—(4.62) separately, we obtain the remaining

results of this lemma. 0
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Theorem 4.5 If ¢(x) and n(x) are Lipschitz continuous and satisfy
0<p<gx)<g<oo, n=<nlx)<n<oo,

then the time-dependent solution of system (2.4) converges exponentially to its steady-state

solution, i.e.,
P, 6) - P()| <Me™, t>o0.
Proof Theorem 4.1 and Theorem 4.2 imply

|S() - W) = | V()| < & minthss' et
—

In[[S@) - W@ = In | V()] <-min{r+ 1,1 +¢,n}t
—

In ||S(2) — W(¢
lim M < —min{k+)ﬁ,k+g,g}t.

t—00 t

From this together with Proposition 2.10 in Engel and Nagel [31, P. 258] we know that
Wess(S(t)) (i-e., wess(A)), the essential growth bound of S(¢) (i.e., A), satisfies

Wess (S(£)) < —min{A + 1/, 1 + ¢, n}.
Since E: X — R* is a compact operator, by Proposition 2.12 in [31, P. 258] we deduce
Wess (A + ) = wess (T(£)) = wess (S(£)) < —min{r + 1,4 + ¢, n}.

Using this result together with Corollary 2.11 in Engel and Nagel [31, P. 258] and Theo-
rem 4.1, we obtain that O is a pole of (yI—A—E)~! of order 1. Therefore, from Theorem 4.5,
Lemma 4.6, and the residue theorem, we have

Zo Zo lim, 0 y¥y0
lim,_,
Pr | ™| < tim y (- A —E) z1(x) | _ im, 0yy1(¥)
zo | v—O0 Z5(x) lim, 0 yy2(x)
z3 z3(x) lim, 0 yy3(x)

Now, we are able to determine the projection operator by calculating the above limit. Tak-
ing into account that

X=00

00
/ n(x)e—fg n(t)dr dx = _e—kxe—fg n(t)dr -1,
0

x=0

00 . oo )
/ (p(x)e—)ux—fo p(t)dr dx =1-— )“/ e—}uxe—fo o(r)dt dx
0 0

and using L'Hospital’s rule, we obtain

1in})y/[<y +A+A = A/ n(x)e"’x‘f(f n(r)dt dx)
y— 0
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0 00 )
% {1 _)L/ e (y+2)x—[g ¢(o)do dx/ n(x)e—yx—fo n(r)dr dx}
0 0

o0
_ )J/ q)(x)e—(yw\)x—fé‘ (t)dr dxi|
0

= hm 1/[(1 + )\1/‘ xn(x)e—)/x—féx’](f)d‘[ dx)
y—0 0

¢} 00 "
X {1 — )L/ e~ (r+ix -Jo e(v)dr dx/ n(x)e—yx—jo n(r)dr dx}
0 0

o0
+ (y +A+A = A/ n(x)e r<Jon@dr dx)
0
oo o0
X {A/ xe‘()ﬂk)x—fé‘(ﬂ(ﬂdr dx/ n(x)e—yx—f(;cr](r)dr dx
0 0
oo X o0 .
+ )L/ e~ a5 p(r)de dx/ xn(x)e_yx_]g n(t)dr dx}
0 0
o0
+ )L// xp(x)e 0V Hfo e dr dxi|
0

=1/[(1+k/ wn(x)elo "t drdx){l—)»/ e-*x-fé‘wf)dfdx}
0 0

+ )L’{/ x(A+ (p(x))e_“_fg AT gy
0

oo " o0 x
+ A/ e lovdr dx/ xn(x)e‘fo n(x)de dx}]
0 0

1
= 1+ Afom xr](x)e_fg n(r)de dx) fooo()‘/ " (p(x))e—Kx—jggo(r)dr dx
. 1
=

By the Fubini theorem we can get
o0 X x T
/ (,o(x)e_k’“f0 p(r)de / Zl(t)e”*fo ¢&)dE o dx
0 0
o0 T o0 X
_ / 2 (2)e N e / e df e I3 o4 g
0 T
o0 o0
:/ 71(7)e AT—fg @ é)d§|: e Me - [§ o) délx ) )»/ e Me - J§ e(v)dx dx:| dt
0 T
[o¢] [e¢] - o0
:/ Zl(x)dx—kf Zl(r)e’\fifo w(&)dE/ e Mo Jo (@t dxdr,
0 0 T

