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Abstract
The stochastic coupled Kuramoto–Sivashinsky and Ginzburg–Landau equations
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1 Introduction
The coupled Kuramoto–Sivashinsky and Ginzburg–Landau (KS–GL) equation comes
from the nonlinear evolution of the coupled long-scale oscillatory and monotonic insta-
bilities of a uniformly propagating combustion wave governed by a sequential chemical
reaction, having two flame fronts corresponding to two reaction zones with a finite separa-
tion distance between them. They describe the interaction between the excited monotonic
mode and the excited or damped oscillatory mode (see [1–4]). In fact, the actual chemical
kinetics governing the structure of flames can be quite complex and leads to qualitative
behavior of flames which cannot be accounted for by a one-stage kinetic model. A num-
ber of papers were devoted to the investigation of the propagation of flame fronts [5–11].
A simplified model called the coupled system of KS–GL equations for the Marangoni con-
vection is of the form:

∂tA – μA – ∂2
x A + k|A|2A = Ah,

∂th + m∂2
x h + ν∂4

x h = α∂2
x
(|A|2),

where A(x, t) is the rescaled complex amplitude for the Marangoni convective mode, the
real function h(x, t) is the interface deformation, the constant α is called “Marangoni co-
efficient”, and the parameters k, ν , μ, m are all real-valued constants with k > 0, ν > 0.

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13661-020-01371-y
http://crossmark.crossref.org/dialog/?doi=10.1186/s13661-020-01371-y&domain=pdf
mailto:linlin@sdju.edu.cn


Lin and Li Boundary Value Problems         (2020) 2020:74 Page 2 of 14

The periodic initial–boundary problem of the KS–GL equations has been studied by a
couple of authors. If taking the coefficient μ = ν = m = 1, the global unique solvability of
the periodic initial–boundary value problem was established in [12–14]. Furthermore, as
was shown in [15], the problem has a global solution for any value of the coupling constant
and a minimal global attractor in the case of Dirichlet boundary conditions for certain
values of the parameters. However, some perturbations may neglect in the derivation of
this ideal model, and one often represents the microeffects by random perturbations in
the dynamics of the macro observables. Thus, it is interesting to consider stochastic effect
in KS–GL equation. So far, we only know that the stochastic version of KS–GL type model
for the Marangoni convection with the periodic initial–boundary problem has a unique
solution A ∈ C([0, T], H2

per)∩L2([0, T], H3
per), h ∈ C([0, T], H2

per)∩L2([0, T], H4
per) under the

condition 0 < α < 2 in [16].
In this paper, we focus on the existence of random attractor for the following stochastic

KS–GL (SKS–GL) equations with additive noises:

∂tA – μA – ∂2
x A + k|A|2A = Ah + Φ1Ẇ1, (1)

∂th + m∂2
x h + ν∂4

x h = α∂2
x
(|A|2) + Φ2Ẇ2, (2)

under the initial value conditions

A(x, 0) = A0(x), h(x, 0) = h0(x), x ∈ (0, l) (3)

and the boundary value conditions

A(0, t) = A(l, t) = 0, t > 0, (4)

h(0, t) = h(l, t) = ∂2
x h(0, t) = ∂2

x h(l, t) = 0, t > 0. (5)

The random process Wi =
∑∞

j=1 β i
j (t,ω)ej(x) (i = 1, 2) is a two-sided in time cylindrical

Wiener process on L2(0, l) associated to a complete probability space (Ω ,F, P), where
{β i

j (t,ω)}∞j=1 is a family of mutually independent, identically distributed standard Brown-
ian motions and {ej(x)}∞j=1 is an orthonormal basis of L2(0, l). The function Φi is a Hilbert–
Schmidt operator.

The notion of random attractors for a stochastic dynamical system has been introduced
in [17–19]. Random attractors are compact invariant sets, however, they are not fixed, de-
pend on chance and move with time. It seems to be a generalization of the classical concept
of global attractors for deterministic dynamical systems and has been successfully applied
to many infinite-dimensional stochastic dynamical systems [17, 18, 20]. To investigate the
equations (SKS–GL), we first establish the global unique solvability of the problem with-
out the restriction of α as done in [15]. Then we assume that νλ1 – m > 0 for α > 0 and
νλ1 – m > 16|α|

k for α < 0 (where λ1 = ( π
l )2 is the first eigenvalue of the problem –ψ ′′ = λψ

for x ∈ (0, l) with ψ(0) = ψ(l) = 0), and establish the random attractors for the stochastic
KS–GL equations in X = L2 × H–1. So, our results supplement the results of [16].

