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Abstract
In this paper, we study the blow-up phenomenon for a general nonlinear nonlocal
porous medium equation in a bounded convex domain (Ω ∈ R

n,n ≥ 3) with smooth
boundary. Using the technique of a differential inequality and a Sobolev inequality,
we derive the lower bound for the blow-up time under the nonlinear boundary
condition if blow-up does really occur.
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1 Introduction
Liu in paper [1] studied the blow-up phenomena for the solution of the following prob-
lems:

∂u
∂t

= �um + up
∫

Ω

uq dx, (x, t) ∈ Ω × (
0, t∗), (1.1)

u(x, 0) = f (x) ≥ 0, x ∈ Ω , (1.2)

under the Robin boundary condition

∂u
∂ν

+ ku = 0, (x, t) ∈ Ω × (
0, t∗). (1.3)

He obtained a lower bound for the blow-up time of the system when the solution blows
up.

In paper [2], the authors also studied equations (1.1) and (1.2) subject to either homo-
geneous Dirichlet boundary condition or homogeneous Neumann boundary condition.
The lower bounds for the blow-up time under the above two boundary conditions were
obtained. Equation (1.1) is used in the study of population dynamics (see [3]). For other
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systems in porous medium, one could see [4]. There have been a lot of papers in the liter-
ature on studying the question of blow-up for the solution of parabolic problems under a
homogeneous Dirichlet boundary condition and Neumann boundary condition(one can
see [5–12]). Some authors have started to consider the blow-up of these problems un-
der Robin boundary conditions (see [13–17]). In papers [18–21], the authors studied the
blow-up phenomena for the heat equation under nonlinear boundary conditions. Some
new results about the nonlinear evolution equations may be founded in [22–24]. These
papers have mainly focused on the bounded convex domain in R

3. Recently, there have
been some papers starting to study the blow-up problems in R

n (n ≥ 3) (see [25–29]).
We continue the work of [2] for a more general equation. Until now, the authors have not
found any paper dealing with lower bound for the blow-up time of a nonlinear nonlo-
cal porous medium equation under nonlinear boundary condition in R

n (n ≥ 3). In this
sense, the result obtained in this paper is new and interesting. In this paper, we consider
the blow-up phenomena of the solution for the following equation:

(
h(u)

)
t = �um + k1(t)up

∫
Ω

uq dx, (x, t) ∈ Ω × (
0, t∗), (1.4)

with the following boundary initial conditions:

u(x, 0) = f (x) ≥ 0, x ∈ Ω , (1.5)

∂u
∂ν

= k2(t)
∫

Ω

g(u) dx, (x, t) ∈ ∂Ω × (
0, t∗), (1.6)

where Ω is a bounded convex domain in R
n, n ≥ 3, with sufficiently smooth boundary, �

is the Laplace operator, ∂Ω is the boundary of Ω , and t∗ is the possible blow-up time, ∂u
∂ν

is the outward normal derivative of u. We assume k′
1(t)

k1(t) ≤ α and dh(u)
du ≥ M > 0.

The function g(ξ ) satisfies

0 ≤ g(ξ ) ≤ ξ s, ∀ξ > 0, (1.7)

where s > max{ 2n
2n–1 , p + q + 1 – m}.

2 Some useful inequalities
We will use the following useful inequalities later in the proof.

Lemma 2.1 We suppose that u is a nonnegative function and σ , m are positive constants,
then we have the result as follows:

∫
∂Ω

uσ+m–2 dA ≤ n
ρ0

∫
Ω

uσ+m–2 dx +
(σ + m – 2)d

ρ0

∫
Ω

uσ+m–3|∇u|dx, (2.1)

where ρ0 := min∂Ω |x · 
ν|, 
ν is the outward normal vector of ∂Ω and d := max∂Ω |x|.

Proof Applying the divergence definition, we have

div
(
uσ+m–2x

)
= nuσ+m–2 + (σ + m – 2)uσ+m–3(x · �u). (2.2)
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Integrating (2.2), we deduce
∫

Ω

div
(
uσ+m–2x

)
dx ≤ n

∫
Ω

uσ+m–2 dx + (σ + m – 2)
∫

Ω

uσ+m–3|x · ∇u|dx.