/ n(x)e’fg n(r)dr/ zj(r)efor nE)dE go dy =/ zj(x)dx, j=2,3.
0 0

0

Using this we derive
lim yyo
y—0

o0 X
= HA/ e‘““f(;c“’(t)dt/‘ Zl(r)e“_for vE)9E g dx
0 0
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+/ 17(x)e‘f6C n(@dr dx/ Zg(‘f)e_for n€)dE go dx}
0 0

)
x / (p(x)e—)\x—fggo(r)dr dx
0

+ {/ go(x)e‘kx_ﬁ“’(r)d’/ Zl(r)e“_ﬂ)r ¢&)dE g dx

0 0

oo X
+ / n(x)e‘fO n(@dr / Zz(‘f)e_fo N4 gr d + Zo}
0 0

e X
x {1 Y f e fovdr dxH/H
0

[o/¢] X
= |:A/ el e(0dr / zl(t)e“_for ¢&)dE gt dx
0 0

o0
x/ <p(x)e’“’f5€‘p(’)dt dx
0

+/ Zg(x)dx/ (p(x)e‘”—fé‘w(f)df dx + {f 71 (x) dx
0 0 0

N /-oo e_kx_f(;‘ p(r)dr /‘x Zl(t)eu_fo’ (&) ds dt dx}
0 0
el X
X f w(x)e’“’fo e@dr 1y
0

+ {/ Zy(x) dx + Zo} / p(x)e = Jo () dr a,’x:| /H
0 0

= HZO+/O Zl(x)dx+/0 Zz(x)dx+/0 Zg(x)dx}
OO —Ax—fg<p(r)drd :|/H
X/o p(x)e x

T ewer e ay
i H = Lo,

lim yy1(x)
y—0

)"/e—lx—fg o(t)dt

= . lim
1-2 [° e Jo e@dr gy yoo Y0

)\/e—kx—fg o(t)dt

= T éPl(x)’

lim yya(x)
y—0
= )\e*Vx*fg n(r)dt }%i_f)%)/yo

re vE-Jo n(@)dr e p(x)e =I5 DT gy
) H

= PZ(x)’

lim yy3(x)
y—0

(4.69)

(4.70)

4.71)
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)\)\‘/e—fg n(r)dr fooo e—Ax—fgw(r)dT dx

= X % lim
1- fo"o e =g p(mdr g, fooo n(x)eJo 10dT gy y—0 vyo

A e Jo n(@dr f‘x’ el v(@dr gy
B ) = Pa(x). (4.72)
H

Combining (4.69)—(4.72) with Theorem 4.5, we obtain
PrP(0) = P(x). (4.73)
From Theorem 3.3, (4.73), and Theorem 4.5, we conclude

IP(,2) - P()| = | T(®)P(0) - PrP(0) | < | T(2) - Pr||P(0)
<Me™||P(0)] = Me™, t=>0,

which implies that the time-dependent solution of system (2.4) converges exponentially

to its steady-state solution. O

5 Asymptotic behavior of some reliability indices
In this section, we briefly discuss the asymptotic behavior of some reliability indices of
system (2.4). Their proofis similar to [22, P. 256], and we omit the details. From Remark 4.1

we have
o0
lim Py(t) = Py, lim / |Pi(x, t)— Pi(x)| dx=0, i=1,2,3, (5.1)
t—00 t—00 0

which implies

(e ¢]

lim [ [n@)Py(x £) = n(®)Py(x)| dx = 0, (5.2)
0
tlinolo/() |<p(x)Pj(x, t) — (p(x)Pj(x)| dx=0, j=2,3. (5.3)

From its definition, the time-dependent availability of the system is given by
A(t) = Py(t) + / Pi(x,t) dx,
0
which together with (4.34), (4.36), and (5.1) yields

A= tlim A(t) = Py +/ Pi(x)dx
— 00 0

M [ el 0 gy
=11 ‘ ,
{ fooo W(x)e_”\x‘fo p(0)dr g, } 0

For the time-dependent failure frequency of the system, we have

o0
my = lim my(t) = APy + A/ Pi(x)dx = LA.
t—>00 0
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The time-dependent renewal of the system means that the state of the system returns to
the initial states and is given by

m, = tlim m,(t) = tlim {/00 ©(x)P; (x,t) dx + /00 n(x) Py (x, t) dx}
—00 —oo | Jo 0

:/ Pl(x)(p(x)dx+/ Py (x)n(x) dx
0 0

A fooo (p(x)e—kx—fgw(r)dr dx
[ ewe e gy

Py + )»/ n(x)e’fg @z g2p,
0
= (A +1)P,.