This paper is organized as follows. In the next section, we briefly give some basic and
important concepts related to random dynamical systems (RDS). In Sect. 3, we establish
a prior estimates for the solutions to the initial problem (1)–(5). Although the results are
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similar to the deterministic equations, the proof is more complicated due to the random
perturbations. In Sect. 4, we conclude the main result by studying the long time behavior
of the studied equation.

2 Notations and preliminaries
2.1 Notations
For the mathematical setting of the problem, we introduce the Sobolev space Hk with the
norm ‖ · ‖Hk and the Banach space Lp with the norm ‖ · ‖Lp . Especially, we denote (·, ·) the
inner product in L2, where

(u, v) = Re
∫ l

0
u(x)v̄(x) dx.

Let {en} be the orthonormal basis in L2, which themselves are the eigenvectors with the
corresponding eigenvalues λn > 0 and λn ↗ ∞ as n �→ ∞. For the first eigenvalue, we have
the inequality λ1‖u‖2

L2 ≤ ‖u‖2
H1 . Throughout this paper, εi (i = 1, 2, . . . , 6) and C denote

positive constants which depend on the coefficients of equations (1)–(2).
Given two separable Hilbert space H and K , we define L0

2(H , K) to be the space of Hilbert
operators from H to K with the norm

‖Φ‖2
L0

2(H,K ) =
∑

k∈N
|Φek|2K ,

where {ek}k∈N is any orthonormal basis of H . In particular, when H = L2, K = H1, we
rewrite the norm in a simpler form:

‖Φ‖2
L0

2(L2,H1) = ‖Φ‖2
L0,1

2
.

2.2 Preliminary results on RDS
We now recall some concepts and well-known results related to random attractors for
RDS. For further details, the readers are referred to [17] and [18].

Definition 2.1 We call (Ω ,F , P, (θt)t∈R) a metric dynamical system if θ· : R×Ω → Ω is a
(B(R) ×F → F )-measurable mapping on a probability space (Ω ,F , P) satisfying θ0 = id,
P ◦ θ–1

t = P and θt+s = θt ◦ θs for all s, t ∈R.

Definition 2.2 A continuous RDS on a Polish space (X, d) with Borel σ -algebra F over θ

on (Ω ,F , P) is a measurable mapping

φ : R+ × Ω × X → X, (t,ω, x) → φ(t,ω)x,

which is (B(R+) ×F ×B(X),B(X))-measurable and satisfies P-a.s.
(1) φ(0,ω) = id on X ;
(2) φ(t + s,ω) = φ(t, θsω) ◦ φ(s,ω) for all t, s ∈R

+ (cocycle property);
(3) φ(t,ω) : X → X is continuous for all t ∈R

+.

Definition 2.3 A random compact set K(ω)ω∈Ω is a family of compact sets indexed by ω

such that for each x ∈ X the map ω → d(x, K(ω)) is measurable with respect to F .
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Definition 2.4 Let A(ω) be a random set and B ⊂ X, one says A(ω) attracts B if

lim
t→∞ dist

(
φ(t, θ–tω)B,A

)
= 0 a.s.

Definition 2.5 A random set A(ω) is said to be a random attractor for the RDS φ if P-a.s.
(1) A(ω) is a random compact set;
(2) A(ω) is invariant, i.e., φ(t,ω)A(ω) = A(θtω), for all t > 0;
(3) A(ω) attracts all deterministic bounded sets B ⊂ X .

Theorem 2.6 If there exists a random compact set absorbing every bounded set B ⊂
X, then the RDS φ possesses a random attractor A(ω) =

⋃
B⊂X ΛB(ω), where ΛB(ω) :=

⋂
s≥0

⋃
t≥s φ(t, θ–tω)B is the omega-limit set of B.

3 Existence and uniqueness of solutions
In this section, we establish a priori estimates for the solutions of the initial–boundary
problem (1)–(5). Firstly, we consider two linear stochastic problems:

dWA = ∂2
x WA dt + Φ1 dW1, WA(0) = 0, (6)

dWh = –ν∂4
x Wh dt + Φ2 dW2, Wh(0) = 0, (7)

under the boundary value conditions:

WA(0, t) = WA(l, t) = 0, t > 0,

and

Wh(0, t) = Wh(l, t) = ∂2
x Wh(0, t) = ∂2

x Wh(l, t) = 0, t > 0.

We assume that Φi ∈ L0,1
2 (i = 1, 2) and recall from [21, 22] that the solutions WA(t) and

Wh(t) given by problems (6)–(7) are well defined. They have paths in C([0,∞], H1
0 ) and

C([0,∞], H2 ∩ H1
0 ), respectively. Moreover, for any t, s,

Wi(t, θsω) = Wi(t + s,ω), i = A, h, a.s.