Applying the divergence theorem, we obtain
∫

∂Ω

uσ+m–2x · 
ν dA = n
∫

Ω

uσ+m–2 dx + (σ + m – 2)
∫

Ω

uσ+m–3|x · ∇u|dx.

Because Ω is a convex domain, we have ρ0 := min∂Ω |x · 
ν| > 0. Then we derive
∫

∂Ω

uσ+m–2 dA ≤ n
ρ0

∫
Ω

uσ+m–2 dx +
(σ + m – 2)d

ρ0

∫
Ω

uσ+m–3|x · ∇u|dx. �

Lemma 2.2 Supposing that u ∈ W 1,2(Ω) and n ≥ 3, we have

∫
Ω

u
(σ+m–1)n

n–2 dx ≤ C
2n

n–2 2
n

n–2 –1
[(∫

Ω

uσ+m–1 dx
) n

n–2
+

(∫
Ω

∣∣∇ σ+m–1
2 u

∣∣2 dx
) n

n–2
]

, (2.3)

where C = C(n,Ω) is a Sobolev embedding constant depending on n and Ω .

Proof In paper [30], we have W 1,2(Ω) ↪→ L 2n
n–2 (Ω), n ≥ 3. Then we deduce the Sobolev

inequality as follows:

(∫
Ω

w
2n

n–2 dx
) n–2

2n ≤ C
(∫

Ω

w2 dx +
∫

Ω

|∇w|2 dx
) 1

2
,

that is,

(∫
Ω

(
u

σ+m–1
2

) 2n
n–2 dx

) n–2
2n ≤ C

(∫
Ω

(
u

σ+m–1
2

)2 dx +
∫

Ω

∣∣∇u
σ+m–1

2
∣∣2 dx

) 1
2

.

We can get

∫
Ω

u
(σ+m–1)n

n–2 ≤ C
2n

n–2

(∫
Ω

(
u

σ+m–1
2

)2 dx +
∫

Ω

∣∣∇u
σ+m–1

2
∣∣2 dx

) n
n–2

≤ C
2n

n–2 2
n

n–2 –1
[(∫

Ω

uσ+m–1 dx
) n

n–2
+

(∫
Ω

∣∣∇u
σ+m–1

2
∣∣2 dx

) n
n–2

]
. �

Remark 2.1 For any nonnegative function u, the following Hölder inequality holds:

∫
Ω

un1+n2 dx ≤
(∫

Ω

u
n1
x1 dx

)x1(∫
Ω

u
n2
x2

dx
)x2

, (2.4)

where n1, n2, x1, x2 are positive constants and x1, x2 satisfy x1 + x2 = 1.

Remark 2.2 The fundamental inequality

(a + b)l ≤ al + bl, (2.5)

where a, b ≥ 0 and 0 < l ≤ 1, holds.
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3 Lower bound for the blow-up time
In this section it is useful in the sequel to define an auxiliary function of the following
form:

φ(t) = kn
1 (t)

∫
Ω

u2n(s–1) dx = kn
1 (t)

∫
Ω

uσ dx, 0 ≤ t < t∗. (3.1)

We will derive a differential inequality for φ(t). From the inequality, we can establish the
following theorem.

Theorem 3.1 Let u(x, t) be the classical nonnegative solution of problem (1.4)–(1.7) in a
bounded convex domain Ω (Ω ∈ Rn (n ≥ 3)). We assume that m + s > p + q + 1 > 2, m > 3,
p > 0, q > 0. Then the quantity φ(t) defined in (3.1) satisfies the differential inequality

φ′(t)φ–5(t) ≤ a(t)φ–4(t) + b(t), (3.2)

from which it follows that the blow-up time t∗ is bounded below. We have

t∗ ≥ Θ–1
(

1
4φ4(0)

)
, (3.3)

where Θ–1 is the inverse function of Θ , and a(t), b(t) are defined in (3.21), (3.22) respectively.

Proof Now we prove Theorem 3.1. For convenience, we set φ(t) = φ, k1(t) = k1, k2(t) = k2.
First we compute

φ′(t) = nkn–1
1 k′

1

∫
Ω

uσ dx + kn
1σ

∫
Ω

uσ–1ut dx

= nkn–1
1 k′

1

∫
Ω

uσ dx + kn
1σ

∫
Ω

uσ–1 1
h′(u)

[
�um + k1up

∫
Ω

uq dx
]

dx

≤ nαφ +
kn

1 σ

M

∫
Ω

uσ–1
[
�um + k1up

∫
Ω

uq dx
]

dx.