If we let the failure states 2,3 be the absorbing states, then we obtain the following new

system:
db, _ o
# = —(A + A’)Po(t) + /0 Py (x, )o(x) dx,
8:Iw)l (x: t) BT)l (x, t) (s ﬁ ,
ar | ox ~(A + o)) P1(xt),

P1(0,2) = APy (2).

Hence, the time-dependent reliability of the system, by a similar argument, converges to
a constant number, i.e.,

lim R(¢) = lim {ﬁo(t) + /ooﬁl(t,x) dx}
t—00 0

t—00

~ OON
=P, +/ Pi(x)dx =R.
0

Remark 5.1 If we add the normalizing condition Py(t) + Zfl:l fooo Pi(t,x)dx = 1, then in
the steady-state case we obtain the results in Govil [27]. In other words, our results imply
the results in Govil [27].

6 Numerical results

In this section we execute numerical experiments in order to study how the time-
dependent reliability indices, such as system availability A(t), the failure frequency of the
system m1(t), and the renewal frequency of the system m,(t), are affected by the change
of each system parameter. There are four system parameters A, ’, n(x), and ¢(x). First of
all, for convenience of the analysis, we assume that the repair time of the system is gamma
distributed with constant repair rates n(x) = 1, ¢(x) = 1" and fix the system parameters at
values A = 0.0004, A" = 0.0006, . = 0.004, 1’ = 0.006.

In Fig. 2 we depict the variation of the system availability (Fig. 2(a)), failure frequency
of the system (Fig. 2(b)), renewal frequency of the system (Fig. 2(c)) with respect to time
t for different values of B (B is another parameter of the gamma distribution). It shows
that time-dependent availability and failure frequency of the system decrease fast as time
increases in each case, and after a long run they become constant at some value. The
renewal frequency of the system m1,(¢) increases rapidly at an early stage as time increases
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Figure 2 Time-dependent reliability indices for gamma distributed repair time. (a) Availability for different f;
(b) Failure frequency for different 8; (c) Renewal frequency for different 8

and after a long run it becomes constant at some value. In addition, we also notice that
system availability, failure frequency, and renewal frequency of the system decrease with
increasing values of 8.

In the following, we assume j = 1 (i.e., the repair time of the system is exponentially dis-
tributed) and continue to pay attention to the effect on system availability, system failure
frequency, and system renewal frequency of different values of the failure rates . Figure 3
reveals that all the indices converge to certain value as time grows and that, as A increases,
the time-dependent system availability decreases, and failure frequency and renewal fre-
quency increase.

Figure 4 shows the behavior of the system availability and the system renewal frequency
for different repair rates, revealing that these indices increase as u increases. Moreover,
both indices approach a constant value as time goes to infinity.

The renewal frequency with different values of A" and ’ is represented in Fig. 5(a) and
(b). From this figure, we can conclude that the renewal frequency of the system increases
as A" and ' increase. As shown, the renewal frequency tends to a constant value as time
goes to infinity. Notice that the failure rate and repair rate of a component of Type II have
no effect on the system availability.

Figure 6 shows the effect of A on the system reliability and mean time to failure (MTTF).
We note that system reliability (Fig. 6(a)) and MTTF (Fig. 6(b)) decrease as A increases.