Since Wi (i = A, h) is Gaussian, it follows that for any q, r ≥ 1, there exists a constant M(q, r)
independent of t such that

E
(‖Wi‖r

Lq
)

< M(q, r). (8)

Set

u(t) = A(t) – WA(t), v(t) = h(t) – Wh(t), t ≥ 0. (9)

Note that by (1) and (2), we have

dA =
(
μA + ∂2

x A – k|A|2A + Ah
)

dt + Φ1 dW1, (10)
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dh =
(
–m∂2

x h – ν∂4
x h + α∂2

x
(|A|2))dt + Φ2 dW2. (11)

Inserting (6)–(7) and (10)–(11) into (9) and noticing that the noise disappears, we obtain
that functions u(t), v(t) satisfy

∂tu – μ(u + WA) – ∂2
x u + k|u + WA|2(u + WA) = (u + WA)(v + Wh), (12)

∂tv + m∂2
x (v + Wh) + ν∂4

x v = α∂2
x
(|u + WA|2), (13)

as well as the initial value conditions:

u(x, 0) = A0(x), v(x, 0) = h0(x), x ∈ (0, l) (14)

and the boundary value conditions:

u(0, t) = u(l, t) = 0, t > 0, (15)

v(0, t) = v(l, t) = ∂2
x v(0, t) = ∂2

x v(l, t) = 0, t > 0. (16)

Theorem 3.1 Assume that Φi ∈ L0,1
2 (i = 1, 2). For any F0-measurable A0 ∈ L2(0, l) and

h0 ∈ H–1(0, l), and for given T > 0, there exists a unique weak solution

u ∈ C
(
0, T ; L2(0, l)

) ∩ L2(0, T ; H1
0 (0, l)

)
,

v ∈ C
(
0, T ; H–1(0, l)

) ∩ L2(0, T ; H1
0 (0, l)

)
,

satisfying (12)–(16) in the distributional sense with (u, v)|t=0 = (A0, h0). Moreover, the map-
ping (u0, v0) �→ (u, v) is continuous in E = L2(0, l) × H–1(0, l).

Proof Let P2 be the inverse of the operator L = – d2

dx2 with the domain D(L) = H2(0, l) ∩
H1

0 (0, l). Applying the operator P2 to both sides of equation (13), we obtain

∂tu – μ(u + WA) – ∂2
x u + k|u + WA|2(u + WA) = (u + WA)(v + Wh), (17)

P2∂tv – m(v + Wh) – ν∂2
x v = –α

(|u + WA|2), (18)

u(x, 0) = A0(x), v(x, 0) = h0(x), x ∈ (0, l), (19)

u(0, t) = u(l, t) = 0, v(0, t) = v(l, t) = 0, t > 0. (20)

Multiplying (17) by ū, integrating with respect to x over (0, l), and taking the real part, we
obtain

d
dt

‖u‖2
L2 – 2μ‖u‖2

L2 + 2‖∂xu‖2
L2

= 2 Re
∫ l

0
ū
[
μWA – k|u + WA|2(u + WA) + (u + WA)(v + Wh)

]
dx

= I1 + I2 + I3. (21)
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To estimate the terms on the RHS of (21), we have

I1 = 2 Re
∫ l

0
ūμWA dx ≤ 2|μ|‖u‖L2‖WA‖L2 ≤ ε1‖u‖2

L2 + C
(
ε1, |μ|)‖WA‖2

L2 , (22)

and

I2 = –2k Re
∫ l

0
ū|u + WA|2(u + WA) dx

= –2k Re
∫ l

0
ū
[|u|2 + uWA + ūWA + W 2

A
]
(u + WA) dx

≤ –2k‖u‖4
L4 + 6k

∫ l

0
|u|3|WA|dx + 6k

∫ l

0
|u|2|WA|2 dx + 2k

∫ l

0
|u||WA|3 dx

≤ –2k‖u‖4
L4 + 6k‖u‖3

L4‖WA‖L4 + 6k‖u‖2
L4‖WA‖2

L4 + 2k‖u‖L4‖WA‖3
L4

≤ –2k‖u‖4
L4 +

k
2
‖u‖4

L4 + C(k)‖WA‖4
L4 . (23)

Furthermore,

I3 = 2 Re
∫ l

0
ū(u + WA)(v + Wh) dx

≤ 2
∫ l

0

(|u|2v + |u|2|Wh| + |u||v||WA| + |u||WA||Wh|
)

dx

≤ 2
∫ l

0
|u|2v dx + 2‖u‖2

L4‖Wh‖L2 + ‖u‖L4‖v‖L2‖WA‖L4 + ‖u‖L2‖WA‖L4‖Wh‖L4

≤ 2
∫ l

0
|u|2v dx +

k
2
‖u‖4

L4 + ε1‖u‖2
L2 + ε2‖v‖2

L2 + C(ε1, ε2)
(‖WA‖4

L4 + ‖Wh‖4
L4

)
. (24)