Integrating by parts, we have

φ′(t) ≤ nαφ +
kn

1 σ

M

[
m

∫
∂Ω

uσ+m–2 ∂u
∂ν

dA – m(σ – 1)
∫

Ω

uσ+m–3|∇u|2 dx
]

+
kn+1

1 σ |Ω|
M

∫
Ω

uσ+p+q–1 dx

≤ nαφ +
σmkn

1 k2

M

∫
∂Ω

uσ+m–2 dA
∫

Ω

us dx –
σm(σ – 1)kn

1
M

∫
Ω

uσ+m–3|∇u|2 dx

+
kn+1

1 σ |Ω|
M

∫
Ω

uσ+p+q–1 dx.
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Using the result of Lemma 2.1, we obtain

φ′(t) ≤ nαφ +
σmkn

1 k2

M
n
ρ0

∫
Ω

uσ+m–2 dx
∫

Ω

us dx

+
σmkn

1 k2

M
(σ + m – 2)d

ρ0

∫
Ω

uσ+m–3|∇u|dx
∫

Ω

us dx

–
σm(σ – 1)kn

1
M

4
(σ + m – 1)2

∫
Ω

∣∣∇u
σ+m–1

2
∣∣2 dx +

kn+1
1 σ |Ω|

M

∫
Ω

uσ+p+q–1 dx

≤ nαφ + r1kn
1 k2

∫
Ω

uσ+m+s–2 dx + r2kn
1 k2

∫
Ω

uσ+m–3|∇u|dx
∫

Ω

us dx

– r3kn
1

∫
Ω

∣∣∇u
σ+m–1

2
∣∣2 dx + r4kn+1

1

∫
Ω

uσ+p+q–1 dx, (3.4)

where r1 = σm
M

n|Ω|
ρ0

, r2 = σm
M

(σ+m–2)d
ρ0

, r3 = σm(σ–1)
M

4
(σ+m–1)2 , r4 = σ |Ω|

M .
Now we estimate the third term of the right-hand side of (3.4). Using Hölder’s inequality,

we have

∫
Ω

us dx ≤
(∫

Ω

uσ dx
) s

σ

|Ω| σ–s
σ = k– ns

σ
1 φ

s
σ |Ω| σ–s

σ .

Then we obtain

kn
1

∫
Ω

uσ+m–3|∇u|dx
∫

Ω

us dx

≤ kn
1

∫
Ω

uσ+m–3|∇u|dxk– ns
σ

1 φ
s
σ |Ω| σ–s

σ

= k– ns
σ

1 |Ω| σ–s
σ

2
σ + m – 1

φ
s
σ kn

1

∫
Ω

u
σ+m–3

2
∣∣∇u

σ+m–1
2

∣∣dx

≤
(

ε–1
1 r5kn

1 φ
2s
σ

∫
Ω

(
u

σ+m–3
2

)2 dx
) 1

2
(

ε1kn
1

∫
Ω

∣∣∇u
σ+m–1

2
∣∣2 dx

) 1
2

≤ 1
2
ε–1

1 r5kn
1 φ

2s
σ

∫
Ω

uσ+m–3 dx +
1
2
ε1kn

1

∫
Ω

∣∣∇u
σ+m–1

2
∣∣2 dx,

where r5 = (k– ns
σ

1 |Ω| σ–s
σ

2
σ+m–1 )2, ε1 is a positive constant which will be defined later.