Obviously, reliability vanishes as time goes to infinity.
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Figure 3 Time-dependent reliability indices with varying A for exponentially distributed repair time. (a)
Availability for different A; (b) Failure frequency for different X; (c) Renewal frequency for different A
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Figure 4 Effect of parameter p on time-dependent reliability indices. (a) Availability for different u; (b)
Renewal frequency for different

In addition, all these numerical results show that the time-dependent reliability indices

of the system converge to a constant value as time goes to infinity confirming the results

obtained in Sect. 5.
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Figure 5 Effect of parameters A’ and u’ on time-dependent renewal frequency. (a) Renewal frequency for
different A’; (b) Renewal frequency for different u’
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Figure 6 System reliability and MTTF for exponentially distributed repair time. (a) Reliability for different A; (b)

Effect of A on MTTF

7 Conclusions
This paper investigates the two-unit complex system, in which one of the components

has priority with preemptive repeat repair disciplines. The model proposed is based on
the supplementary variable technique and is described by partial differential equations
with integral boundary conditions. We prove that the system is well-posed and that the
time-dependent solution of the model converges exponentially to its steady-state solu-
tion. These results imply that the hypothesis mentioned in the Introduction holds for this
model. Further, we show that the asymptotic behavior of some time-dependent reliability
indices converges to constant numbers. In addition, some numerical examples are given
to investigate the effects of changes in the parameters on system reliability indices.
The head-of-line repair discipline and preemptive resume repair discipline of the two-
unit complex system need to be considered in further studies. The effect of different re-

pair priorities on the time-dependent reliability characteristics could also be an interesting

topic for future studies.
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Appendix

Proof of Theorem 3.1 We split the proof into four steps. First of all, we estimate ||(yI —
A)7Y|, next we verify that D(A) is dense in X'. Thirdly, we prove that [E is a bounded linear
operator. Lastly, we show that A + E is a dispersive operator, and therefore we obtain the
desired result.

For any given @ € X, we consider the equation (y/ — A)P = @, that is,

y+ A+ )Py =Dy, (A.1)

( )

dl;lix) + (y +A+ (p(x))Pl(x) = dq(x), (A.2)

dp;

% +(y + n())Py(x) = &;(x), j=2,3 (A.3)

Pi(0) =Py + /0 P3(x)n(x) dx, (A.4)

PZ(O) = APy, (AS)

P;3(0) = A/OOPl(x) dx. (A.6)
0

By solving (A.1)—(A.4), we have

= 1 (] (A7)
LIRS YR '
Py(x) = ale—(wk)x—fécrp(t)dt + e—(;/Jrk)x—jSC p(r)dt /x (Dl(.’:)e(yﬁu)vrfor ¢(o)do dr, (A.8)
0
x
Pi(x) = a,'e_”_fo ndr  gmya=fgn(v)de / di'j(r)ey”fﬂ ne)do gr i =2,3. (A.9)
0

Considering (A.4)—(A.6) together with (A.7)—(A.9), we get

a; =P1(0) =Py + / P3(x)n(x) dx
0

)\’/
R —
y+A+ A
o0 X X * T
+/ |:6136yxf0 n()dr | ,-va-f rz(r)dr/ ¢3(T)e}’f+f0 n(o)do dt]n(x) dx
0 0
A o x
= m@) + a3/ n(x)e 7 o 10T gy
0
[ee] x X .
+ / n(x)e 7 o n(0)dT gy / @3(1)e? THo 19V g (A.10)
0 0
ay) = P2(0) = )\.Po, (All)

as =P3(0) = A/OOPl(x)dx
0

o0
- ay / [T e dr g
0
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o0 X
+ / e~ +ha=fg e()de f @, (1)er M Tlo 9©@)do g (A.12)
0 0

From (A.10)—(A.12) we deduce

) 0 -1 W
ar=|1- A/ e~ R[5 p(r)dr dx/ n(x)e‘yx_f(;c n@d gy ——
0 0 y+A+A

00 x
+ )L/ e—(y+k)x—f(f<p(t)dr/ ¢1(_L,)e(y+)h)1:+f0r ¢(o)do drt dx
0 0

o0 X
> / n(x)e"’"’fo n(@)de g,
0

[o¢] X
+ / n(x)e”’"’fO n(x)de dx/ @3(7)e’ "o n@)do gp dx]. (A.13)
0 0

Using the Fubini theorem, we can estimate (assume y > 0)