Combining (22)–(24) with (21), we have

d
dt

‖u‖2
L2 – 2(μ + ε1)‖u‖2

L2 + 2‖∂xu‖2
L2 + k‖u‖4

L4

≤ 2
∫ l

0
|u|2v dx + ε2‖v‖2

L2 + C
(
ε1, ε2, |μ|, k

)(‖WA‖2
L2 + ‖WA‖4

L4 + ‖Wh‖4
L4

)
. (25)

Similarly, multiplying (18) by v, we get the equality

d
dt

‖Pv‖2
L2 – 2m‖v‖2

L2 + 2ν‖∂xv‖2
L2

= 2m
∫ l

0
vWh dx – 2α

∫ l

0
v|u + WA|2 dx = I4 + I5. (26)

For the RHS of (26), we find that

I4 = 2m
∫ l

0
vWh dx ≤ ε2

2
‖v‖2

L2 + C(ε2)‖Wh‖2
L2 (27)
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and

I5 = –2α

∫ l

0
v|u + WA|2 dx = –2α

∫ l

0
v
(|u|2 + ūWA + uWA + W 2

A
)

dx

≤ –2α

∫ l

0
|u|2v dx + 4|α|‖u‖L4‖WA‖L4‖v‖L2 + 2|α|‖v‖L2‖WA‖2

L4

≤ –2α

∫ l

0
|u|2v dx + ε3‖u‖4

L4 +
ε2

2
‖v‖2

L2 + C
(
ε2, ε3, |α|)‖WA‖4

L4 . (28)

Taking ε3 = k
2 , from (26)–(28), we get

d
dt

‖Pv‖2
L2 – (2m + ε2)‖v‖2

L2 + 2ν‖∂xv‖2
L2

≤ –2α

∫ l

0
|u|2v dx +

k
2
‖u‖4

L4 + C
(
ε2, k, |α|)(‖WA‖4

L4 + ‖Wh‖2
L2

)
. (29)

Combining (25) with (29), we have

d
dt

(‖u‖2
L2 + ‖Pv‖2

L2
)

+ 2‖∂xu‖2
L2 +

k
2
‖u‖4

L4 + 2ν‖∂xv‖2
L2

≤ 2(μ + ε1)‖u‖2
L2 + (2m + 2ε2)‖v‖2

L2 + 2(1 – α)
∫ l

0
|u|2v dx + g1(t),

where

g1(t) = C
(
ε1, ε2, k, |μ|, |α|)(‖WA‖2

L2 + ‖WA‖4
L4 + ‖Wh‖2

L2 + ‖Wh‖4
L4

)
.

On the other hand, we notice that

2(1 – α)
∫ l

0
|u|2v dx ≤ k

4
‖u‖4

L4 +
4(1 – α)2

k
‖v‖2

L2

and

‖v‖2
L2 =

(
P–1v, Pv

) ≤ ∥∥P–1v
∥∥2

L2‖Pv‖2
L2 ≤ ε4‖∂xv‖2

L2 + C(ε4)‖Pv‖2
L2 .

Taking ε4 = ν/[2|m| + 2ε2 + 4(1 – α)2/k], we have

d
dt

(‖u‖2
L2 + ‖Pv‖2

L2
)

+ 2‖∂xu‖2
L2 +

k
4
‖u‖4

L4 + ν‖∂xv‖2
L2

≤ 2
(|μ| + ε1

)‖u‖2
L2 + C

(
ν,α, ε2, k, |m|)‖Pv‖2

L2 + g1(t). (30)

Applying Gronwall’s inequality and (8), we deduce that for t ∈ [0, T],

E
(‖u‖2

L2 + ‖Pv‖2
L2

) ≤ edtE
(

‖u0‖2
L2 + ‖Pv0‖2

L2 +
∫ t

0
g1(s) ds

)
, (31)
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where d = max{2|μ| + 2ε1, C(ν,α, ε2, k, |m|)}. Furthermore, integrating and taking the ex-
pectation in (30), we can get from (31) that

E
(∫ t

0
‖∂xu‖2

L2 ds
)

, E
(∫ t

0
‖u‖4

L4 ds
)

, E
(∫ t

0
‖∂xv‖2

L2 ds
)

≤ C
(
ν,α, k, |m|, |μ|, ε1, ε2, t

)
. (32)

Based on the estimates (31)–(32), we use the standard argument to prove the existence
of a global solution of the problem (12)–(16) on the interval [0, T]. As done in [15], the
uniqueness of the solution can be obtained, which implies that the solution (u(t), v(t)) is
continuous with respect to (u0, v0) for all t ∈ [0, T]. �

