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Abstract
In this paper, the existence of a response solution with the Liouvillean frequency
vector to the quasi-periodically forced complex Ginzburg–Landau equation, whose
linearized system is elliptic–hyperbolic, is obtained. The proof is based on
constructing a modified KAM theorem for an infinite-dimensional dissipative system
with Liouvillean forcing frequency.
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1 Introduction and main result
The complex Ginzburg–Landau equation

ut = ru + (b + iν)∂xxu + m∂xu – (1 + iμ)|u|2u (1.1)

is extensively studied in the physics community. Here, the real parameter m depicts the
group velocity, and the real parameters ν and μ characterize linear and nonlinear disper-
sion, and b is real as is the control parameter r. It results from nonlinear stability theory
and describes the evolution of complex amplitude coefficient u = u(t, x) of a neutral plane
wave. See [1–4] and the references therein for more details and physical and mathematical
background.

The existence and stability of periodic or quasi-periodic solutions to (1.1) have been
extensively investigated in many papers, for example [2, 5–8]. When x ∈ T

d := (R/2πZ)d ,
there are some papers concerning the existence of KAM-type tori for (1.1). More con-
cretely, Chung and Yuan [9] and Cong, Liu and Yuan [10] proved the existence of quasi-
periodic solutions which are not traveling waves for d = 1 and d ≥ 2 respectively in the
case of the group velocity m = 0 by KAM-type theorems. See also [11–13].

In the present paper, we will prove the existence of response solution (i.e., quasi-periodic
solution with the same frequency as the forcing) for the quasi-periodically forced complex
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Ginzburg–Landau equation

ut = ru + (b + iν)∂xxu + m∂xu – (1 + iμ)h(ωt, x)|u|2u +εf (ωt, x), x ∈ T = R/2πZ, (1.2)

where r > 0, b > 0, μ ∈ R, (ν, m) ∈O, and O ⊆R
2 is a compact set with positive Lebesgue

measure. We assume the basic frequency vector ω = (1,α) (α ∈ R \ Q), and ε is a small
positive number.

As for (1.2), Cheng and Si [14] constructed the quasi-periodic solutions with m = 0 and
the frequency ω = (ω1,ω2, . . . ,ωn), which is Diophantine, i.e., for γ > 0, τ > n – 1,

∣
∣〈k,ω〉∣∣≥ γ |k|–τ , ∀k = (k1, . . . , kn) ∈ Z

n \ {0},

where 〈k,ω〉 =
∑n

i=1 kiωi and |k| =
∑n

i=1 |ki|. Generally, the results for Diophantine fre-
quency can be generalized to the case of Brjuno frequency, i.e.,

∑

m≥0

1
2m max

0<|k|≤2m,k∈Zn
ln

1
|〈k,ω〉| < ∞.

However, it will involve more technique and work to obtain the quasi-periodic solution
with Liouvillean frequency (a weaker assumption than Brjuno frequency), since the tori
can be destroyed if the frequency is too near resonant.

In this paper, we assume the forcing frequency is ω = (1,α), with α ∈ (0, 1) being any
irrational numbers. Since we do not impose arithmetic condition (i.e., Diophantine or Br-
juno condition) on ω, it can also be Liouvillean. There are some works addressing this fre-
quency. More concretely, Avila, Fayad and Krikorian [15] developed a new KAM scheme
for discrete SL(2,R) co-cycles with one Liouvillean frequency by using the technique of
CD bridge. Further, Hou and You [16] studied the reducibility problems for continuous
two-dimensional quasi-periodic linear systems. For the nonlinear system, Wang, You and
Zhou [17] and Lou and Geng [18] investigated the existence of response solutions for the
quasi-periodically forced nonlinear harmonic oscillators in Hamiltonian and reversible
case respectively.

For the infinite-dimensional case, Xu, You and Zhou [19] studied the nonlinear Schrö-
dinger equation with the forcing frequency ω = (ω̄1, ω̄2), where ω̄1 = (1,α) and ω̄2 ∈ R

d

satisfy

⎧

⎨

⎩

β(α) := lim supn>0
ln ln qn+1

ln qn
< ∞,

|〈k, ω̄1〉| + |〈l, ω̄2〉| ≥ γ

(|k|+|l|)τ , ∀k ∈ Z
2, l ∈ Z

d \ {0},

and pn
qn

is the continued fraction approximating α (see Sect. 2.2). Recently, Wang, Cheng
and Si [20] studied the quasi-periodically forced ill-posed Boussinesq equation with Liou-
villean frequency ω = (1,α) and obtained the existence of a response solution.

Note that the above work is all about the systems that possess a Hamiltonian or re-
versible structure. The question is that whether the systems without such structures still
possess the response solution or not. Motivated by this question, in this paper, we con-
sider quasi-periodically forced complex Ginzburg–Landau equation (1.2), which is a dis-
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sipative system with the forcing frequency ω = (1,α). The linearized equation of (1.2) is
given by

ut = ru + (b + iν)∂xxu + m∂xu, x ∈ T,

and the linear operator r + (b + iν)∂xx + m∂x possesses the eigenvalues

λn = r – bn2 + i
(

mn – νn2), n ∈ Z.

For any given j ∈ N \ {0}, we can choose suitable r, b ∈ R such that Reλ±j = r – bj2 = 0
and Reλl = r – bl2 
= 0 for |l| 
= j. In this case, there are eigenvalues which are pure imag-
inary. Moreover, we assume the basic frequency ω is Liouvillean. Thus, the method in
[9, 10, 14] cannot be directly applied since in these papers the frequency is Diophan-
tine and the linear system is pure hyperbolic i.e., the real parts of all frequencies are
not zero. In a Hamiltonian case like [17], one constructed the symplectic transforma-
tion by using the time-1-map of an auxiliary Hamiltonian flow to preserve the Hamil-
tonian structure in each KAM step. However, we deal with the infinite-dimensional dissi-
pative system in this paper. So we directly construct the nearly identical coordinate trans-
formation, which needs a more complicated computation. For the hyperbolic part, we
only eliminate the terms depending only on the angle variables since Reλn = Reλ–n for
|n| 
= j.

For Eq. (1.2), we always assume:
(H) f (ωt, x) and h(ωt, x) are quasi-periodic in t with frequency vector ω. Moreover, the

functions f (θ , x) and h(θ , x) are analytic in (θ , x) ∈ T
2 ×T with the following Fourier

expansions:

f (θ , x) =
∑

k∈Z
fk(θ )eikx,

h(θ , x) = h0 +
∑

0 
=ς∈Z
hς (θ )eiςx, 0 
= h0 ∈R.

Now we state the main result of this paper.

Theorem 1.1 Suppose that the assumption (H) holds, then, for any given j ∈N\{0}, choos-
ing r, b such that Reλ±j = r – bj2 = 0, and set 0 < γ � 1, there exist a constant ε∗ > 0 (de-
pending on r, b, γ , j, f , h, O) and a Cantor subset Oγ ⊆O with meas(O \Oγ ) = O(γ ) such
that for (ν, m) ∈ Oγ , the complex Ginzburg–Landau equation (1.2) possesses a response
solution provided 0 < ε < ε∗.

Our paper is organized as follows. In Sect. 2, we give some definitions and notations on
vector field and continued fraction expansion. In Sect. 3, a modified infinite-dimensional
KAM theorem for our dissipative equation with Liouvillean frequency is presented. In
Sects. 4 and 5, we prove the KAM theorem, Theorem 3.1. In Sect. 6, we apply our KAM
theorem 3.1 to the quasi-periodically forced complex Ginzburg–Landau equation (1.2)
and prove Theorem 1.1.
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2 Preliminary
2.1 Functional setting
Let T2

c = C
2/(2πZ2) be the two-dimensional complex torus. For δ > 0, we denote the com-

plex neighborhood of 2-torus T2 by

D(δ) =
{

θ ∈ T
2
c : | Im θ | < δ

}

,

where | · | is the supremum norm of the complex vector.
Suppose O ⊆R

2 is a compact set. For a C1
W (C1 smooth in the sense of Whitney) func-

tion f : O →C, we define its norm as

|f |O := sup
ξ∈O

(
∣
∣f (ξ )
∣
∣ +
∣
∣
∣
∣

∂f (ξ )
∂ξ

∣
∣
∣
∣

)

= sup
ξ∈O

(
∣
∣f (ξ )
∣
∣ +
∣
∣
∣
∣

∂f (ξ )
∂ξ1

∣
∣
∣
∣

+
∣
∣
∣
∣

∂f (ξ )
∂ξ2

∣
∣
∣
∣

)

.

Given a function f : D(δ) ×O → C, which is analytic in θ ∈ D(δ) and C1
W in ξ ∈ O with

Fourier expansion f (θ ; ξ ) =
∑

k∈Z2 f̂ (k; ξ )ei〈k,θ〉, we define its norm as

‖f ‖δ,O :=
∑

k∈Z2

∣
∣̂f (k)
∣
∣
Oe|k|δ ,

where 〈k, θ〉 = k1θ1 + k2θ2 and |k| = |k1| + |k2|.
For K > 0 and an analytic function f on D(δ) ×O, we define the truncation operator TK

and projection operator RK as

TK f (θ ; ξ ) :=
∑

|k|<K

f̂ (k; ξ )ei〈k,θ〉, RK f (θ ; ξ ) :=
∑

|k|≥K

f̂ (k; ξ )ei〈k,θ〉.

The average [f (θ ; ξ )]θ of f (θ ; ξ ) over T2 is defined as

[

f (θ ; ξ )
]

θ
:=

1
(2π )2

∫

T2
f (θ ; ξ ) dθ = f̂ (0; ξ ).

We denote the index sets by J1 = {ji ∈ Z \ {0} : 1 ≤ i ≤ d} (d ∈ N \ {0}) and J2 = Z \
J1. Then we define the space �a,p := {q = (. . . , qj, . . .)n∈J2 : qj ∈ C} of complex sequences
equipped with the following norm:

‖q‖a,p :=
∑

n∈J2

|qj|ea|j|〈j〉p < ∞,

where 〈j〉 := max{1, |j|} and a ≥ 0, p > 1
2 are constants such that the Banach algebra prop-

erty holds in this space.

Lemma 2.1 ([21]) For w, z ∈ �a,p, the convolution w ∗ z is defined by (w ∗ z)j =
∑

k∈Z wj–kzk .
For a ≥ 0, p > 1

2 , then ‖w ∗ z‖a,p ≤ c‖w‖a,p‖z‖a,p with a constant c depending only on p.
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For δ, s > 0, we introduce a complex neighborhood of T2 × {0} × {0} by

D(δ, s) =
{

(θ ,ρ, z) : | Im θ | < δ, |ρ| < s,‖z‖a,p < s
}

⊆C
2 ×C

d × �a,p =: Pa,p.

Denote a = (a1, . . . , ad), α = (. . . ,αj, . . .)j∈J2 , with finitely many non-zero components
aj,αj ∈ N. Given a function P : D(δ, s) ×O → C, which is analytic in (θ ,ρ, z) ∈ D(δ, s) and
C1

W in ξ ∈O and has Taylor–Fourier series expansion

P(θ ,ρ, z; ξ ) =
∑

a,α
Pa,α(θ ; ξ )ρazα =

∑

k∈Z2,a,α

P̂a,α(k; ξ )ei〈k,θ〉ρazα ,

where ρa =
∏d

j=1 ρ
aj
j and zα =

∏

j∈J2
zαj

j , we define the norm of P as

‖P‖D(δ,s)×O := sup
|ρ|<s,‖z‖a,p<s

∑

a,α

∥
∥Pa,α(θ ; ξ )

∥
∥

δ,O
∣
∣ρa∣∣
∣
∣zα
∣
∣

= sup
|ρ|<s,‖z‖a,p<s

∑

k,a,α

∣
∣̂Pa,α(k)

∣
∣
Oe|k|δ∣∣ρa∣∣

∣
∣zα
∣
∣.

For a finite-dimensional vector-valued function P : D(δ, s) × O → C
m, (m ∈ N \ {0}), i.e.,

P = (P1, . . . , Pm), we define its norm as

‖P‖D(δ,s)×O :=
m
∑

j=1

‖Pj‖D(δ,s)×O .

For an infinite-dimensional vector-valued function P : D(δ, s) × O → �a,p, i.e., P =
(. . . , Pj, . . .)j∈J2 , we define its weighted norm as

‖P‖a,p,D(δ,s)×O :=
∑

j∈J2

‖Pj‖D(δ,s)×Oea|j|〈j〉p.