)\-ﬁ -1 h%
lai| < {1- |Do|
y(y +A) y+A+A

)\-ﬁ o0 X
+ —/ e_(””)x/ @1(1)e ™M dr dx
Y Jo 0

[o.¢] X
+ﬁ/ e””"dx/ P3(1)e’ " dt dxi|
0 0

Aam O\t A
={1- | Dol
y(y + 1) y+A+A

)\’— o0 o0
+ 20 / By (z)eV )T / e gy dr
Y 0 T
o0

+ﬁ/ <D3(r)e}”/ e"”‘dxdr]
0 T

)\'ﬁ -1 h%
={1- | Dol
y(y +1) y+Ar+

AN © = oo
s oy()dr + ﬁ/ <D3(r)dt]
vy +4) Jo v Jo
y(y +2) vy AT
= N — g A )\'/l(pol"'ﬁ”d)l”Ll[o’oo)
Yy +A) =AYy + A+ vy +A) =A%
7y + 1)
m”¢3”L1[0,oo)’ (Al4~)
A
laal = MPol = o 1Pl (A.15)
A A o0
las| < y+)\|ﬂl|+m/‘ |@1(‘L’)|df
0
Ay A Ay
= Dol + ———||@
_y(y+k)—xﬁy+k+k/| o y(y+k)—kﬁ” 110,00
AT
o e g Dl (A.16)
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where we have used the following inequalities:

e loe@dr 1 e loomdr <1 x>0,

Now, combining (A.14)—(A.16) with (A.7)—(A.9) and using the Fubini theorem, we calcu-
late

o0
||P1||L1[0,oo):/ |P1(%)| dx
0

o0 o0 X
< f |ay e AT gy / e_(’“"\)x/ ’¢l(r)‘e("”)f dt dx
0 0 0

o0 o0
= la:] + / | @1 (1) [+ / e dxde
Y+ A 0 T
! a1 ! lPql (A.17)
= al+ —— , .
Y+ A ! Y+ A 1izt[0,00)
o 1 1 .
121l £110,00) = |Pj(x)| dx < ;|ﬂ2| + ;”(DZHLI[O,OO)’ j=2,3. (A.18)
0

(A.14)—(A.18) give

[e¢]
1P = Pol + > 1Pl 11 10,00)
i=1
1 1 + A A
< |®o] + Yy +d)
y+A+A Y+A|ly(y+A) =AYy + A+ A
7 iy + )

|| e
S e+ S |

|Pol

1
+ @ +————|Do| + —||D
y+)»” 1ll21[0,00) y(y+k+)\/)| ol yll 21111 [0,00)
- Pl + —— P
V[V(V+?»)—Kﬁy+k+x/| ol y(y.”\)_)\ﬁ” 1l210,00)

Gl P : D5l
f—_ +—
)/(]/ N )\() — )\’ﬁ 31121]0,00) y 311L1[0,00)

- 1 . y 2
Tly+rA+ Ny HA) =AYy +A+ N

A A A
+ + — |Do|
yy +r+d) yy+A)-Any+Ai+ )
Al 1 1
+ — +
y(y+A)=Any+A y+A

1
@ =
y(y +A)—m}” tlitoc + 2 P2lt000)

[ 7 al l]nab ||
+ — + — + — ||| D3l
Yy +0) =27 y(y(y +A0) -y Floe)

_ v+ )y +a+2) -y +2)
yly(y + 1) —Aql(y + 1 + 1)

| Dol
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v [Pl 1||¢’ l
+ + —
)/(J/ N )‘.) _ )\-ﬁ 11121 [0,00) Y 2112170,00)

y+A+7

P A S/ NP
S+ 7) —Aﬁ” 31l 2170,00)

1
<—|®]. (A.19)
y—-n
(A.19) shows that (yI — A)™! exists for ¥ > 7, and

GI-A':X > D@),  |oI-A <.

y=n
In the following, we should prove that D(A) is dense in X'. The proof is similar to Gupur
[22, P.76], and we omit the details. From the above results and Hille—Yosida theorem (see
Nagel [30]), we conclude that A generates a Co-semigroup. We now verify that E is a
bounded linear operator. From the definition of E we have, for P € &,

Rt = [ lpwpiw]ds+ [ lneopco) ds
§¢/OOO}P1(2)‘dz+ﬁ/(;oo|P2(x)|dx
< max{g, 7}(|P]|. (A.20)
Expression (A.20) implies that [E is a bounded operator and it is not difficult to show that
it is also linear. Hence, from the perturbation theory of the Cj-semigroup [22, Theo-

rem 1.80], we get that A + E generates a Cp-semigroup T'(¢). Finally, we prove that A + E
is a dispersive operator. For P € D(A), we choose &, where