From the above deductions, we get

r2k2kn
1

∫
Ω

uσ+m–3|∇u|dx
∫

Ω

us dx

≤ 1
2

r2k2ε
–1
1 r5kn

1 φ
2s
σ

∫
Ω

uσ+m–3 dx +
1
2

r2k2ε1kn
1

∫
Ω

∣∣∇u
σ+m–1

2
∣∣2 dx. (3.5)

Combining (3.4) and (3.5), we obtain

φ′(t) ≤ nαφ + r1kn
1 k2

∫
Ω

uσ+m+s–2 dx +
1
2

r2k2ε
–1
1 r5kn

1 φ
2s
σ

∫
Ω

uσ+m–3 dx

+ r4kn+1
1

∫
Ω

uσ+p+q–1 dx +
(

1
2

r2k2ε1 – r3

)
kn

1

∫
Ω

∣∣∇u
σ+m–1

2
∣∣2 dx. (3.6)
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Using (2.3), (2.4), and (2.5), we obtain

∫
Ω

uσ+m+s–2 dx ≤
(∫

Ω

u
(σ+m–1)n

n–2 dx
)x1(∫

Ω

uσ dx
)x2

≤ (
C

2n
n–2 2

n
n–2 –1)x1

[(∫
Ω

uσ+m–1 dx
) x1n

n–2

+
(∫

Ω

∣∣∇u
σ+m–1

2
∣∣2 dx

) x1n
n–2

](∫
Ω

uσ dx
)x2

= r6

(∫
Ω

uσ+m–1 dx
) x1n

n–2
(∫

Ω

uσ dx
)x2

+ r6

(∫
Ω

∣∣∇u
σ+m–1

2
∣∣2 dx

) x1n
n–2

(∫
Ω

uσ dx
)x2

, (3.7)

where

x1 =
(m + s – 2)(n – 2)

(m – 1)n + 2σ
, x2 =

(m – 1)n + 2σ + (2 – m – s)(n – 2)
(m – 1)n + 2σ

,

r6 =
(
C

2n
n–2 2

n
n–2 –1)x1 .

Using Hölder’s and Young’s inequalities, we have

r6

(∫
Ω

uσ+m–1 dx
) x1n

n–2
(∫

Ω

uσ dx
)x2

=
(

n – 2
x1n

∫
Ω

uσ+m–1 dx
) x1n

n–2
{[(

n – 2
x1n

)– x1n
n–2

r6

(∫
Ω

uσ dx
)x2] n–2

n–2–x1n
} n–2–x1n

n–2

≤
∫

Ω

uσ+m–1 dx + r7

(∫
Ω

uσ dx
) x2(n–2)

n–2–x1n
, (3.8)

where r7 = n–2–x1n
n–2 ( n–2

x1n )– x1n
n–2–x1n r

n–2
n–2–x1n
6 .

By Hölder’s and Young’s inequalities, we get

∫
Ω

uσ+m–1 dx ≤
(

ε2

∫
Ω

uσ+m+s–2 dx
)x10(

ε
– x10

x20
2

∫
Ω

uσ dx
)x20

≤ x10ε2

∫
Ω

uσ+m+s–2 dx + x20ε
– x10

x20
2

∫
Ω

uσ dx,

where x10 = m–1
m+s–2 , n10 = (σ+m+s–2)(m–1)

m+s–2 , x20 = s–1
m+s–2 , n20 = (s–1)σ

m+s–2 .
If we choose ε2 such that x10ε2 = 1

2 , we have

∫
Ω

uσ+m–1 dx ≤ 1
2

∫
Ω

uσ+m+s–2 dx + x20ε
– x10

x20
2

∫
Ω

uσ dx. (3.9)
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Combining (3.7)–(3.9), we obtain

∫
Ω

uσ+m+s–2 dx ≤ 2x20ε
– x10

x20
2

∫
Ω

uσ dx + 2r7

(∫
Ω

uσ dx
) x2(n–2)

n–2–x1n

+ 2r6

(∫
Ω

∣∣∇u
σ+m–1

2
∣∣2 dx

) x1n
n–2

(∫
Ω

uσ dx
)x2

. (3.10)

Then we can deduce

kn
1

∫
Ω

uσ+m+s–2 dx

≤ 2x20ε
– x10

x20
2 φ + 2r7k

n– x2(n–2)n
n–2–x1n

1

(
kn

1

∫
Ω

uσ dx
) x2(n–2)

n–2–x1n

+ 2r6kn– x1n2
n–2 –nx2

1

(
kn

1

∫
Ω

∣∣∇u
σ+m–1

2
∣∣2 dx

) x1n
n–2

(
kn

1

∫
Ω

uσ dx
)x2

≤ 2x20ε
– x10

x20
2 φ + 2r7k

n– x2(n–2)n
n–2–x1n

1 φ
x2(n–2)