4 Random attractors
By the same proof as Theorem 3.1, we can show that for P-a.s. ω ∈ Ω and linear operator
Φi ∈ L0,1

2 (i = 1, 2), the following statements hold:
(1) For any t0 ∈ R, u(t0) ∈ L2, v(t0) ∈ H–1, there exists a unique solution

u ∈ C(t0, T ; L2(0, l)) ∩ L2(t0, T ; H1
0 (0, l)), v ∈ C(t0, T ; H–1(0, l)) ∩ L2(t0, T ; H1(0, l)) of

(12)–(13) satisfying the initial value conditions u(x, t0) = A(t0) – WA(t0),
v(x, t0) = h(t0) – Wh(t0) and the boundary value conditions (15)–(16) for t > t0.

(2) The mapping φ(t0) �→ φ(t) from L2 × H–1 to L2 × H–1 is continuous for all t ≥ t0.
Hence, the solution mapping φ(t0) �→ φ(t,ω,φ(t0)) = (u(t,ω, u(t0)), v(t,ω, v(t0)))

generates a continuous RDS, where φ(t0) = (u(t0), v(t0)).
In order to prove the existence of a compact absorbing set at time t = –1 in L2 × H–1,

we give the following estimates.

Lemma 4.1 There exists a random radius r(ω) such that for all ρ > 0 there exists t̄ ≤ –1
such that for all t0 ≤ t̄ with |α|‖A(t0)‖2

L2 + ‖Ph(t0)‖2
L2 ≤ ρ2, the solutions of (17)–(20) over

[t0,∞) satisfy the inequality

|α|∥∥u
(
–1,ω, A(t0) – WA(t0)

)∥∥2
L2 +

∥
∥Pv

(
–1,ω, Ph(t0) – PWh(t0)

)∥∥2
L2 ≤ r2(ω) a.s.

Proof We consider two cases and begin with the case α > 0. Taking ε3 = kα
2 in (28), we find

that (29) becomes

d
dt

‖Pv‖2
L2 – (2m + ε2)‖v‖2

L2 + 2ν‖∂xv‖2
L2

≤ –2α

∫ l

0
|u|2v dx +

kα

2
‖u‖4

L4 + C(ε2, k,α)
(‖WA‖4

L4 + ‖Wh‖2
L2

)
. (33)

Multiplying (25) by α and putting it into (33), we have

d
dt

(
α‖u‖2

L2 + ‖Pv‖2
L2

)
+ 2α‖∂xu‖2

L2 +
kα

2
‖u‖4

L4 + 2ν‖∂xv‖2
L2

≤ 2α(μ + ε1)‖u‖2
L2 +

(
2m + (α + 1)ε2

)‖v‖2
L2 + g2(t), (34)

where

g2(t) = αC
(
ε1, ε2, |μ|, k

)(‖WA‖2
L2 +‖WA‖4

L4 +‖Wh‖4
L4

)
+C(ε2, k,α)

(‖WA‖4
L4 +‖Wh‖2

L2
)
,

and h(t) has at most polynomial growth as t �→ ∞, for P-a.s. ω ∈ Ω .
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By Poincaré inequality, we get

2α‖∂xu‖2
L2 ≥ 2αλ1‖u‖2

L2 , (35)

2ν‖∂xv‖2
L2 –

(
2m + (α + 1)ε2

)‖v‖2
L2 ≥ (

2νλ1 – 2m – (α + 1)ε2
)‖v‖2

L2

≥ λ1γ0‖Pv‖2
L2 + γ0‖v‖2

L2 . (36)

We take ε2 = νλ1–m
α+1 and 2γ0 = 2νλ1 – 2m – (α + 1)ε2 provided νλ1 – m > 0. Using Cauchy

inequality, we find

2α(μ + ε1)‖u‖2
L2 ≤ kα

4
‖u‖4

L4 +
4αl(μ + ε1)2

k
. (37)

From (34)–(37), we obtain the following inequality:

d
dt

(
α‖u‖2

L2 + ‖Pv‖2
L2

)
+ 2αλ1‖u‖2

L2 + λ1γ0‖Pv‖2
L2 +

kα

4
‖u‖4

L4 + γ0‖v‖2
L2

≤ 4αl(μ + ε1)2

k
+ g2(t) = g3(t). (38)

Denoting d = λ1 min{2,γ0} and applying Gronwall’s inequality, we have

α
∥∥u(t)

∥∥2
L2 +

∥∥Pv(t)
∥∥2

L2 ≤ (
α
∥∥u(s)

∥∥2
L2 +

∥∥Pv(s)
∥∥2

L2
)
e–d(t–s) +

∫ t

s
g3(τ )e–d(t–τ ) dτ ,

for all t0 ≤ s ≤ t. For t = –1, s = t0, we get

α
∥∥u(–1)