Consider the dynamical system

ẇ = X(w), w = (θ ,ρ, z) ∈Pa,p,

where we have the vector field

X(w) =
(

X(θ )(w), X(ρ)(w), X(z)(w)
) ∈Pa,p.

For the vector field X : D(δ, s) × O → Pa,p, which is analytic in (θ ,ρ, z) ∈ D(δ, s) and de-
pends C1

W smoothly on parameter ξ ∈O, the weighted norm of X is defined as

‖X‖s,D(δ,s)×O :=
∥
∥X(θ )∥∥

D(δ,s)×O +
1
s
∥
∥X(ρ)∥∥

D(δ,s)×O +
1
s
∥
∥X(z)∥∥

a,p,D(δ,s)×O .



Wang and Liu Boundary Value Problems         (2020) 2020:70 Page 6 of 35

2.2 Continued fraction expansion
Let us recall some arithmetic properties of irrational number. Given an irrational number
α ∈ (0, 1). We define

a0 = 0, α0 = α,

and inductively for k ≥ 1,

ak =
[

α–1
k–1
]

, αk = α–1
k–1 – ak ,

where [α] := max{m ∈ Z : m ≤ α}.
Let p0 = 0, p1 = 1, q0 = 1, q1 = a1, and inductively

pk = akpk–1 + pk–2,

qk = akqk–1 + qk–2.

Then {qn} is the sequence of denominators of the best rational approximations for α. It
satisfies

‖kα‖T ≥ ‖qn–1α‖T, ∀1 ≤ k < qn,

and

1
qn + qn+1

< ‖qnα‖T ≤ 1
qn+1

,

where ‖x‖T := infp∈Z |x – p|.
In the sequence {qn}, we will fix a special subsequence {qnk }. For simplicity, we denote

the subsequences {qnk } and {qnk +1} by {Qk} and {Qk}, respectively. Next, we introduce the
concept of CD bridge which was first given in [15].

Definition 1 (CD bridge, [15]) Let 0 < A ≤ B ≤ C . We say that the pair of denominators
(qm, qn) forms a CD(A,B,C) bridge if

• qi+1 ≤ qA
i , ∀i = m, . . . , n – 1;

• qC
m ≥ qn ≥ qB

m.

Lemma 2.2 (Lemma 3.2 in [15]) For any A ≥ 1, there exists a subsequence {Qk} such
that Q0 = 1 and for each k ≥ 0, Qk+1 ≤ QA4

k , either Qk ≥ QA
k , or the pairs (Qk–1, Qk) and

(Qk , Qk+1) are both CD(A,A,A3) bridge.

3 A modified KAM theorem
To prove Theorem 1.1, we give an abstract modified KAM theorem, which can be applied
to the quasi-periodically forced complex Ginzburg–Landau equation (1.2). The proof of
the KAM theorem will be finished by an iterative procedure in Sect. 5. Each step of the
iterative procedure is set up by a finite Newton iteration.
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Consider the following system:

⎧

⎪⎪⎨

⎪⎪⎩

θ̇ = ω,

ρ̇ = iΩ(ξ )ρ + p(θ ,ρ, z; ξ ),

ż = Λ(ξ )z + g(θ ,ρ, z; ξ ),

(3.1)

on D(δ, s), where ξ ∈ O and O ⊆ R
2 is a compact set with positive Lebesgue measure.

Here, Ω(ξ ) = diag(Ω1(ξ ), . . . ,Ωd(ξ )) with Ωj(ξ ) ∈R, and Λ(ξ ) = diag(. . . ,λj(ξ ), . . .)j∈J2 . We
also identify Ω(ξ ) and Λ(ξ ) as vectors

Ω(ξ ) =
(

Ω1(ξ ), . . . ,Ωd(ξ )
) ∈ R

d, Λ(ξ ) =
(

. . . ,λj(ξ ), . . .
)

j∈J2
.

When p = g ≡ 0, the system (3.1) admits an invariant torus T2 ×{0}× {0} for each param-
eter ξ ∈O.

Our goal is to show that if the perturbations p, g are small enough, the system (3.1) still
admits invariant torus with Liouvillean frequency ω = (1,α) for most of parameter ξ ∈ O
(in Lebesgue measure sense) provided that Ω , Λ satisfy some non-degeneracy conditions.

Now we state our KAM theorem.

Theorem 3.1 Let ω = (1,α) with α ∈ R \ Q and δ > δ∗ > 0, 1 > s > 0, τ > 2, �,�1,�2 > 0. If
the system (3.1) satisfies the non-degeneracy conditions

∣
∣
∣
∣

∂

∂ξ

〈

l,Ω(ξ )
〉
∣
∣
∣
∣
≥ �, ∀l ∈ Z

d, 0 < |l| ≤ 2,

∣
∣Reλj(ξ )

∣
∣≥ �1,

∣
∣Reλj(ξ )

∣
∣≥ �2

∣
∣
∣
∣

∂λj(ξ )
∂ξ

∣
∣
∣
∣
, ∀j ∈ J2,

(3.2)

then, for every sufficiently small γ > 0, there exists ε0 > 0 depending on δ, δ∗, s, �, �1, �2, τ ,
d but not on α, such that whenever

∥
∥(0, p, g)

∥
∥

s,D(δ,s)×O ≤ ε0,

there exist a subset Oγ ⊆O and an analytic transformation Φ : D(δ∗, s
2 ) ×Oγ → D(δ, s) ×

Oγ , which transforms the system (3.1) into the system

⎧

⎪⎪⎨

⎪⎪⎩

θ̇ = ω,

ρ̇ = i(Ω(ξ ) + B∗(θ ; ξ ))ρ + p∗(θ ,ρ, z; ξ ),

ż = (Λ(ξ ) + W∗(θ ; ξ ))z + g∗(θ ,ρ, z; ξ ),

where p∗, g∗ are at least of order 2 with response to ρ , z, and B∗ is a diagonal matrix.
Moreover, meas(O \Oγ ) = O(γ ).

4 Homological equation and its solution
The main idea of proving the KAM theorem, Theorem 3.1, is to construct a series of coor-
dinate transformations {Φl}∞l=0 such that the perturbation of transformed system is smaller
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and smaller. Because the system is dissipative, we construct the nearly identical transfor-
mation directly, which makes the proof more complicated. In this procedure, we need to
solve a series of homological equations to construct the desired transformations. The idea
of iterative procedure is detailed in Sect. 5.

4.1 Derivation of homological equation
Given a complex neighborhood D(δ, s) of T2 × {0} × {0} in Pa,p and a compact subset
O ⊆R

2, we consider the system

⎧

⎪⎪⎨

⎪⎪⎩

θ̇ = ω,

ρ̇ = i(Ω(ξ ) + B(θ ; ξ ) + b(θ ; ξ ))ρ + p(θ ,ρ, z; ξ ),

ż = (Λ(ξ ) + W (θ ; ξ ) + w(θ ; ξ ))z + g(θ ,ρ, z; ξ ),

(4.1)

defined on D(δ, s) ×O, where TK
∂pj
∂ρj

(θ , 0, 0; ξ ) = 0(1 ≤ j ≤ d) for some integer K , which is
given latter. Moreover, functions p and g are C1

W in ξ ∈ O. And B(θ ; ξ ), b(θ ; ξ ), W (θ ; ξ )
and w(θ ; ξ ) are C1

W in ξ ∈O and have the following form:

B(θ ; ξ ) = diag
(

B1(θ ; ξ ), . . . , Bd(θ ; ξ )
)

, W (θ ; ξ ) =
(

Wij(θ ; ξ )
)

i,j∈J2
,

b(θ ; ξ ) = diag
(

b1(θ ; ξ ), . . . , bd(θ ; ξ )
)

, w(θ ; ξ ) =
(

wij(θ ; ξ )
)

i,j∈J2
.

We will construct a transformation Φ defined on a smaller domain such that the system
(4.1) is transformed into

⎧

⎪⎪⎨

⎪⎪⎩

θ̇ = ω,

ρ̇+ = i(Ω(ξ ) + B(θ ; ξ ) + b(θ ; ξ ))ρ+ + p+(θ ,ρ+, z+; ξ ),

ż+ = (Λ(ξ ) + W (θ ; ξ ) + w(θ ; ξ ))z+ + g+(θ ,ρ+, z+; ξ ),

(4.2)

where the norm of perturbation p+ and g+ in (4.2) on the small domain is smaller than that
in (4.1) (see Lemma 5.3 for details).

For simplicity, we drop the parameter ξ in this section. Suppose that the coordinate
transformation Φ has the following form:

Φ :

⎧

⎨

⎩

ρ = ρ+ + H1(θ ) + H2(θ )ρ+ + H3(θ )z+,

z = z+ + F1(θ ) + F2(θ )ρ+.
(4.3)

Let ∂ω := ω1
∂

∂θ1
+ ω2

∂
∂θ2

. Insert (4.3) into (4.1), then we have

ρ̇+ = i
(

Ω + B(θ ) + b(θ )
)

ρ+

+ i
(

Ω + B(θ ) + b(θ )
)

H1(θ ) + p̃0(θ ) – ∂ωH1(θ ) (4.4)

+
(

i
(

Ω + B(θ ) + b(θ )
)

H2(θ ) – iH2(θ )
(

Ω + B(θ ) + b(θ )
)

+
∂p̃0(θ )

∂ρ
– ∂ωH2(θ )

)

ρ+

(4.5)
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+
(

i
(

Ω + B(θ ) + b(θ )
)

H3(θ ) – H3(θ )
(

Λ + W (θ ) + w(θ )
)

+
∂p̃0(θ )

∂z
– ∂ωH3(θ )

)

z+

(4.6)

+ p ◦ Φ –
(

p̃0(θ ) +
∂p̃0(θ )

∂ρ
ρ+ +

∂p̃0(θ )
∂z

z+

)

– H2(θ )p+ – H3(θ )g+, (4.7)

ż+ =
(

Λ + W (θ ) + w(θ )
)

z+

+
(

Λ + W (θ ) + w(θ )
)

F1(θ ) + g̃0(θ ) – ∂ωF1(θ ) (4.8)

+
(
(

Λ + W (θ ) + w(θ )
)

F2(θ ) – iF2(θ )
(

Ω + B(θ ) + b(θ )
)

+
∂ g̃0(θ )

∂ρ
– ∂ωF2(θ )

)

ρ+

(4.9)

+ g ◦ Φ –
(

g̃0(θ ) +
∂ g̃0(θ )

∂ρ
ρ+

)

– F2(θ )p+, (4.10)

where

p̃0(θ ) = TK
(

p(θ , 0, 0)
)

,
∂p̃0

∂ρ
(θ ) = TK

(
∂p
∂ρ

∣
∣
∣
∣
ρ=0,z=0

)

,

and the other expressions are similar.
Let Eqs. (4.4)–(4.6) and (4.8)–(4.9) be equal to 0, then we obtain the following homolog-

ical equations:

∂ωH1(θ ) – i
(

Ω + B(θ ) + b(θ )
)

H1(θ ) = p̃0(θ ), (4.11)

∂ωF1(θ ) –
(

Λ + W (θ ) + w(θ )
)

F1(θ ) = g̃0(θ ), (4.12)

∂ωH2(θ ) – i
(

Ω + B(θ ) + b(θ )
)

H2(θ ) + iH2(θ )
(

Ω + B(θ ) + b(θ )
)

=
∂p̃0(θ )

∂ρ
, (4.13)

∂ωH3(θ ) – i
(

Ω + B(θ ) + b(θ )
)

H3(θ ) + H3(θ )
(

Λ + W (θ ) + w(θ )
)

=
∂p̃0(θ )

∂z
, (4.14)

∂ωF2(θ ) –
(

Λ + W (θ ) + w(θ )
)

F2(θ ) + iF2(θ )
(

Ω + B(θ ) + b(θ )
)

=
∂ g̃0(θ )

∂ρ
. (4.15)

If we find the solutions Hj (j = 1, 2, 3) and Fj (j = 1, 2) of the homological equations (4.11)–
(4.15), we will obtain a new system with another perturbation, which will be smaller on a
small domain.

4.2 Solution to homological equation
In this subsection, we consider the homological equations with variable coefficients
(4.11)–(4.15) and find their solutions. We only give the solutions to homological equations
(4.13) and (4.15) in detail while omitting the other solutions, since the other equations can
be dealt in the same way.