n–2–x1n + 2r6knx1– x1n2
n–2

1

(
kn

1

∫
Ω

∣∣∇u
σ+m–1

2
∣∣2 dx

) x1n
n–2

φx2

≤ 2x20ε
– x10

x20
2 φ + 2r7k

n– x2(n–2)n
n–2–x1n

1 φ
x2(n–2)

n–2–x1n + 2r6knx1– x1n2
n–2

1
x1n

n – 2
ε3kn

1

∫
Ω

∣∣∇u
σ+m–1

2
∣∣2 dx

+ 2r6knx1– x1n2
n–2

1
n – 2 – x1n

n – 2
ε

– x1n
n–2–x1n

3 φ
x2(n–2)

n–2–x1n

≤ 2x20ε
– x10

x20
2 φ +

[
2r7k

n– x2(n–2)n
n–2–x1n

1 + 2r6knx1– x1n2
n–2

1
n – 2 – x1n

n – 2
ε

– x1n
n–2–x1n

3

]
φ

x2(n–2)
n–2–x1n

+ 2r6knx1– x1n2
n–2

1
x1n

n – 2
ε3kn

1

∫
Ω

∣∣∇u
σ+m–1

2
∣∣2 dx, (3.11)

where ε3 is a positive constant which will be defined later.
If we choose x11 = m–3

m+s–2 , n11 = (σ+m+s–2)(m–3)
m+s–2 , x21 = s+1

m+s–2 , n21 = (s+1)σ
m+s–2 , using (2.4), we get

∫
Ω

uσ+m–3 dx ≤
(∫

Ω

uσ+m+s–2 dx
)x11(∫

Ω

uσ dx
)x21

≤ x11

∫
Ω

uσ+m+s–2 dx + x21

∫
Ω

uσ dx.

Then we obtain

kn
1 φ

2s
σ

∫
Ω

uσ+m–3 dx ≤ x11φ
2s
σ kn

1

∫
Ω

uσ+m+s–2 dx + x21φ
2s
σ +1. (3.12)

Combining (3.10) and (3.12), we have

kn
1 φ

2s
σ

∫
Ω

uσ+m–3 dx ≤ (
2x20ε

– x10
x20

2 x11 + x21
)
φ

2s
σ +1 + x11k

n– x2(n–2)n
n–2–x1n

1 2r7φ
2s
σ + x2(n–2)

n–2–x1n

+ 2r6x11knx1– x1n2
n–2

1

(
kn

1

∫
Ω

∣∣∇u
σ+m–1

2
∣∣2 dx

) x1n
n–2

φ
2s
σ +x2
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≤ (
2x20ε

– x10
x20

2 x11 + x21
)
φ

2s
σ +1 + x11k

n– x2(n–2)n
n–2–x1n

1 2r7φ
2s
σ + x2(n–2)

n–2–x1n

+ 2r6x11knx1– x1n2
n–2

1
x1n

n – 2
ε4kn

1

∫
Ω

∣∣∇u
σ+m–1

2
∣∣2 dx

+ 2r6x11knx1– x1n2
n–2

1
n – 2 – x1n

n – 2
ε

– x1n
n–2–x1n

4 φ
(2s+σx2)(n–2)
σ (n–2–x1n) , (3.13)

where ε4 is a positive constant which will be defined later.
Similarly, if we choose x12 = p+q–1

m+s–2 , n12 = (σ+m+s–2)(p+q–1)
m+s–2 , x22 = m+s–(p+q+1)

m+s–2 , n22 =
σ [m+s–(p+q+1)]

m+s–2 , using (2.4), we get

∫
Ω

uσ+p+q–1 dx ≤
(∫

Ω

uσ+m+s–2 dx
)x12(∫

Ω

uσ dx
)x22

≤ x12

∫
Ω

uσ+m+s–2 dx + x22

∫
Ω

uσ dx. (3.14)

Combining (3.10) and (3.14), we obtain

kn+1
1

∫
Ω

uσ+p+q–1 dx

≤ x12kn+1
1

∫
Ω

uσ+m+s–2 dx + x22kn+1
1

∫
Ω

uσ dx

≤ (
2x20ε

– x10
x20

2 x12k1 + x22k1
)
φ

+
(

2r7x12k
n+1– x2(n–2)n

n–2–x1n
1 + 2r6x12knx1+1– x1n2

n–2
1

n – 2 – x1n
n – 2

ε
– x1n

n–2–x1n
5

)