∥∥2
L2 +

∥∥Pv(–1)
∥∥2

L2

≤ (
α
∥∥u(t0)

∥∥2
L2 +

∥∥Pv(t0)
∥∥2

L2
)
ed(1+t0) +

∫ –1

t0

g3(τ )ed(1+τ ) dτ

≤ (
α
∥
∥A(t0)

∥
∥2

L2 + α
∥
∥WA(t0)

∥
∥2

L2 +
∥
∥Ph(t0)

∥
∥2

L2 +
∥
∥PWh(t0)

∥
∥2

L2
)
ed(1+t0)

+
∫ –1

–∞
g3(τ )ed(1+τ ) dτ .

Set

r2
1(ω) = 1 + sup

t0≤–1

(
α
∥
∥WA(t0)

∥
∥2

L2 +
∥
∥PWh(t0)

∥
∥2

L2
)
ed(1+t0) +

∫ –1

–∞
g3(τ )ed(1+τ ) dτ ,

which is finite P-a.s. since ‖WA(t0)‖2
L2 , ‖PWh(t0)‖2

L2 and g3(τ ,ω) have at most polynomial
growth for t0 and τ , respectively, as they tend to –∞. Given ρ > 0 such that α‖A(t0)‖2

L2 +
‖Ph(t0)‖2

L2 ≤ ρ2, there exists t̄ such that ed(1+t0)ρ2 ≤ 1.
For the second case α < 0, we take α1 = –α > 0. Letting ε3 = kα1

2 , we observe that (29)
becomes

d
dt

‖Pv‖2
L2 – (2m + ε2)‖v‖2

L2 + 2ν‖∂xv‖2
L2

≤ –2α

∫ l

0
|u|2v dx +

kα1

2
‖u‖4

L4 + C(ε2, k,α1)
(‖WA‖4

L4 + ‖Wh‖2
L2

)
. (39)
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Multiplying (25) by α1 and putting it into (39), we get

d
dt

(
α1‖u‖2

L2 + ‖Pv‖2
L2

)
+ 2α1‖∂xu‖2

L2 +
kα1

2
‖u‖4

L4 + 2ν‖∂xv‖2
L2

≤ 2α1(μ + ε1)‖u‖2
L2 + (2m + ε2 + ε2α1)‖v‖2

L2 + 4α1

∫ l

0
|u|2v dx + g4(t), (40)

where

g4(t) = α1C
(
ε1, ε2, |μ|)(‖WA‖2

L2 +‖WA‖4
L4 +‖Wh‖4

L4
)

+ C(ε2, k,α1)
(‖WA‖4

L4 +‖Wh‖2
L2

)
.

We choose a positive number k1 < k such that the following inequalities hold:

2α1(μ + ε1)‖u‖2
L2 ≤ k1α1

4
‖u‖4

L4 +
4α1l(μ + ε1)2

k1
(41)

and

4α1

∫ l

0
|u|2v dx ≤ k1α1

4
‖u‖4

L4 +
16α1

k1
‖v‖2

L2 . (42)

Applying Poincaré inequality once again, we have

2ν‖∂xv‖2
L2 –

(
2m + ε2 + ε2α1 +

16α1

k1

)
‖v‖2

L2

≥
(

2νλ1 – 2m – ε2 – ε2α1 –
16α1

k1

)
‖v‖2

L2

≥ λ1γ1‖Pv‖2
L2 + γ1‖v‖2

L2 . (43)

We take 2ε2(1 + α1) = 2νλ1 – 2m – 16α1
k1

and 2γ1 = 2νλ1 – 2m – ε2(1 + α1) – 16α1
k1

, provided
2νλ1 – 2m – 16α1

k1
> 0. Combining (41)–(43) with (40) yields

d
dt

(
α1‖u‖2

L2 + ‖Pv‖2
L2

)
+ α1λ1‖u‖2

L2 + λ1γ1‖Pv‖2
L2 +

(k – k1)α1

2
‖u‖4

L4 + γ1‖v‖2
L2

≤ 4α1l(μ + ε1)2

k1
+ g4(t) � g5(t).