In the following, we assume that Ω(ξ ) + [B(θ ; ξ )]θ ∈ DCω(γ , τ , K ,O) for any given τ > 2,
0 < γ < 1 and K > 0, where

DCω(γ , τ , K ,O)

:=

{

Ω̃(ξ )
∣
∣
∣
|Ω̃(ξ )|O ≤ 2 and
|〈k,ω〉 + 〈l, Ω̃(ξ )〉| ≥ γ

(|k|+|l|)τ ,∀0 < |l| ≤ 2, |k| < K

}

.
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Moreover, we let A := τ + 3, M := A4

2 and {Qn} be the selected sequence of α in Lemma 2.2
with respect to A. In the process of solving the homological equations, we also use the
following notations:

η = c̃Q
–1

2A4
n , E = e

–c0γ δ( Qn
QMn

+Q
1

M1/4
n )

,

K =
[

γ

4 · 10τ
max

{
Qn+1

Qτ
n+1

, Q
3
A
n+1

}]

,

(4.16)

where 0 < c̃ < 1 is a constant which will be defined later and c0 := c̃
45·10τ .

The solutions to the homological equations (4.13) and (4.15) with estimates are given
in Proposition 4.3 and 4.4, respectively. For the homological equation (4.13), we find an
approximate solution with suitable small error term using idea in [16, 17]. We remove the
non-resonance terms of B(θ ; ξ ) to eliminate relatively large B(θ ; ξ ) by solving the equation

∂ωB(θ ; ξ ) = TQn+1 B(θ ; ξ ) +
[

B(θ ; ξ )
]

θ
. (4.17)

Due to the lack of Diophantine condition on ω, we will use the technique of the CD
bridge introduced in Sect. 2.2 to obtain a good estimate of solution B(θ ; ξ ) for (4.17) (see
Lemma 4.1).

Lemma 4.1 (Lemma 3.1 in [17]) Let δ > δ∗ > 0 and f be an analytic finite-dimensional
vector-valued function. Then there exists a positive constant c1(δ∗, τ , c̃) such that the equa-
tion

∂ωB(θ ; ξ ) = –TQn+1 f (θ ; ξ ) +
[

f (θ ; ξ )
]

θ

has a solution B(θ ; ξ ) with

∥
∥B(θ ; ξ )

∥
∥

δ(1–η),O ≤ c1(δ∗, τ , c̃)δ
(

Qn

QA4
n

+ Q
1
A
n

)
∥
∥f (θ ; ξ )

∥
∥

δ,O .

The following lemma is about the estimate of small divisors.

Lemma 4.2 (Lemma 3.2 in [17]) For K̃ = [ γ

4·10τ max{ Qn
Qτ

n
, Q

3
A
n }], there exists a positive con-

stant c2(τ ) such that, for |k| < K̃ , and 0 < |l| ≤ 2,

∣
∣〈k,ω〉 + 〈l,Ω〉∣∣≥ c2(τ )γ

Aτ
2 +1Q–3τ

n ,

provided Ω ∈ DCω(γ , τ , K̃ ,O).

Now we solve the homological equation (4.13) in the following proposition.

Proposition 4.3 Write H2(θ ) = (H2lj)1≤l,j≤d and ∂p̃0(θ )
∂ρ

= ( ∂ p̃0
l (θ )

∂ρj
)1≤l,j≤d =: (Rlj)1≤l,j≤d , then

the homological equation (4.13) becomes

∂ωH2lj – i
(

Ωl + Bl(θ ) + bl(θ ) –
(

Ωj + Bj(θ ) + bj(θ )
))

H2lj = Rlj, ∀1 ≤ l, j ≤ d. (4.18)
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For δ∗ > 0, 0 < c̃ < 1, there exist positive constants c3(τ ) and ε1 = ε1(δ∗, τ , c̃) such that for
every σ , δ̃ with 0 < σ < δ∗ < δ̃ ≤ δ(1 – η), if

RQn+1 B = 0, ‖B‖δ,O ·
(

Qn

QA4
n

+ Q
1
A
n

)

≤ ε1γ

(
Qn

QM
n

+ Q
1

M1/4
n

)

, (4.19)

‖b‖δ̃,O <
γAτ+2

2c3(τ )Q6τ
n+1

, (4.20)

then each equation in (4.18) has an approximate solution which can be estimated as follows:
for any 1 ≤ l, j ≤ d,

‖H2lj‖δ̃,O ≤ c3(τ )γ –(Aτ+2)Q6τ
n+1E– 1

240 ‖Rlj‖δ̃,O .

Moreover, the error term Re
lj satisfies

∥
∥Re

lj
∥
∥

δ̃–σ ,O ≤ E– 1
240 e–Kσ

(‖Rlj‖δ̃,O + 2‖b‖δ̃,O‖H2lj‖δ̃,O
)

.

In the case of B = 0, the equation has an approximate solution H2lj satisfying

‖H2lj‖δ̃,O ≤ c3(τ )γ –(Aτ+2)Q6τ
n+1‖Rlj‖δ̃,O ,

and the error term Re
lj satisfies

∥
∥Re

lj
∥
∥

δ̃–σ ,O ≤ e–Kσ
(‖Rlj‖δ̃,O + 2‖b‖δ̃,O‖H2lj‖δ̃,O

)

.

Proof We only prove the case of B 
= 0. The case of B = 0 is similar and easier.
Consider Eq. (4.18) for the unknown function H2lj for any 1 ≤ l, j ≤ d,

∂ωH2lj(θ ; ξ ) – i
(

Ωlj(ξ ) + Blj(θ ; ξ ) + blj(θ ; ξ )
)

H2lj(θ ; ξ ) = Rlj(θ ; ξ ),

where Ωlj(ξ ) = Ωl(ξ ) – Ωj(ξ ) and similarly for Blj(θ ; ξ ) and blj(θ ; ξ ).
For 1 ≤ l = j ≤ d, H2lj = 0, by assumption Rlj = 0. Thus, we consider the case 1 ≤ l 
= j ≤ d

in the following.
Let

∂ωB(θ ; ξ ) = –Blj(θ ; ξ ) +
[

Blj(θ ; ξ )
]

θ
.

Then, by Lemma 4.1 and assumption (4.19), we have

∥
∥B(θ ; ξ )

∥
∥

δ(1–η),O ≤ c1(δ∗, τ , c̃)δ
(

Qn

QA4
n

+ Q
1
A
n

)
∥
∥Blj(θ ; ξ )

∥
∥

δ,O

≤ 2c1(δ∗, τ , c̃)ε1γ δ

(
Qn

QM
n

+ Q
1

M1/4
n

)

.

Taking 0 < ε1 < c0(τ ,c̃)
960c1(δ∗ ,τ ,c̃) , together with the definition of E in (4.16), we obtain

e‖B‖̃δ,O ≤ e
2c1(δ∗ ,τ ,c̃)ε1γ δ( Qn

QMn
+Q

1
M1/4
n ) ≤ E– 1

480 .
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Let

H̃2lj(θ ; ξ ) = e–iB(θ ;ξ )H2lj(θ ; ξ ), R̃lj(θ ; ξ ) = e–iB(θ ;ξ )Rlj(θ ; ξ ).

Then Eq. (4.18) becomes

∂ωH̃2lj(θ ; ξ ) – i
(

Ω̃lj(ξ ) + blj(θ ; ξ )
)

H̃2lj(θ ; ξ ) = R̃lj(θ ; ξ ), (4.21)

where Ω̃lj(ξ ) := Ωlj(ξ ) + [Blj(θ ; ξ )]θ . We first solve the truncated equation of (4.21),

TK
(

∂ωH̃2lj(θ ; ξ ) – i
(

Ω̃lj(ξ ) + blj(θ ; ξ )
)

H̃2lj(θ ; ξ )
)

= TK R̃lj(θ ; ξ ). (4.22)

We write

H̃2lj(θ ; ξ ) =
∑

k∈Z2,|k|<K

̂̃H2lj(k; ξ )ei〈k,θ〉,

R̃lj(θ ; ξ ) =
∑

k∈Z2

̂̃Rlj(k; ξ )ei〈k,θ〉,

blj(θ ; ξ ) =
∑

k∈Z2

b̂lj(k; ξ )ei〈k,θ〉.

By comparing the Fourier coefficients of Eq. (4.22), for |k| < K ,we have

i
(〈k,ω〉 – Ω̃lj(ξ )

)
̂̃H2lj(k; ξ ) –

∑

|k1|<K

ib̂lj(k – k1; ξ )̂̃H2lj(k1; ξ ) = ̂̃Rlj(k; ξ ).

This can be viewed as a vector equation:

(T + S)H = R, (4.23)

where

T = diag
(

. . . , i
(〈k,ω〉 – Ω̃lj(ξ ), . . .

))

|k|<K ,

S =
(

–ib̂lj(k1 – k2; ξ )
)

|k1|,|k2|<K ,

H =
(
̂̃H2lj(k; ξ )

)T
|k|<K , R =

(
̂̃Rlj(k; ξ )

)T
|k|<K .

Let

Eδ̃ = diag
(

. . . , e|k |̃δ , . . .
)

|k|<K .

Then Eq. (4.23) is equivalent to

(

T + Eδ̃SE–1
δ̃

)

Eδ̃H = Eδ̃R.
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It follows from Ω + [B]θ ∈ DCω(γ , τ , K ,O) and Lemma 4.2 that

∥
∥T–1∥∥

O = max
|k|<K

1
|〈k,ω〉 + Ω̃lj(ξ )|O

= max
|k|<K

sup
ξ∈O

{
1

|〈k,ω〉 + Ω̃lj(ξ )| +
| ∂Ω̃lj(ξ )

∂ξ
|

|〈k,ω〉 + Ω̃lj(ξ )|2
}

≤ 1
2

c3(τ )γ –(Aτ+2)Q6τ
n+1,

where the matrix norm is defined by

‖A‖O = max
i

∑

j

|aij|O

with aij being the (i, j) element of the matrix A. Since

Eδ̃SE–1
δ̃

= i
(

e(|k1|–|k2|)̃δ 〈l, b̂(k1 – k2; ξ )
〉)

|k1|,|k2|<K ,

we have

∥
∥Eδ̃SE–1

δ̃

∥
∥
O = max

|k1|<K

∑

|k2|<K

∣
∣e(|k1|–|k2|)̃δ b̂lj(k1 – k2; ξ )

∣
∣
O ≤ 2‖b‖δ̃,O .

Thus, if ‖b‖δ̃,O < γAτ+2

2c3(τ )Q6τ
n+1

(i.e., assumption (4.20) holds), we get

∥
∥T–1Eδ̃SE–1

δ̃

∥
∥
O ≤ 1

2
c3(τ )γ –(Aτ+2)Q6τ

n+12‖b‖δ̃,O <
1
2

.

This implies that T + Eδ̃SE–1
δ̃

has a bounded inverse and

∥
∥
(

T + Eδ̃SE–1
δ̃

)–1∥
∥
O =
∥
∥
(

I + T–1Eδ̃SE–1
δ̃

)–1T–1∥∥
O

≤ 1
1 – ‖T–1Eδ̃SE–1

δ̃
‖O
∥
∥T–1∥∥

O

≤ c3(τ )γ –(Aτ+2)Q6τ
n+1.

Therefore,

‖H̃2lj‖δ̃,O =
∑

|k|<K

∣
∣̂̃H2lj(k; ξ )

∣
∣
Oe|k |̃δ = ‖Eδ̃H‖O

=
∥
∥
(

T + Eδ̃SE–1
δ̃

)–1Eδ̃R
∥
∥
O

≤ c3(τ )γ –(Aτ+2)Q6τ
n+1‖R̃lj‖δ̃,O .

Going back to H2lj(θ ; ξ ) = eiB(θ ;ξ )H̃2lj(θ ; ξ ), we get

‖H2lj‖δ̃,O ≤ e‖B‖̃δ,O‖H̃2lj‖δ̃,O ≤ c3(τ )γ –(Aτ+2)Q6τ
n+1e2‖B‖̃δ,O‖Rlj‖δ̃,O

≤ c3(τ )γ –(Aτ+2)Q6τ
n+1E– 1

240 ‖Rlj‖δ̃,O .
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For the error term Re
lj, i.e.,

Re
lj = eiB(θ ;ξ )RK

(

e–iB(θ ;ξ )(iblj(θ ; ξ )H2lj(θ ; ξ ) + Rlj(θ ; ξ )
))

,

we have the following estimate:

∥
∥Re

lj
∥
∥

δ̃–σ ,O ≤ e2‖B‖̃δ,Oe–Kσ
(

2‖b‖δ̃,O‖H2lj‖δ̃,O + ‖Rlj‖δ̃,O
)

≤ E– 1
240 e–Kσ

(

2‖b‖δ̃,O‖H2lj‖δ̃,O + ‖Rlj‖δ̃,O
)

.