S(?C):<[PO]+ [Pl(x)]+ [Pz(x)]+ [Pg(x)]+)
Py ' Pilx) | Pyx) T Ps(x)

and

P ‘fP 0’ Pi ‘fPL' O;
TN e (] = {70 P00 s
0 ifPy <0, 0 if P;(x) <0,

The boundary condition on P € D(A) imply

[PLO)]" <V [Po]" + /0 n@[Ps@)]" da, (A21)

[P(0)]" <A[Po]", (A.22)

[P;(0)]" <2 / [Pi(x)]" dx. (A.23)
0

If we define V = {x € [0, 00)|y(x) > 0} and W = {x € [0, 00)|y(x) < 0} then, replacing y(x) in
V, W by P;(x), P, (x), P3(x) respectively, we have

/ * dP;(x) [Pi(x)]* dx
o dx Pilx)
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_ [ dPi(x) [Pi()]* di s dP;(x) [Pi(x)]*
Jv dx P w dx  Pix)

=f dPi(x) [Pi(x)]* dxzf dP;(x) dx
v v

dx  Pi(x) dx
d[Pi(x)]" v
= /v T;Cdx:—[P,«(O)] , i=1,2,3. (A.24)

By using the boundary condition on P € D(A) and (A.21)—(A.23) for such &, we derive

(A +E)P,¢)

= {—(}L+)J)Po+/o (p(x)Pl(x)dy+/o 1(x)Py(x) dx} [1;;)]+

0

+ /0 ” -di}f” (s o)y (x)} [z;l<2)]+ .
e [ w2 s
[ ﬂ(x)Pz(x)} 2O n

= (k4 )R] + {/Ooo PPy (x) dx + /Ooo PPy () dx} %

+ [P1 (0)]+ - OO(A + (%)) [Pl(x)]+ dx
0

+[P0)] - /0 nW[P2()]" dx + [P5(0)]" - /O n[Ps)]" dx

[Pool*
Py

s—(x+x/)[Po]++{ / p@[Pr(0)]" dx + / n(x)[Pz(x)]*dx}
0 0
+ N [Pl + / n(x)[Ps(x)]" dx - / (h+ o)) [P1(x)]" dax
0 0

+A[P0]+—/O n(x)[Pz(x)]+dx+A/0 [Pl(x)]*dx-/ n(x)[Ps(x)]" dx

0

(B ) [T otaf) s+ (1) [T asfro]

0,0
<0. (A.25)
Expression (A.25) implies that A + IE is a dispersive operator.
From the above fourth steps and Fillips theorem (see Nagel [30]), we obtain that A + E

generates a positive contraction Cy-semigroup T(z). O

Proof of Lemma 4.4 By using integration by parts and the boundary conditions on P €
D(A), we have, for Q* € D(G*),

(A +B)P,Q)

= |:—(A +1)Py +/0 @(x)Py(x) dx+/(; 1(x) Py () dx]Qg
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I dP
[T v ] aioan
+ /0 __dl;zix) —n(x)Pg(x)i|Q§(x) dx

I dp
[ —n(x)Pg(x):|Q§(x) dx

=Py [—(/\ + /\’)Qz;]
. / L)) Q5] d + f Py@)[n()Q3] dy
0 0

+Qj(0) [NP0+ / Ps(x)n(x) dx]
0

e} d *
+/0 Pl(x)|: lex(x) - ()» + (p(x))Q’f(x)] dx

sz (%)

- 19Q50) | s
4Q; ()

+Q5(0)AP, + / Pz(x)|:

Q0 [ " Pi@dx+ /0 Py )[ n(x)QE(x)} dx
=Po[-(A + x’)Qg + X' Q5(0) + 1Q3(0)]

e[| S - s )01+ o105+ 150)

e M d
. fo Px) QZ( ) e )Qz(x)+n(x)Qo]dx

R /0 Py _d?;f‘) Q) + n(x)QT(O)] dx
- (P, (A + E)*Q).

From this calculation and the definition of the adjoint operator, we obtain the desired
result. 0
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