In a similar way to the first case, we have

r2
2(ω) = 1 + sup

t0≤–1

(
α1

∥
∥WA(t0)

∥
∥2

L2 +
∥
∥PWh(t0)

∥
∥2

L2
)
ed̃(1+t0) +

∫ –1

–∞
g5(τ )ed̃(1+τ ) dτ ,

where d̃ = λ1 min{1,γ1} is such that α1‖u(–1)‖2
L2 + ‖Pv(–1)‖2

L2 ≤ r2
2(ω). Therefore, we can

take r(ω) = max{r1(ω), r2(ω)} as a desired random radius. �

Lemma 4.2 There exist random variables ci(ω) (i = 1, 2, 3, 4) and a fixed time t̄ ≤ –1 such
that for all ρ > 0 and t0 ≤ t̄ with |α|‖A(t0)‖2

L2 + ‖Ph(t0)‖2
L2 ≤ ρ2, the solutions of (17)–(20)

satisfy

∫ 0

–1

∥
∥u(s)

∥
∥4

L4 ds ≤ c1(ω),
∫ 0

–1

∥
∥v(s)

∥
∥2

L2 ds ≤ c2(ω),
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and

∫ 0

–1

∥
∥∂xu(s)

∥
∥2

L2 ds ≤ c3(ω),
∫ 0

–1

∥
∥∂xv(s)

∥
∥2

L2 ds ≤ c4(ω).

Proof We only consider the case α > 0, and the other case α < 0 can be proved similarly.
Integrating (38) over [–1, 0], we have

∫ 0

–1

[
kα

4
∥∥u(s)

∥∥4
L4 + γ0

∥∥v(s)
∥∥2

L2 + α
∥∥∂xu(s)

∥∥2
L2 + ν

∥∥∂xv(s)
∥∥2

L2

]
ds

≤ α
∥
∥u(–1)

∥
∥2

L2 +
∥
∥Pv(–1)

∥
∥2

L2 +
∫ 0

–1
g3(τ ) dτ . (44)

Then the desired estimates follow immediately from Lemma 4.1. �

Next we consider the absorption in H1 × L2 at time t = 0.

Lemma 4.3 There exist a random radius r3(ω) and a fixed time t̄ ≤ –1 such that for all
ρ > 0 and t0 ≤ t̄ with |α|‖A(t0)‖2

L2 + ‖Ph(t0)‖2
L2 ≤ ρ2, the solutions of (17)–(20) satisfy the

inequality

∥∥∂xu
(
0,ω, A(t0) – WA(t0)

)∥∥2
L2 +

∥∥v
(
0,ω, h(t0) – Wh(t0)

)∥∥2
L2 ≤ r2

3(ω).

Proof Multiplying (17) by –∂2
x u, integrating with respect to x over (0, l), and taking the

real part, we obtain

d
dt

‖∂xu‖2
L2 – 2μ‖∂xu‖2

L2 + 2
∥
∥∂2

x u
∥
∥2

L2

= –2 Re
∫ l

0
∂2

x ū
[
μWA – k|u + WA|2(u + WA) + (u + WA)(v + Wh)

]
dx = I6 + I7. (45)

Then we can estimate the terms on the RHS of (44) as follows:

I6 = –2 Re
∫ l

0
∂2

x ū
[
μWA – k|u + WA|2(u + WA)

]
dx

≤ 2
∫ l

0

∣
∣∂2

x ū
∣
∣[|μ||WA| + k

(|u|3 + 3|u|2|WA| + 3|u||WA|2 + |WA|3)]dx

≤ 2|μ|∥∥∂2
x u

∥
∥

L2‖WA‖L2 + 2k
∥
∥∂2

x u
∥
∥

L2‖u‖3
L6 + 2k

∥
∥∂2

x u
∥
∥

L2‖u‖2
L6‖WA‖L6

+ 2k
∥
∥∂2

x u
∥
∥

L2‖u‖L6‖WA‖2
L6 + 2k

∥
∥∂2

x u
∥
∥

L2‖WA‖3
L6

≤ ε5
∥∥∂2

x u
∥∥2

L2 + C
(
ε5, |μ|)(‖u‖6

L6 + ‖WA‖2
L2 + ‖WA‖6

L6
)

≤ ε5
∥∥∂2

x u
∥∥2

L2 + C
(
ε5, |μ|, c̃

)(‖∂xu‖2
L2 + ‖WA‖2

L2 + ‖WA‖6
L6

)
, (46)

where the last inequality in (45) can be obtained by the interpolation inequality below and
Theorem 3.1, while

‖u‖6
L6 ≤ c‖∂xu‖2

L2‖u‖4
L2 ≤ c̃‖∂xu‖2

L2 . (47)
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Furthermore, for the last term of (44), we obtain

I7 = –2 Re
∫ l

0
∂2

x ū(u + WA)(v + Wh) dx

≤ 2
∫ l

0

∣
∣∂2

x ū
∣
∣(|u||v| + |u||Wh| + |v||WA| + |WA||Wh|

)
dx

≤ 2‖v‖L∞
∥∥∂2

x u
∥∥

L2‖u‖L2 + 2
∥∥∂2

x u
∥∥

L2‖u‖L4‖Wh‖L4

+ 2‖v‖L∞
∥∥∂2

x u
∥∥

L2‖WA‖L2 + 2
∥∥∂2

x u
∥∥

L2‖WA‖L4‖Wh‖L4

≤ ε5
∥∥∂2

x u
∥∥2

L2 + C(ε5)
[‖v‖2

L∞
(‖u‖2

L2 + ‖WA‖2
L2

)
+ ‖u‖4

L4 + ‖WA‖4
L4 + ‖Wh‖4

L4
]