Note that the case B(θ ; ξ ) = 0 means that there is no need to define H̃2lj or R̃lj. In this
case, we directly deal with the equations for H2lj and Rlj to obtain the estimates for H2lj

and Re
lj. �

In the next proposition, we study the homological equation (4.15) using the non-
degeneracy condition (3.2). Since the real part of λj(ξ ) satisfies |Reλj(ξ )| > �1, there is
no small divisor.

Proposition 4.4 For δ∗ > 0, there exist positive constants c4 := c4(�1,�2) and sufficiently
small ε2 > 0 such that for every δ̃ with 0 < δ∗ < δ̃ ≤ δ(1 – η). If

‖B‖δ̃,O ≤ ε2, ‖b‖δ̃,O ≤ ε2, ‖W‖δ̃,p,p,O ≤ ε2, ‖w‖δ̃,p,p,O ≤ ε2, (4.24)

where ‖ · ‖δ̃,p,p,O is the norm of linear operator from �a,p to �a,p, then the homological equa-
tion (4.15) has an exact solution F2 satisfying

‖F2‖δ̃,p,O ≤ c4

∥
∥
∥
∥

∂ g̃0

∂ρ

∥
∥
∥
∥

δ̃,p,O
,

where ‖ · ‖δ̃,p,O is the norm of linear operator from C
d to �a,p.

Proof Let matrix U := ∂ g̃0

∂ρ
= ( ∂ g̃0

l
∂ρj

)l∈J2,1≤j≤d and set F := (FT
21, FT

22, . . . , FT
2d)T, where F2j is the

jth column vector of F2 for 1 ≤ j ≤ d. We regard the infinite-dimensional matrices F2, U
as vectors F and U , respectively. Then the homological equation (4.15) is equivalent to
the vector-valued equation

∂ωF –
(

EJ1 ⊗ (Λ + W + w) – i(Ω + B + b) ⊗ EJ2

)

F = U , (4.25)

where ⊗ is the tensor product of two matrices (see [22] for details) and EJ1 (EJ2 ) is the
identity matrix of d(∞) dimensions.

Let

F =
∑

k∈Z2

F̂ (k)ei〈k,θ〉, U =
∑

k∈Z2

Û (k)ei〈k,θ〉,

Wlj =
∑

k∈Z2

Ŵlj(k)ei〈k,θ〉, wlj =
∑

k∈Z2

ŵlj(k)ei〈k,θ〉, l, j ∈ J2,

Bj =
∑

k∈Z2

B̂j(k)ei〈k,θ〉, bj =
∑

k∈Z2

b̂j(k)ei〈k,θ〉, 1 ≤ j ≤ d,

where Wlj is the (l, j)th element of matrix W .
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By comparing the Fourier coefficients of Eq. (4.25), we obtain

(

EJ1 ⊗ (i〈k,ω〉EJ2 – Λ
)

+ iΩ ⊗ EJ2

)

F̂ (k) +
∑

k1

Ŝ(k – k1)F̂ (k1) = Û (k),

where Ŝ(k – k1) := –EJ1 ⊗ (Ŵ (k – k1) + ŵ(k – k1)) + i(̂B(k – k1) + b̂(k – k1)) ⊗ EJ2 , which
can be viewed as the vector equation

(T + S)F = U

with

T = diag
(

EJ1 ⊗ (i〈k,ω〉EJ2 – Λ
)

+ iΩ ⊗ EJ2

)

k∈Z2 ,

S =
(

Ŝ(k1 – k2)
)

k1,k2∈Z2 ,

F =
(

F̂ (k)
)T

k∈Z2 , U =
(

Û (k)
)T

k∈Z2 .

Denote

Eδ̃ = diag
(

. . . , e|k |̃δea|l|〈l〉p, . . .
)

l∈J2,k∈Z2 ⊗ EJ1 ,

then

(

T + Eδ̃SE–1
δ̃

)

Eδ̃F = Eδ̃U.

It follows from the non-degeneracy condition for Λ(ξ ) in (3.2) that

∥
∥T–1∥∥

O = max
k∈Z2

sup
ξ∈O

max
l∈J2

1≤j≤d

{
1

|i(〈k,ω〉 + Ωj(ξ )) + λl(ξ )| +
| ∂Ωj(ξ )

∂ξ
| + | ∂λl(ξ )

∂ξ
|

|i(〈k,ω〉 + Ωj(ξ )) + λl(ξ )|2
}

≤ sup
ξ∈O

max
l∈J2

{
1

|Reλl(ξ )| +
2 + | ∂λl(ξ )

∂ξ
|

|Reλl(ξ )|2
}

≤ 1
8

c4.

Moreover,

∥
∥Eδ̃SE–1

δ̃

∥
∥
O = max

k∈Z2

∑

k1∈Z2

e(|k|–|k1|)̃δ∥∥Ŵ (k – k1; ξ ) + ŵ(k – k1; ξ )
∥
∥

δ̃,p,p,O

+ max
k∈Z2

max
1≤j≤d

∑

k1∈Z2

∣
∣e(|k|–|k1|)̃δ(B̂j(k1) + b̂j(k1)

)∣
∣
O

≤ ‖B‖δ̃,O + ‖b‖δ̃,O + ‖W‖δ̃,p,p,O + ‖w‖δ̃,p,p,O .

If we take ε2 ≤ 1
c4

, by (4.24), then we get

∥
∥T–1Eδ̃SE–1

δ̃

∥
∥
O ≤ 1

8
c4
(‖B‖δ̃,O + ‖b‖δ̃,O + ‖W‖δ̃,p,p,O + ‖w‖δ̃,p,p,O

)

<
1
2

.
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This implies T + Eδ̃SE–1
δ̃

has a bounded inverse. Therefore,

∥
∥F (θ ; ξ )

∥
∥

δ̃,O =
d
∑

j=1

∑

k∈Z2

∥
∥F̂2j(k; ξ )

∥
∥

a,p,Oe|k |̃δ = ‖Eδ̃F‖O

≤ ∥∥(T + Eδ̃SE–1
δ̃

)–1∥
∥
O‖Eδ̃U‖O

≤ 1
4

c4
∥
∥U (θ ; ξ )

∥
∥

δ̃,O .

As a conclusion, we get

‖F2‖δ̃,p,O ≤ c4

∥
∥
∥
∥

∂ g̃0

∂ρ

∥
∥
∥
∥

δ̃,p,O
. �

Similarly, we can deal with other homological equations and obtain the approximate or
exact solutions with estimates respectively. After this, we can get a new system with a new
perturbation as follows:

p+ = (4.7) + R(pe), g+ = (4.10), (4.26)

where R(pe) is the error term from solving the homological equations. In the proof of
Proposition 5.1, we will prove that the above perturbation is smaller on a small domain.

5 Proof of Theorem 3.1
In this section, we will give the proof of Theorem 3.1. We will give one KAM step in detail,
which needs finite Newton iteration. After one step of Newton iteration, the perturbation
is smaller than that in previous step. Via finite steps of transformation, the perturbation
is small enough to meet the KAM iterative requirement. So we can set up one cycle of
KAM scheme. This is the essential difference from the classical KAM iteration with the
Diophantine or Brjuno conditions.

For simplifying our notations, we drop the subscript n and write the symbol “+” for
(n + 1). Suppose at the nth step of the KAM scheme, we have the system

⎧

⎪⎪⎨

⎪⎪⎩

θ̇ = ω,

ρ̇ = i(Ω(ξ ) + B(θ ; ξ ))ρ + p(θ ,ρ, z; ξ ),

ż = (Λ(ξ ) + W (θ ; ξ ))z + g(θ ,ρ, z; ξ ),

(5.1)

defined on D(δ, s) × O, where the perturbation satisfies ‖(0, p, g)‖s,D(δ,s)×O ≤ ε and B, W
have the following form:

B(θ ; ξ ) = diag
(

B1(θ ; ξ ), . . . , Bd(θ ; ξ )
)

, W (θ ; ξ ) =
(

Wij(θ ; ξ )
)

i,j∈J2
.

Our goal is to find an analytic transformation Φ : D(δ+, s+) ×O → D(δ, s) ×O such that
the transformed system of (5.1) is of the form

⎧

⎪⎪⎨

⎪⎪⎩

θ̇ = ω

ρ̇+ = i(Ω(ξ ) + B+(θ ; ξ ))ρ+ + p+(θ ,ρ+, z+; ξ ),

ż+ = (Λ(ξ ) + W+(θ ; ξ ))z+ + g+(θ ,ρ+, z+; ξ ),

(5.2)
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where the norm of new perturbation p+ and g+ in (5.2) on a small domain D(δ+, s+) is
smaller than (5.1) (see Proposition 5.1).

In the following, we need some notations:

δ+ = δ(1 – η)2, E+ = e
–c0γ δ+( Qn+1

QM
n+1

+Q
1

M1/4
n+1 )

,

ε+ = E+ε, s+ = ε
7
6 [( 8

7 )L–1].

where L is a positive integer satisfying

log 8
7

(

1 +
lnE+

ln ε

)

≤ L < 1 + log 8
7

(

1 +
lnE+

ln ε

)

. (5.3)

Proposition 5.1 Consider the system (5.1) with RQn+1 B = 0. For every 0 < γ < 1, τ > 2,
δ > δ∗ > 0, 1 > s > 0, there exist positive constants ε0 = ε0(δ∗, τ , c̃, d), ε1 = ε1(δ∗, τ , c̃) , ε2 and
J = J(τ ) such that if Ω + [B]θ ∈ DCω(γ , τ , K ,O) and

‖B‖δ,O ·
(

Qn

QA4
n

+ Q
1
A
n

)

≤ ε1γ

(
Qn

QM
n

+ Q
1

M1/4
n

)

,

‖W‖δ,p,p,O ≤ ε2, ‖P‖s,D(δ,s)×O ≤ ε ≤ ε0γ
JE , P := (0, p, g),

(5.4)

then there is an analytic, nearly identity transformation

Φ : D(δ+, s+) ×O → D(δ, s) ×O

such that it transforms system (5.1) into system

⎧

⎪⎪⎨

⎪⎪⎩

θ̇ = ω,

ρ̇+ = i(Ω(ξ ) + B+(θ ; ξ ))ρ+ + p+(θ ,ρ+, z+; ξ ),

ż+ = (Λ(ξ ) + W+(θ ; ξ ))z+ + g+(θ ,ρ+, z+; ξ ),

with

RQn+2 B+ = 0,

‖B+ – B‖δ+,O ,‖W+ – W‖δ+,p,p,O ≤ 2ε,

‖P+‖s+,D(δ+,s+)×O ≤ ε+, P+ := (0, p+, g+).

Moreover, the transformation Φ satisfies

‖Φ – id‖s+,D(δ+,s+)×O ≤ 4ε
2
3 , (5.5)

‖DΦ – Id‖s+,D(δ+,s+)×O ≤ 4ε
1
2 . (5.6)

The above proposition plays an important role to run one KAM step. In the following,
we use a Newtonian iterative procedure consisting of finite steps to prove Proposition 5.1.
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Firstly, let

ε̃0 = ε, δ̃0 = δ(1 – η), s̃0 = s.

Then, for 1 ≤ j ≤ L, we define the following sequences:

ε̃j = ε̃
8
7
j–1, δ̃j = δ̃j–1 – 2̃δ0σj–1, ιj = ε̃

1
6
j , s̃j = ιj–1̃sj–1, (5.7)

where

σj =

⎧

⎨

⎩

η

(2+̃c̃δ2
0 )j+5 , j < j0,

– ln ε̃j
K δ̃0

, j ≥ j0,
(5.8)

with

j0 = min
{

j ∈N : K ε̃
1

20
j < 1
}

. (5.9)

In the following, we give some inequalities for the above sequences, which we use fre-
quently in the proof.

Lemma 5.2 There exist positive constants J = J(τ ), ε0 = ε0(δ∗, τ , c̃, d) and T0 = T0(δ∗, τ , c̃)
such that if

ε̃0 ≤ ε0γ
JE , Qn+1 ≥ T0γ

–A/2, (5.10)

then we have

ε̃0 ≤ min

{

Q–120τ
n+1 ,
(

γAτ+2

16c3(τ )

)60}

, (5.11)

e–K δ̃0σj ≤ ε̃j, (5.12)

and

ε̃j ≤
(

1
4c4

δ̃0σj

)20

. (5.13)

Proof For inequality (5.11), we only prove ε̃0 ≤ Q–120τ
n+1 since the other one can be verified

similarly. Let J(τ ) = [120τA5]. By the definition of E in (4.16), we can obtain

E = e
–c0γ δ( Qn

QMn
+Q

1
M1/4
n ) ≤ e–c0γ δQ

1
M1/4
n ≤ J !

(c0γ δQM–1/4

n )J
,

since ex ≥ xn

n! for x > 0 and n ∈N. Due to Qn+1 ≤ QA4

n in Lemma 2.2, there exists a constant
0 < ε3 = ε3(δ∗, τ , c̃, d) such that if ε0 ≤ ε3,

ε̃0 ≤ ε0γ
JE ≤ ε3γ

J J !

(c0γ δQM–1/4

n )J
≤ ε3J !

(c0δ∗)J Q120τ
n+1

≤ Q–120τ
n+1 .
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Now consider the inequality (5.12). When j ≥ j0, it is obvious by the definition of σj in
(5.8). When 0 ≤ j < j0, we have

K ≥
(

1
ε̃j

) 1
20 ≥
(

1
ε̃j

) 1
40
(

ln
1
ε̃j

)2

(5.14)

due to the smallness of ε̃0 ≥ ε̃j and the choice of j0. Moreover, by the definition of K in
(4.16) and Qn+1 ≥ T0γ

–A/2, we can get

K
1
2 δ∗ ≥ c̃–1Q

1
2A4
n = η–1 (5.15)

for sufficiently large T0. By the definition of ε̃j, we have

ε̃
– 1

80
j ≥ (2 + c̃2δ̃2

0
)j+5.

It follows from (5.14) and (5.15) that

K δ̃0σj ≥ Kδ∗η
(2 + c̃2δ2

0)j+5 ≥ K 1
2

(2 + c̃2δ2
0)j+5 ≥ 1

(2 + c̃2δ2
0)j+5

(
1
ε̃j

) 1
80

ln
1
ε̃j

≥ ln
1
ε̃j

.

Consider (5.13). When j ≥ j0, it is obvious from K ε̃
1

20
j < 1 by the choice of j0. In the case

of j < j0, by (5.10) and (5.11), there exists 0 < ε4 = ε4(τ , δ∗) such that if ε0 ≤ min{ε3, ε4}, then

ε̃
1

20
j = ε̃

1
20 ·( 8

7 )j

0 ≤ ε
1

20 · 4
5 ·( 8

7 )j

0 · Q–120τ · 1
20 · 1

5 ·( 8
7 )j

n+1 ≤ ε
1

25 ·( 8
7 )j

0 · Q– 6τ
5 ·( 8

7 )j

n+1

≤ δ̃0̃c
4c4 · (2 + c̃2δ̃2

0)j+5
Q

– 1
2A4

n =
1

4c4
δ̃0σj. �

5.1 A finite inductive lemma
We now give the following iterative lemma for a finite induction, which is used to prove
Proposition 5.1.

In the following, we will denote by c a constant depending only on τ , d, but not on the
iterative step number j.

Lemma 5.3 Suppose that ε̃0 satisfies assumptions in Lemma 5.2 and the system

⎧

⎪⎪⎨

⎪⎪⎩

θ̇ = ω,

ρ̇ = i(Ω(ξ ) + B(θ ; ξ ) + bj(θ ; ξ ))ρ + pj(θ ,ρ, z; ξ ),

ż = (Λ(ξ ) + W (θ ; ξ ) + wj(θ ; ξ ))z + gj(θ ,ρ, z; ξ ),

(5.16)

defined on D(̃δj ,̃ sj) ×O, where

bj(θ ; ξ ) = diag
(

bj,1(θ ; ξ ), . . . , bj,d(θ ; ξ )
)

, wj(θ ; ξ ) =
(

wj,il(θ ; ξ )
)

i,l∈J2
,

satisfies the conditions in Proposition 5.1 for B, W and

RQn+2 bj = 0,
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‖bj‖δ̃j ,O ,‖wj‖δ̃j ,p,p,O ≤
j–1
∑

m=0

ε̃m, (5.17)

‖̃Pj‖̃sj ,D(̃δj ,̃sj)×O ≤ ε̃j, P̃j := (0, pj, gj).

Then there is an analytic transformation

Φ̃j : D(̃δj+1,̃ sj+1) ×O → D(̃δj ,̃ sj) ×O

satisfying

‖Φ̃j – id‖̃sj+1,D(̃δj+1,̃sj+1)×O ≤ ε̃
2
3
j , (5.18)

‖DΦ̃j – Id‖̃sj+1,D(̃δj+1,̃sj+1)×O ≤ ε̃
1
2
j , (5.19)

such that the transformed system of (5.16) is the system

⎧

⎪⎪⎨

⎪⎪⎩

θ̇ = ω,

ρ̇ = i(Ω(ξ ) + B(θ ; ξ ) + bj+1(θ ; ξ ))ρ + pj+1(θ ,ρ, z; ξ ),

ż = (Λ(ξ ) + W (θ ; ξ ) + wj+1(θ ; ξ ))z + gj+1(θ ,ρ, z; ξ ),

(5.20)

defined on D(̃δj+1,̃ sj+1) × O, and satisfies the same assumption (5.17) with (j + 1) in place
of j for 0 ≤ j ≤ L – 1.

Proof (1) Firstly, we split the perturbation into three parts in the following way:
For the vector-valued function pj,

pj = p(el)
j + p(nf)

j + p(pe)
j ,

where

p(el)
j (θ ,ρ, z; ξ ) =

∑

|k|<K

̂p0
j (k; ξ )ei〈k,θ〉 +

( d
∑

t=1,t 
=l

∑

|k|<K

̂∂p0
j,l

∂ρt
(k; ξ )ei〈k,θ〉ρt

)

1≤l≤d

+
∑

k∈Z2

̂∂p0
j

∂z
(k; ξ )ei〈k,θ〉z,

p(nf)
j (θ ,ρ, z; ξ ) =

(
∑

|k|<K

̂∂p0
j,l

∂ρl
(k; ξ )ei〈k,θ〉ρl

)

1≤l≤d
,

p(pe)
j (θ ,ρ, z; ξ ) =

∑

|a|≤1,|k|≥K

p̂j,a,0(k; ξ )ei〈k,θ〉ρa +
∑

|a|+|α|≥2,k∈Z2

p̂j,a,α(k; ξ )ei〈k,θ〉ρazα

=: p(pe1)
j + p(pe2)

j ,

with

̂p0
j (k; ξ ) :=

1
(2π )2

∫

T2
p(θ , 0, 0; ξ )e–i〈k,θ〉 dθ ,
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and the other terms are similar. We still deal with gj in the same way:

g(el)
j (θ ,ρ, z; ξ ) =

∑

k∈Z2,|a|≤1

ĝj,a,0(k; ξ )ei〈k,θ〉ρa,

g(nf)
j (θ ,ρ, z; ξ ) =

∑

k∈Z2,|α|=1

ĝj,0,α(k; ξ )ei〈k,θ〉zα ,

g(pe)
j (θ ,ρ, z; ξ ) =

∑

k∈Z2,|a|+|α|≥2

ĝj,a,α(k; ξ )ei〈k,θ〉ρazα .

Then we can rewrite the system (5.16) as

⎧

⎪⎪⎨

⎪⎪⎩

θ̇ = ω,

ρ̇ = i(Ω(ξ ) + B(θ ; ξ ) + bj+1(θ ; ξ ))ρ + (p(el)
j + p(pe)

j )(θ ,ρ, z; ξ ),

ż = (Λ(ξ ) + W (θ ; ξ ) + wj+1(θ ; ξ ))z + (g(el)
j + g(pe)

j )(θ ,ρ, z; ξ ),

(5.21)

where

bj+1(θ ; ξ ) := bj(θ ; ξ ) – i
∂p(nf)

j

∂ρ

∣
∣
∣
∣
ρ=0,z=0

,

wj+1(θ ; ξ ) := wj(θ ; ξ ) +
∂g(nf)

j

∂z

∣
∣
∣
∣
ρ=0,z=0

.

Thus, RQn+2 bj+1 = 0 since K < Qn+2 by the choice of K in (4.16). Moreover, by (5.11) and
(5.17), we have

‖bj+1‖δ̃j ,O ,‖wj+1‖δ̃j ,p,p,O ≤
j
∑

m=0

ε̃m ≤ 2̃ε0 ≤ γAτ+2

2c3(τ )Q6τ
n+1

, (5.22)

since ε̃0 can be chosen sufficiently small. It is obvious that the perturbation P̃ := (0, p(el)
j +

p(pe)
j , g(el)

j + g(pe)
j ) satisfies

‖̃P‖̃sj ,D(̃δj ,̃sj)×O ≤ ‖̃Pj‖̃sj ,D(̃δj ,̃sj)×O ≤ ε̃j.

(2) Secondly, we construct the transformation Φ̃j. Suppose that the desired change of
variables Φ̃j has the form of (4.3):

Φ̃j :

⎧

⎨

⎩

ρ = ρ+ + H1(θ ; ξ ) + H2(θ ; ξ )ρ+ + H3(θ ; ξ )z+,

z = z+ + F1(θ ; ξ ) + F2(θ ; ξ )ρ+.
(5.23)

It transforms the system (5.21) into the system

⎧

⎪⎪⎨

⎪⎪⎩

θ̇ = ω,

ρ̇+ = i(Ω(ξ ) + B(θ ; ξ ) + bj+1(θ ; ξ ))ρ+ + pj+1(θ ,ρ+, z+; ξ ),

ż+ = (Λ(ξ ) + W (θ ; ξ ) + wj+1(θ ; ξ ))z + gj+1(θ ,ρ+, z+; ξ ).

(5.24)
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Via the discussion in Sect. 4.1, the unknown functions in (5.23) can be obtained by solv-
ing the homological equations like (4.11)–(4.15).

By the assumptions in Lemma 5.3 and (5.22), B, W , w satisfy (4.24) and b satisfies the
condition (4.20) due to the smallness of ε̃0, ε1 and ε2. Then, by Proposition 4.3 and Propo-
sition 4.4, we can get the approximate or exact solutions to homological equations with
estimates respectively. For convenience, we denote D̃j = D(̃δj ,̃ sj) in what follows.

For example, by Proposition 4.3, we can obtain an approximate solution H2 = (H2il)1≤i,l≤d

with estimates

‖H2il‖δ̃j ,O ≤ c3(τ )γ –(Aτ+2)Q6τ
n+1E– 1

240

∥
∥
∥
∥

∂p(el)
j,i

∂ρl

∥
∥
∥
∥

δ̃j ,O

and the corresponding error term R(pe)
2 = (R(pe)

2il )1≤i,l≤d satisfies

∥
∥R(pe)

2il
∥
∥

δ̃j–̃δ0σj ,O
≤ 2E– 1

240 e–K δ̃0σj

∥
∥
∥
∥

∂p(el)
j,i

∂ρl

∥
∥
∥
∥

δ̃j ,O
.

Thus, we can obtain

‖H2‖δ̃j ,O ≤ c3(τ )γ –(Aτ+2)Q6τ
n+1E– 1

240

∥
∥
∥
∥

∂p(el)
j

∂ρ

∥
∥
∥
∥

δ̃j ,O
,

∥
∥R(pe)

2
∥
∥

δ̃j–̃δ0σj ,O
≤ 2E– 1

240 e–K δ̃0σj

∥
∥
∥
∥

∂p(el)
j

∂ρ

∥
∥
∥
∥

δ̃j ,O
.

Similarly, we can get

‖H1‖δ̃j ,O ≤ c3(τ )γ –(Aτ+2)Q6τ
n+1E– 1

240
∥
∥p0

j
∥
∥

δ̃j ,O
,

where p0
j := pj(θ , 0, 0; ξ ). Moreover, the estimates of the error terms are

∥
∥R(pe)

1
∥
∥

δ̃j ,O
≤ 2E– 1

240 e–K δ̃0σj
∥
∥p0

j
∥
∥

δ̃j ,O
.

By Proposition 4.4, we can get exact solutions for H3 and Fi (i = 1, 2) with estimates

‖H3‖δ̃j ,O ≤ c
∥
∥
∥
∥

∂p(el)

∂z

∥
∥
∥
∥

δ̃j ,O
, ‖F2‖δ̃j ,p,O ≤ c

∥
∥
∥
∥

∂g(el)

∂ρ

∥
∥
∥
∥

δ̃j ,O
.

‖F1‖a,p,̃δj ,O ≤ c
∥
∥g0∥∥

a,p,̃δj ,O
, g0 := g(θ , 0, 0; ξ ).