≤ ε5
∥∥∂2

x u
∥∥2

L2 + C(ε5, c̃)
(‖∂xv‖2

L2 + ‖u‖4
L4 + ‖WA‖4

L4 + ‖Wh‖4
L4

)
. (48)

Taking ε5 = 1/2, from (45)–(47), we observe that (44) becomes

d
dt

‖∂xu‖2
L2 +

∥∥∂2
x u

∥∥2
L2 ≤ C

(|μ|, c̃
)(‖∂xu‖2

L2 + ‖∂xv‖2
L2 + ‖u‖4

L4 + g6(t)
)
, (49)

where

g6(t) = ‖WA‖2
L2 + ‖WA‖4

L4 + ‖WA‖6
L6 + ‖Wh‖4

L4 .

On the other hand, multiplying (18) by –∂2
x v and integrating with respect to x over (0, l),

we get

d
dt

‖v‖2
L2 – 2m‖∂xv‖2

L2 + 2ν
∥∥∂2

x v
∥∥2

L2 = –2
∫ l

0

(
mWh – α|u + WA|2)∂2

x v dx = I8 + I9.

By Hölder and Cauchy inequalities, the RHS of (49) can be estimated as

I8 = –2m
∫ l

0
Wh∂

2
x v dx ≤ ε6

∥
∥∂2

x v
∥
∥2

L2 + C
(
ε6, |m|)‖Wh‖2

L2 ,

and

I9 = 2α

∫ l

0
|u + WA|2∂2

x v dx ≤ 2|α|
∫ l

0

(|u|2 + 2|u||WA| + |WA|2)∣∣∂2
x v

∣
∣dx

≤ ε6
∥∥∂2

x v
∥∥2

L2 + C
(
ε6, |α|)(‖u‖4

L4 + ‖WA‖4
L4

)
. (50)

Taking ε6 = ν/2 and putting above estimates into (49), we have

d
dt

‖v‖2
L2 + ν

∥∥∂2
x v

∥∥2
L2 ≤ C

(
ν, |α|, |m|)(‖u‖4

L4 + ‖∂xv‖2
L2 + g7(t)

)
,

where

g7(t) = ‖WA‖4
L4 + ‖Wh‖2

L2 .
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Combining (48) with (50), we obtain

d
dt

(‖∂xu‖2
L2 + ‖v‖2

L2
) ≤ C

(‖u‖4
L4 + ‖∂xu‖2

L2 + ‖∂xv‖2
L2 + g6(t) + g7(t)

)
,

where C = C(μ|, c̃,ν, |α|, |m|). Integrating over an arbitrary interval [s, 0], we get

∥∥∂xu(0)
∥∥2

L2 +
∥∥v(0)

∥∥2
L2 ≤ ∥∥∂xu(s)

∥∥2
L2 +

∥∥v(s)
∥∥2

L2 + C
∫ 0

s

(∥∥u(τ )
∥∥4

L4 +
∥∥∂xu(τ )

∥∥2
L2

+
∥∥∂xv(τ )

∥∥2
L2 + g6(τ ) + g7(τ )

)
dτ .

Integrating again with respect to s over [–1, 0], we finally have

∥∥∂xu(0)
∥∥2

L2 +
∥∥v(0)

∥∥2
L2 ≤

∫ 0

–1

(∥∥∂xu(s)
∥∥2

L2 +
∥∥v(s)

∥∥2
L2

)
ds + C

∫ 0

–1

(∥∥u(τ )
∥∥4

L4

+
∥
∥∂xu(τ )

∥
∥2

L2 +
∥
∥∂xv(τ )

∥
∥2

L2 + g6(τ ) + g7(τ )
)

dτ .

Then Lemma 4.3 follows from Lemma 4.2. �

In the end, using Lemma 4.3 and applying Theorem 2.6, we have the following claim.

Theorem 4.4 Assume that ν( π
l )2 – m > 0 for α > 0 and ν( π

l )2 – m > 16|α|
k for α < 0. Then

the RDS generated by the stochastic KS–GL equations (1)–(2) with initial–boundary con-
ditions possesses a global random attractor A(ω) in L2(0, l) × H–1(0, l).

Remark 4.5 We would like to indicate that ε3 is specified in (28) to simplify the calculus,
and the condition in Theorem 4.4 for α < 0 may be improved without the specification of
ε3 there.
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