Since ‖̃Pj‖̃sj ,D(̃δj ,̃sj)×O ≤ ε̃j, by the weighted norm of vector field, we have

‖pj‖D̃j×O ≤ s̃j̃εj, ‖gj‖a,p,D̃j×O ≤ s̃j̃εj.
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Thus by Cauchy’s estimate and the inequalities in Lemma 5.2, we have

‖H1‖δ̃j+1,O ≤ c3(τ )γ –(Aτ+2)Q6τ
n+1E– 1

240 s̃j̃εj ≤ ε̃
5
6
j s̃j,

‖H2ρ+‖D̃j+1×O ≤ 2c3(τ )γ –(Aτ+2)Q6τ
n+1E– 1

240 s̃j+1̃εj ≤ ε̃j̃sj,

‖H3z+‖D̃j+1×O ≤ c̃sj+1̃εj.

For F1, F2, F3, we can obtain

‖F1‖a,p,D̃j+1×O ≤ c̃sj̃εj, ‖F2ρ+‖a,p,D̃j+1×O ≤ c̃sj+1̃εj.

Thus, we have

∥
∥(Φ̃j – id)ρ

∥
∥

D̃j+1×O ≤ s̃j̃ε
4
5
j ,

∥
∥(Φ̃j – id)z

∥
∥

a,p,D̃j+1×O ≤ s̃j̃ε
4
5
j .

That implies Φ̃j(D(̃δj+1,̃ sj+1)) ⊆ D(̃δj ,̃ sj). And we obtain

‖Φ̃j – id‖̃sj+1,D̃j+1×O =
1

s̃j+1

∥
∥(Φ̃j – id)ρ

∥
∥

D̃j+1×O +
1

s̃j+1

∥
∥(Φ̃j – id)z

∥
∥

a,p,D̃j+1×O

≤ ε̃
2
3
j .

Similarly, by Cauchy’s estimate, we can also obtain the tangent map D(Φ̃j – id) of Φ̃j – id
satisfying

∥
∥D(Φ̃j – Id)

∥
∥

s̃j+1,D̃j+1×O ≤ ε̃
1
2
j .

(3) Finally, we give the estimate of the new perturbation in detail. From the (4.26) in
Sect. 4.2, we can get the new perturbation:

pj+1 = pj ◦ Φ̃j –
(

p(el)
j +

∂p(el)
j

∂ρ
ρ+ +

∂p(el)
j

∂z
z+

)

+ R(pe) – H2pj+1 – H3gj+1,

gj+1 = gj ◦ Φ̃j –
(

g(el)
j +

∂g(el)
j

∂ρ
ρ+

)

– F2pj+1.

We mainly focus on the term pj+1 since all others can be dealt with in the same way. For
the form of pj+1, we decompose it into five parts:

pj+1 = I1 + I2 + I3 + I4 + I5,

where

I1 = pj ◦ Φ̃j – pj(θ ,ρ+, z+; ξ ),

I2 = pj(θ ,ρ+, z+; ξ ) –
(

p0
j +

∂p0
j

∂ρ
ρ+ +

∂p0
j (θ )
∂z

z+

)

,

I3 = RK

(

p0
j +

∂p0
j

∂ρ
ρ+ +

∂p0
j

∂z
z+

)

,
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I4 = –H2(θ ; ξ )pj+1 – H3(θ ; ξ )gj+1,

I5 = R(pe) := R(pe)
1 + R(pe)

2 ρ+.

By the mean value theorem, Cauchy’s estimate and the inequalities in Lemma 5.2, we
can get

‖I1‖D̃j+1×O ≤ c
ε̃j̃sj

s̃j
· s̃j̃ε

4
5 = c̃ε

9
5
j s̃j,

‖I2‖D̃j+1×O ≤ c
ε̃j̃sj

s̃2
j

· s̃2
j+1 = c̃ε

4
3
j s̃j,

‖I3‖D̃j+1×O ≤ e–Kr̃0σj

∥
∥
∥
∥

(

p0
j +

∂p0
j

∂ρ
ρ+ +

∂p0
j

∂z
z+

)∥
∥
∥
∥

D̃j+1×O

≤ ce–Kr̃0σj̃εj̃sj ≤ c̃ε2
j s̃j,

‖I4‖D̃j+1×O ≤ ‖H2pj+1‖D̃j+1×O + ‖H3gj+1‖D̃j+1×O

≤ c̃ε
5
6
j
(‖pj+1‖D̃j+1×O + ‖gj+1‖D̃j+1×O

)

,

‖I5‖D̃j+1×O ≤ ∥∥R(pe)
1
∥
∥

D̃j+1×O +
∥
∥R(pe)

2 ρ+
∥
∥

D̃j+1×O ≤ c̃ε2
j s̃j,

where c is a constant independent of j.
Hence, to summarize, we obtain

‖pj+1‖D̃j+1×O ≤ c̃ε
4
3
j s̃j + c̃ε

5
6
j
(‖pj+1‖D̃j+1×O + ‖gj+1‖D̃j+1×O

)

.

Similarly, we can obtain the estimate of ‖gj+1‖a,p,D̃j+1×O .
Thus, we conclude that

1
s̃j+1

‖pj+1‖D̃j+1×O +
1

s̃j+1
‖gj+1‖D̃j+1×O < ε̃

8
7
j

since c̃εj � 1 for sufficiently small ε̃0. The proof in the case of B = 0 is similar when we
assume that ε̃0 ≤ min{ε0γ

J , Q–120τ
n+1 }. �

5.2 One KAM step
In this subsection, we complete the proof of Proposition 5.1 by using Lemma 5.3 induc-
tively. Thus, we need to construct a transformation Φ , which transforms the system (5.1)
into (5.2), at the nth KAM step.

We point out that if ε̃0 > E7
+ , then ε̃

8
7
0 > ε+ = E+̃ε0. This means that just via one trans-

formation like (5.23), the perturbation of the transformed system may be bigger than size
O(E+), which is used to control the solution of the homological equation. Therefore, in
order to run one cycle of KAM scheme, we need L (≥ 2) times of induction such that the
size of perturbation is smaller than ε+. By the choose of L in (5.3), we have ε̃L ≤ ε+ < ε̃L–1.
Therefore, we terminate the finite induction at Lth step.
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Now we need to verify δ+ ≤ δ̃L for δ+ = δ̃0(1 – η). It is sufficient to show that
∑L–1

m=0 σm ≤
η/2. By the definition of σj in (5.8), we obtain

j0–1
∑

j=0

σj =
j0–1
∑

j=0

η

(2 + c̃̃δ2
0)j+5

≤ η

j0–1
∑

j=0

1
2j+5 ≤ η

4
.

And if L > j0,

L–1
∑

j=j0

σj = –
8 ln ε̃L–1

Kr̃0
+

7 ln ε̃j0
Kr̃0

≤ –
8 ln(E+̃ε0)

Kr̃0
+

7 ln ε̃j0
Kr̃0

≤ –
8 lnE+

Kr̃0
–

ln ε̃0

Kr̃0
≤ –

15 lnE+

Kr̃0

≤ c̃
8
(

Qτ–M
n+1 + Q– 1

A
n+1
)≤ c̃

4
Q

– 1
2A4

n =
η

4

by ε̃L–1 > ε+ = E+̃ε0 provided ε̃0 > E7
+. Therefore,

L–1
∑

m=0

σm =
j0–1
∑

j=0

σj +
L–1
∑

j=j0

σj ≤ η

2
.

As a consequence,

δ̃L = δ̃0 – 2̃δ0

L–1
∑

j=0

σj ≥ δ̃0(1 – η) = δ+.

Proof of Proposition 5.1 The proof of Proposition 5.1 is an immediate result of Lemma 5.3.
By applying Lemma 5.3 for L times inductively, we get a sequence of transformations

Φ̃ j := Φ̃0 ◦ Φ̃1 ◦ · · · ◦ Φ̃j–1 : D(̃δj ,̃ sj) ×O → D(δ, s) ×O, ∀1 ≤ j ≤ L.

Let Φ := Φ̃L, which maps D(δ+, s+) × O into D(δ, s) × O. Then, via transformation Φ , we
get the new system (5.2) with B+ = B + bL, W+ = W + wL, satisfying

RQn+2 B+ = 0,

‖B+ – B‖δ+,O ≤ ‖bL‖δ̃L ,O ≤ 2ε,

‖W+ – W‖δ+,p,p,O ≤ ‖wL‖δ̃L ,p,p,O ≤ 2ε,

and the perturbation P+ = P̃L satisfying

‖P+‖s+,D(δ+,s+)×O ≤ ‖̃PL‖̃sL ,D(̃δL ,̃sL)×O ≤ ε̃L ≤ ε+.

Next, we verify that the transformation Φ satisfies (5.5) and (5.6). By the chain rule and
(5.19), one has

∥
∥DΦ̃ j∥∥

s̃j ,D(̃δj ,̃sj)×O ≤
j–1
∏

i=0

‖DΦ̃i‖̃si+1,D(̃δi+1,̃si+1)×O ≤
j
∏

i=0

(

1 + ε̃
1
2
i
)≤ 2.
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Then, by the mean value theorem and (5.18),

∥
∥Φ̃ j+1 – Φ̃ j∥∥

s̃j+1,D(̃δj+1,̃sj+1)×O

≤ ∥∥DΦ̃ j∥∥
s̃j ,D(̃δj ,̃sj)×O‖Φ̃j – id‖̃sj+1,D(̃δj+1,̃sj+1)×O ≤ 2̃ε

2
3
j .

As a consequence,

‖Φ – id‖̃s+,D(̃δ+,̃s+)×O

≤
L–1
∑

j=1

∥
∥φ̃j+1 – φ̃j∥∥

s̃j+1,D(̃δj+1,̃sj+1)×O + ‖φ̃0 – id‖̃s1,D(̃δ1,̃s1)×O ≤ 4̃ε
2
3
0 .

Similarly,

‖DΦ – Id‖̃sL ,D(̃δL ,̃sL)×O ≤ 4̃ε
1
2
0 . �

5.3 Iterative lemma for KAM scheme
We define infinitely many successive steps of KAM iteration using Proposition 5.1. For
given 1 ≥ δ > δ∗ > 0, τ > 2, 1 > γ > 0, d ∈N+ and A, M are defined in Sect. 4.2. There exists
a constant c̃0 = 1

2 ( δ
δ∗ + 1) > 1 such that δ > δ∗c̃0. Let c̃ = 1

12 (1 – 1
c̃0

) < 1 and

T = max

{(
45 · 10τ

γ δ2∗ c̃2

)A
, T0

(
γ

2

)–A/2

, 4A
4
}

, (5.25)

where J = J(τ ), ε0 = ε0(δ∗, τ , c̃, d) > 0, ε1 = ε1(δ∗, τ , c̃) > 0, ε2 > 0 are small positive constants
given in Lemma 5.2, Proposition 4.3 and 4.4.

By the discussion in [17], for T defined above, we can choose n0 ∈N such that Qn0 ≥ T .
Then we choose sufficiently small ε depending on the constants δ, δ∗, τ , γ , such that

ε ≤ min

{

ε0

(
γ

2

)J

, ε1
γ

8
,
ε2

4
, Q–120τ

n0

}

. (5.26)

We define the iterative sequences depending on ε, δ, s, γ by

ε0 = ε, δ0 = δ, γ0 = γ , γn = γ0

(
1
2

+
1

2n+1

)

,

En+1 = e
–c0γnδn+1(

Qn0+n
QMn0+n

+Q
1

M1/4
n0+n )

, εn+1 = En+1εn,

ηn = c̃Q
–1

2A4
n0+n–1, δn+1 = δn(1 – ηn)2,

Kn =
[

γn

4 · 10τ
max

{Qn0+n

Qτ
n0+n

, Q
3
A
n0+n

}]

.

(5.27)

Let Ln be the unique positive integer satisfying

log 8
7

(
ln εn+1

ln εn

)

≤ Ln < 1 + log 8
7

(
ln εn+1

ln εn

)

.



Wang and Liu Boundary Value Problems         (2020) 2020:70 Page 27 of 35

That is,

ε
( 8

7 )Ln
n ≤ εn+1 < ε

( 8
7 )Ln –1

n .

For given 1 ≥ s > 0, we also define

s0 = s, sn+1 = ε
7
6 [( 8

7 )Ln –1]
n sn.

Firstly, the sequence {sn}n≥0 is decreasing and goes to 0 as n → ∞. For the sequences
{δn}n≥0 defined in (5.27), we show that δn > δ∗ for every n ≥ 0. Indeed, by Qn0+1 ≥ T ≥ 4A4

in (5.25), one has

∞
∏

k=2

(1 – 2ηk) ≥ 1 –
∞
∑

k=2

4ηk ≥ 1 – 8c̃Q
–1

2A4
n0+1 ≥ 1 – 8c̃.

Then

δn = δ0

n–1
∏

k=0

(1 – ηk)2 > δ0(1 – 2η0)(1 – 2η1)
∞
∏

k=2

(1 – 2ηk) > δ0(1 – 12c̃) > δ∗.

According to the analysis in Sect. 5.2, we can conclude to the following iterative lemma.

Lemma 5.4 (Iterative lemma) For integer n ≥ 0, suppose we have a family of systems de-
fined on D(rn, sn) ×On–1,

⎧

⎪⎪⎨

⎪⎪⎩

θ̇n = ω,

ρ̇n = i(Ω(ξ ) + Bn(θn; ξ ))ρn + pn(θn,ρn, zn; ξ ),

żn = (Λ(ξ ) + Wn(θn; ξ ))zn + gn(θn,ρn, zn; ξ ),

(5.28)

at nth KAM step satisfying RQn0+n Bn = 0,

‖Bn – Bn–1‖δn ,On–1 ,‖Wn – Wn–1‖δn ,p,p,On–1 ≤ 2εn–1 (5.29)

and

‖Pn‖sn ,D(δn ,sn)×On–1 ≤ εn, Pn := (0, pn, gn),

where we set ε–1 = B0 = W0 = 0, |Ω(ξ )|O ≤ 1 and the On–1 is defined as

On–1 =
{

ξ ∈O :
∣
∣〈k,ω〉 +

〈

l,Ω(ξ )+
[

Bn–1(θn–1; ξ )
]

θn–1

〉∣
∣≥ γn–1

(|k| + |l|)τ ,

∀0 < |l| ≤ 2, |k| < Kn–1

}

.

Then there exist a subset On ⊆On–1 with

On = On–1 \
⋃

Kn–2≤|k|<Kn

Γ n
k (γn), (5.30)
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where

Γ n
k (γn) =

{

ξ ∈On–1 :
∣
∣〈k,ω〉 +

〈

l,Ω +
[

Bn(θn; ξ )
]

θn

〉∣
∣ <

γn

(|k| + |l|)τ ,

∀0 < |l| ≤ 2
}

, (5.31)

and an analytic coordinate transformation

Φn : D(δn+1, sn+1) ×On → D(δn, sn) ×On

of the form

⎧

⎪⎪⎨

⎪⎪⎩

θn = θn+1,

ρn = Vn(θn+1,ρn+1, zn+1; ξ ),

zn = Un(θn+1,ρn+1, zn+1; ξ ),

(5.32)

where Vn and Un are affine in ρn+1, zn+1, such that by the coordinate transformation Φn,
the system (5.28) is changed into

⎧

⎪⎪⎨

⎪⎪⎩

θ̇n+1 = ω,

ρ̇n+1 = i(Ω(ξ ) + Bn+1(θn+1; ξ ))ρn+1 + pn+1(θn+1,ρn+1, zn+1; ξ ),

żn+1 = (Λ(ξ ) + Wn+1(θn+1; ξ ))zn+1 + gn+1(θn+1,ρn+1, zn+1; ξ ),

(5.33)

which satisfies the above assumptions with n + 1 replacing n. Furthermore, we have the
estimate

‖Φn – id‖sn+1,D(δn+1,sn+1)×On ≤ 4ε
2
3
n , (5.34)

‖DΦn – Id‖sn+1,D(δn+1,sn+1)×On ≤ 4ε
1
2
n . (5.35)

Proof Lemma 5.4 can be proved immediately by applying Proposition 5.1. It is sufficient
to verify conditions in Proposition 5.1.

Firstly, we need to check that Ω + [Bn]θ ∈ DCω(γn, τ , Kn,On). From (5.29) and B0 = 0, we
can get

‖Bn‖δn ,On–1 ≤
n
∑

j=1

‖Bj – Bj–1‖δj ,Oj–1 ≤ 2
n
∑

j=1

εj–1 ≤ 4ε0. (5.36)

This implies that |Ω + [Bn]θ |On–1 ≤ 2 due to the smallness of ε0. Moreover, for ξ ∈ On–1,
we have

∣
∣〈k,ω〉 +

〈

l,Ω + [Bn–1]θ
〉∣
∣≥ γn–1

(|k| + |l|)τ , ∀0 < |l| ≤ 2, |k| < Kn–1.
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Then, for 0 < |l| ≤ 2, |k| < Kn–2, it follows that

∣
∣〈k,ω〉 +

〈

l,Ω + [Bn]θ
〉∣
∣≥ ∣∣〈k,ω〉 +

〈

l,Ω + [Bn–1]θ
〉∣
∣ –
∣
∣
〈

l, [Bn – Bn–1]θ
〉∣
∣

≥ γn–1

(|k| + |l|)τ – 4εn–1 ≥ γn

(|k| + |l|)τ , ∀ξ ∈On–1.

The last inequality is obvious, when |k| < Kn–2, by the choice of Kn, εn in (5.27). Therefore,
it is verified that Ω + [Bn]θ ∈ DCω(γn, τ , Kn,On) by the definition of On in (5.31).

Secondly, we need to show Bn and Wn are small enough. From (5.36) and M = A4

2 , we
see that Bn satisfies

‖Bn‖δn ,On–1 ·
(Qn0+n–1

QA4
n0+n–1

+ Q
1
A
n0+n–1

)

≤ ε1γn

(Qn0+n–1

QM
n0+n–1

+ Q
1

M1/4
n0+n–1

)

,

since

‖Bn‖δn ,On–1 ≤ 4ε0 < ε1
γ

2
< ε1γn.

From (5.29) and W0 = 0, we get

‖Wn‖δn ,On–1 ≤
n
∑

j=1

‖Wj – Wj–1‖δj ,Oj–1 ≤ 2
n
∑

j=1

εj–1 ≤ 4ε0 ≤ ε2.

Finally, we prove

‖Pn‖sn ,D(δn ,sn)×On–1 ≤ εn ≤ ε0γ
J
nEn.

The definition of εn in (5.27) and condition (5.26) show that

εn = En · · ·E1ε0 ≤ ε0

(
γ

2

)J

En ≤ ε0γ
J
nEn, ∀n ≥ 1.

When n = 0, it suffices to take ε0 satisfying (5.26).
Therefore, by applying Proposition 5.1, there exists an analytic transformation Φn which

is of the form (5.32) such that the transformed system (5.33) has the same properties as the
system (5.28) at the nth KAM step. Moreover, the transformation Φn satisfies the estimates
(5.34) and (5.35) by Proposition 5.1 again. �

5.4 Convergence and measure estimates
We begin with the system

⎧

⎪⎪⎨

⎪⎪⎩

θ̇ = ω,

ρ̇ = iΩ(ξ )ρ + p(θ ,ρ, z; ξ ),

ż = Λ(ξ )z + g(θ ,ρ, z; ξ ),

(5.37)

on D(δ, s) × O. Since O is a compact subset and Ω(ξ ) is C1
W in ξ ∈ O, we can sup-

pose |Ω(ξ )|O < 1 without loss of generality. Then the non-resonance condition Ω(ξ ) ∈
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DCω(γ , τ , K0,O0) is satisfied by setting

O0 =
{

ξ ∈O :
∣
∣〈k,ω〉 +

〈

l,Ω(ξ )
〉∣
∣≥ γ0

(|k| + |l|)τ ,∀0 < |l| ≤ 2, |k| < K0

}

.

Since |Reλj(ξ )| > �1 for some positive constant �1, we do not encounter a small divisor
when solving the homological equations with respond to z. Therefore, one does not need
any non-resonant condition for Λ(ξ ).

Denote B0 = 0, P0 = P := (0, p, g), then

‖P0‖δ0,D(δ0,,s0)×O0 ≤ ε0 ≤ min
{

ε0γ
J
0 , Q–120τ

n0

}

,

due to assumption (5.26). Thus, we are able to apply the iterative lemma, Lemma 5.4,
inductively to get a sequence of subsets On and transformations

Φn : D(δn+1, sn+1) ×On → D(δn, sn) ×On

satisfying estimate (5.34) and (5.35) for each n ∈N. Let

Φn := Φ0 ◦ · · · ◦ Φn–1 : D(δn, sn) ×On–1 → D(δ, s) ×On–1,

then the transformed system of (5.37) by transformation Φn still satisfies the properties
in Lemma 5.4 for each n ≥ 1.

Convergence: Now we give the uniformly convergence of transformation Φn. Let

Oγ =
∞
⋂

n=0

On.

Then Φn, DΦn converge uniformly to Φ , DΦ on the domain D(δ∗, 0) × Oγ as in [23].
Moreover, Φ , DΦ can be defined on the domain D(δ∗, s

2 ) × Oγ following the analysis in
[23] since it is affine in the variables ρ , z.

It follows from the estimates (5.29) of Bn and Wn that Bn and Wn converge uniformly to
limits B∗ and W∗ on domain D(δ∗, s

2 ) ×Oγ with

‖B∗‖δ∗ ,Oγ ≤
∞
∑

n=1

‖Bn – Bn–1‖δn ,On–1 ≤ 4ε0,

‖W∗‖δ∗ ,p,p,Oγ ≤
∞
∑

n=1

‖Wn – Wn–1‖δn ,p,p,On–1 ≤ 4ε0.

Moreover, the sequence εn → 0 as n → ∞ by the definition of εn provided that ε0 is suf-
ficiently small. Thus, the final transformed system of (5.37) by coordinate transformation
Φ is
⎧

⎪⎪⎨

⎪⎪⎩

θ̇ = ω,

ρ̇ = i(Ω(ξ ) + B∗(θ ; ξ ))ρ + p∗(θ ,ρ, z; ξ ),

ż = (Λ(ξ ) + W∗(θ ; ξ ))z + g∗(θ ,ρ, z; ξ ),

defined on D(δ∗, s
2 ) ×Oγ and p∗, g∗ are at least of order 2 with respect to ρ , z.
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Measure estimates: During the procedure of KAM iteration, we obtain a decreasing se-
quence of closed subsets O0 ⊇O1 ⊇ · · · . It is crucial to prove that the Lebesgue measure
of their intersection Oγ is positive in KAM theory for small enough γ > 0.

According to Lemma 5.4, we have the set

O \Oγ =
(
⋃

0≤|k|<K0

Γ 0
k (γ0)
)

∪
(
⋃

n≥1

⋃

Kn–2≤|k|<Kn

Γ n
k (γn)
)

,

where

Γ 0
k (γ0) =

{

ξ ∈O :
∣
∣〈k,ω〉 +

〈

l,Ω(ξ )
〉∣
∣ <

γ0

(|k| + |l|)τ ,∀0 < |l| ≤ 2
}

,

and, for n ≥ 1,

Γ n
k (γn) =

{

ξ ∈On–1 :
∣
∣〈k,ω〉 +

〈

l,Ω(ξ ) +
[

Bn(θ ; ξ )
]

θ

〉∣
∣ <

γ0

(|k| + |l|)τ ,∀0 < |l| ≤ 2
}

.

Then using the non-degeneracy condition (3.2) and the analysis in Sect. 4.2 of [17], we
have the following lemma for the measure of the parameter set Oγ .

Lemma 5.5 For τ > 2 and sufficiently small γ > 0, we have

meas(O \Oγ ) = O(γ ).

As a conclusion, we complete the proof of Theorem 3.1.

6 Proof of Theorem 1.1
Firstly, we rescale (1.2) via u �→ ε

1
2 u to obtain the following equation:

ut = ru + (b + iν)∂xxu + m∂xu – (1 + iμ)εh(ωt, x)|u|2u + ε
1
2 f (ωt, x), x ∈ T. (6.1)

Then the linearized equation of (6.1) is

ut = ru + (b + iν)∂xxu + m∂xu.

And the linear operator r + (b + iν)∂xx + m∂x under periodic boundary condition possesses
the eigenvalues

λn = r – bn2 + i
(

mn – νn2), n ∈ Z,

and the corresponding eigenfunctions φn(x) = 1√
2π

einx.
For any given j ∈N\ {0}, choose the parameters r > 0, b > 0 such that Reλ±j = r – bj2 = 0.

Then, another eigenvalue λn, n 
= ±j, satisfies |Reλn| 
= 0.
We will find the solution to (6.1) of the form

u(t, x) =
∑

n∈Z
qn(t)φn(x). (6.2)
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Substituting (6.2) into (6.1), one gets a lattice formulation of the problem

⎧

⎨

⎩

θ̇ = ω,

q̇n = λnqn – ε(1 + iμ)
∑

i–k+l–n+ς=0 Tiklnς hς (θ )qiq̄kql + ε
1
2 Pn(θ ),

where

Tiklnς =
√

2π

∫ 2π

0
φi(x)φ̄k(x)φj(x)φ̄n(x)φς (x) dx

=

⎧

⎨

⎩

(2π )–2, i – k + l – n + ς = 0,

0, i – k + l – n + ς 
= 0,

and

Pn(θ ) =
∫ 2π

0
f (θ , x)φ̄n(x) dx =

√
2π fn(θ ).

Let ρ̃1 = qj and ρ̃2 = q–j. Then

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

θ̇ = ω,
˙̃ρ1 = iΩ1ρ1 – ε(1 + iμ)

∑

i–k+l–j+ς=0 Tikljς hς (θ )qiq̄kql + ε
1
2 Pj(θ ),

˙̃ρ2 = iΩ2ρ2 – ε(1 + iμ)
∑

i–k+l+j+ς=0 Tikl(–j)ς hς (θ )qiq̄kql + ε
1
2 P–j(θ ),

q̇n = λnqn – ε(1 + iμ)
∑

i–k+l–n+ς=0 Tiklnς hς (θ )qiq̄kql + ε
1
2 Pn(θ ), n 
= ±j,

where Ω1 = –iλj = mj – νj2 ∈R and Ω2 = –iλ–j = –mj – νj2 ∈ R.
Denote the parameter ξ := (ν, m) ∈ O, and O ⊆ R

2 is a compact set with positive mea-
sure. Let

Ω(ξ ) = diag
{

Ω1(ξ ),Ω2(ξ ), –Ω1(ξ ), –Ω2(ξ )
}

, Λ(ξ ) = diag
{

Λ1(ξ ), Λ̄1(ξ )
}

with Λ1(ξ ) = diag{λn(ξ ) : n 
= ±j}
and ρ = (ρ̃1, ρ̃2, ρ̃1, ρ̃2), z = ((qn)n
=±j, (q̄n)n
=±j). Then we get the system

⎧

⎪⎪⎨

⎪⎪⎩

θ̇ = ω,

ρ̇ = iΩ(ξ )ρ + p(θ ,ρ, z)

ż = Λ(ξ )z + g(θ ,ρ, z),

(6.3)

where the nonlinear terms are

p = (p1, p2, p̄1, p̄2), g =
(

(gn)n
=±j, (ḡn)n
=±j
)

,
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with

p1 = –ε(1 + iμ)
∑

i–k+l–j+ς=0

Tikljς hς (θ )qiq̄kql + ε
1
2 Pj(θ ),

p2 = –ε(1 + iμ)
∑

i–k+l+j+ς=0

Tikl(–j)ς hς (θ )qiq̄kql + ε
1
2 P–j(θ ),

gn = –ε(1 + iμ)
∑

i–k+l–n+ς=0

Tiklnς hς (θ )qiq̄kql + ε
1
2 Pn(θ ), n 
= ±j.

It is obvious that p and g are independent of the parameter ξ ∈O.
Note the the dimension of the vector z in (6.3) is different from the one in (3.1) even

though both are infinite. Actually, the latter is the double of the former. So to apply Theo-
rem 3.1, we need to redefine the sets J2 and D(δ, s). To simplify this work, we omit these
discussions.

Now we apply the abstract KAM theorem 3.1 obtained in Sect. 3 for system (6.3) to
prove Theorem 1.1. So we need to check that the frequencies Ω(ξ ) and Λ(ξ ) satisfy non-
degeneracy condition (3.2), and the perturbations p, g satisfy the smallness condition for
sufficiently small ε.

It is obvious that for Z � n 
= ±j,

∣
∣Reλn(ξ )

∣
∣ =
∣
∣r – bn2∣∣≥ ∣∣r – b(j – 1)2∣∣≥ |b| > 0,

∣
∣Reλn(ξ )

∣
∣≥ �2

∣
∣
∣
∣

∂λn

∂ξ
(ξ )
∣
∣
∣
∣
,

where �2 > 0 is a constant independent of n, ξ and

∣
∣
∣
∣

∂〈l,Ω〉
∂ξ

∣
∣
∣
∣
≥ j ≥ 1, ∀0 < |l| ≤ 2, l ∈ Z

2.

Therefore, the non-degeneracy condition (3.2) holds for Ω(ξ ) and Λ(ξ ).
Since f and h satisfy assumption (H), the norms of f and h are

‖f ‖a,p,D(δ) :=
∑

n∈Z

∥
∥fn(θ )
∥
∥

δ
ea|n|〈n〉p < ∞,

‖h‖a,p,D(δ) :=
∑

n∈Z

∥
∥hn(θ )
∥
∥

δ
ea|n|〈n〉p < ∞

for some 1 > δ > 0, a > 0 and p ≥ 1
2 .

For some 1 > s > 0, on domain D(δ, s) = {(θ ,ρ, z) ∈ Pa,p : | Im θ | < δ, |ρ| < s,‖z‖a,p < s}, we
have

‖p‖D(δ,s) ≤ c1ε(1 + iμ)s3‖h‖a,p,D(δ) + 2ε
1
2 ‖Pj‖δ

≤ cε
1
2
(‖f ‖a,p,D(δ) + s3‖h‖a,p,D(δ)

)

,

‖g‖a,p,D(δ,s) ≤ c1ε(1 + iμ)s3‖h‖a,p,D(δ) + c1ε
1
2 ‖f ‖a,p,D(δ)

≤ cε
1
2
(‖f ‖a,p,D(δ) + s3‖h‖a,p,D(δ)

)

,

where we use Lemma 2.1 for sequence {‖fj(θ )‖D(δ)}j∈Z ∈ �a,p and {‖hj(θ )‖D(δ)}j∈Z ∈ �a,p and
c, c1 are positive constants.
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Hence, for nonlinear term P := (0, p, g), we have

‖P‖s,D(δ,s)×O ≤ cε
1
2
(

s–1‖f ‖a,p,D(δ) + s2‖h‖a,p,D(δ)
)≤ C0ε

1
2 ,

where C0 > 0 is a constant depending on δ, s and functions f , h.
By Theorem 3.1, for τ > 2, sufficiently small 0 < γ � 1 and δ∗ := δ

2 , there exists a constant
ε∗ := 1

C2
0
ε2

0 depending on j, r, b, μ, γ , τ , O, f , h such that if ε < ε∗, there exist a subset Oγ

with meas(O \Oγ ) = O(γ ) and a family of analytic transformations

Φξ : D
(

δ

2
,

s
2

)

→ D(δ, s), ∀ξ ∈Oγ ,

which transforms system (6.3) into

⎧

⎪⎪⎨

⎪⎪⎩

θ̇ = ω,

ρ̇ = i(Ω(ξ ) + B∗(θ ; ξ ))ρ + p∗(θ ,ρ, z; ξ ),

ż = –(Λ(ξ ) + W∗(θ ; ξ ))z + g∗(θ ,ρ, z; ξ ).

(6.4)

where p∗ and g∗ are at least of order 2 with respect to variables ρ and z. Therefore, for any
ξ ∈Oγ , the transformed system (6.4) admits a special solution (θ (0) + ωt, 0, 0).

Let

(

θ (t),ρ(t), z(t)
)

= Φξ

(

θ (0) + ωt, 0, 0
)

,

then

(

θ (t),ρ(t), z(t)
)

=:
(

θ (0) + ωt, Vξ

(

θ (0) + ωt
)

, Uξ

(

θ (0) + ωt
))

is a analytic quasi-periodic solution to system (6.3) for ξ ∈Oγ . As a conclusion, the com-
plex Ginzburg–Landau equation (6.1) possesses a quasi-periodic solution with the form
of

u(t, x) = V1,ξ
(

θ (0) + ωt
)

φj(x) + V2,ξ
(

θ (0) + ωt
)

φ–j(x) +
∑

n
=±j

Un,ξ
(

θ (0) + ωt
)

φn(x).

Then, the forcing complex Ginzburg–Landau equation (1.2) has a response solution ε
1
2 u

when the parameters of the coefficients (ν, m) ∈Oγ .
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5. Takáč, P.: Invariant 2-tori in the time-dependent Ginzburg–Landau equation. Nonlinearity 5(2), 289–321 (1992)
6. Luce, B.P.: Homoclinic explosions in the complex Ginzburg–Landau equation. Physica D 84(3–4), 553–581 (1995)
7. Cruz-Pacheco, G., Levermore, C.D., Luce, B.P.: Complex Ginzburg–Landau equations as perturbations of nonlinear

Schrödinger equations. Physica D 197(3–4), 269–285 (2004)
8. Mancas, S.C., Choudhury, S.R.: Bifurcations of plane wave (CW) solutions in the complex cubic-quintic

Ginzburg–Landau equation. Math. Comput. Simul. 74(4–5), 266–280 (2007)
9. Chung, K.W., Yuan, X.: Periodic and quasi-periodic solutions for the complex Ginzburg–Landau equation. Nonlinearity

21(3), 435–451 (2008)
10. Cong, H., Liu, J., Yuan, X.: Quasiperiodic solutions for the cubic complex Ginzburg–Landau equation. J. Math. Phys.

50(6), Article ID 063516 (2009)
11. Cong, H., Liu, J., Yuan, X.: Quasi-periodic solutions for complex Ginzburg–Landau equation of nonlinearity |u|2pu.

Discrete Contin. Dyn. Syst., Ser. S 3(4), 579–600 (2010)
12. Cong, H., Gao, M.: Quasi-periodic solutions for the generalized Ginzburg–Landau equation with derivatives in the

nonlinearity. J. Dyn. Differ. Equ. 23(4), 1053–1074 (2011)
13. Li, H., Yuan, X.: Quasi-periodic solution for the complex Ginzburg–Landau equation with continuous spectrum.

J. Math. Phys. 59(11), Article ID 112701 (2018)
14. Cheng, H., Si, J.: Quasi-periodic solutions for the quasi-periodically forced cubic complex Ginzburg–Landau equation

on T
d . J. Math. Phys. 54(8), Article ID 082702 (2013)

15. Avila, A., Fayad, B., Krikorian, R.: A KAM scheme for SL(2,R) cocycles with Liouvillean frequencies. Geom. Funct. Anal.
21(5), 1001–1019 (2011)

16. Hou, X., You, J.: Almost reducibility and non-perturbative reducibility of quasi-periodic linear systems. Invent. Math.
190(1), 209–260 (2012)

17. Wang, J., You, J., Zhou, Q.: Response solutions for quasi-periodically forced harmonic oscillators. Trans. Am. Math. Soc.
369(6), 4251–4274 (2017)

18. Lou, Z., Geng, J.: Quasi-periodic response solutions in forced reversible systems with Liouvillean frequencies. J. Differ.
Equ. 263(7), 3894–3927 (2017)

19. Xu, X., You, J., Zhou, Q.: Quasi-periodic solutions of NLS with Liouvillean frequency (2017). arXiv:1707.04048
20. Wang, F., Cheng, H., Si, J.: Response solution to ill-posed Boussinesq equation with quasi-periodic forcing of

Liouvillean frequency. J. Nonlinear Sci. (2019). https://doi.org/10.1007/s00332-019-09587-8
21. Kuksin, S., Pöschel, J.: Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation.

Ann. Math. (2) 143(1), 149–179 (1996)
22. Chierchia, L., You, J.: KAM tori for 1D nonlinear wave equations with periodic boundary conditions. Commun. Math.

Phys. 211(2), 497–525 (2000)
23. Pöschel, J.: On elliptic lower-dimensional tori in Hamiltonian systems. Math. Z. 202(4), 559–608 (1989)

http://arxiv.org/abs/arXiv:1707.04048
https://doi.org/10.1007/s00332-019-09587-8

	Response solution to complex Ginzburg-Landau equation with quasi-periodic forcing of Liouvillean frequency
	Abstract
	Keywords

	Introduction and main result
	Preliminary
	Functional setting
	Continued fraction expansion

	A modiﬁed KAM theorem
	Homological equation and its solution
	Derivation of homological equation
	Solution to homological equation

	Proof of Theorem 3.1
	A ﬁnite inductive lemma
	One KAM step
	Iterative lemma for KAM scheme
	Convergence and measure estimates

	Proof of Theorem 1.1
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