· φ
x2(n–2)

n–2–x1n + 2r6x12knx1+1– x1n2
n–2

1
x1n

n – 2
ε5kn

1

∫
Ω

∣∣∇u
σ+m–1

2
∣∣2 dx, (3.15)

where ε5 is a positive constant which will be defined later.
Combining (3.6), (3.11), (3.13), and (3.15), we have

φ′(t) ≤ (
nα + 2r1k2x20ε

– x10
x20

2 + 2r4x20ε
– x10

x20
2 x12k1 + r4x22k1

)
φ

+
(

2r1k2r7k
n– x2(n–2)n

n–2–x1n
1 + 2r1k2r6knx1– x1n2

n–2
1

n – 2 – x1n
n – 2

ε
– x1n

n–2–x1n
3

+ 2r4r7x12k
n+1– x2(n–2)n

n–2–x1n
1 + 2r4r6x12knx1+1– x1n2

n–2
1

n – 2 – x1n
n – 2

ε
– x1n

n–2–x1n
5

)
φ

x2(n–2)
n–2–x1n

+
1
2

r2k2ε
–1
1 r5

(
2x20ε

– x10
x20

2 x11 + x21
)
φ

2s
σ +1

+
1
2

r2k2ε
–1
1 r5x11k

n– x2(n–2)n
n–2–x1n

1 2r7φ
2s
σ + x2(n–2)

n–2–x1n

+ r2k2ε
–1
1 r5r6x11knx1– x1n2

n–2
1

n – 2 – x1n
n – 2

ε
– x1n

n–2–x1n
4 φ

(2s+σx2)(n–2)
σ (n–2–x1n)

+
(

2r1k2r6knx1– x1n2
n–2

1
x1n

n – 2
ε3 +

1
2

r2k2ε1 + r2k2ε
–1
1 r5r6x11knx1– x1n2

n–2
1

x1n
n – 2

ε4

+ 2r4r6x12knx1+1– x1n2
n–2

1
x1n

n – 2
ε5 – r3

)
kn

1

∫
Ω

∣∣∇u
σ+m–1

2
∣∣2 dx. (3.16)
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If we choose suitable ε1, ε3, ε4, ε5 such that

2r1k2r6knx1– x1n2
n–2

1
x1n

n – 2
ε3 +

1
2

r2k2ε1 + r2k2ε
–1
1 r5r6x11knx1– x1n2

n–2
1

x1n
n – 2

ε4

+ 2r4r6x12knx1+1– x1n2
n–2

1
x1n

n – 2
ε5 – r3 = 0. (3.17)

Substituting (3.17) into (3.16), we derive

φ′(t) ≤ (
nα + 2r1k2x20ε

– x10
x20

2 + 2r4x20ε
– x10

x20
2 x12k1 + r4x22k1

)
φ

+
(

2r1k2r7k
n– x2(n–2)n

n–2–x1n
1 + 2r1k2r6knx1– x1n2

n–2
1

n – 2 – x1n
n – 2

ε
– x1n

n–2–x1n
3

+ 2r4r7x12k
n+1– x2(n–2)n

n–2–x1n
1 + 2r4r6x12knx1+1– x1n2

n–2
1

n – 2 – x1n
n – 2

ε
– x1n

n–2–x1n
5

)
φ

1+ 2x1
n–2–x1n

+
1
2

r2k2ε
–1
1 r5

(
2x20ε

– x10
x20

2 x11 + x21
)
φ1+ 2s

σ

+
1
2

r2k2ε
–1
1 r5x11k

n– x2(n–2)n
n–2–x1n

1 2r7φ
1+( 2s

σ + 2x1
n–2–x1n )

+ r2k2ε
–1
1 r5r6x11knx1– x1n2

n–2
1

n – 2 – x1n
n – 2

ε
– x1n

n–2–x1n
4 φ

1+ 2s(n–2)+2x1σ

σ (n–2–x1n) . (3.18)

Using Hölder’s and Young’s inequalities, we have

φ1+γ ≤
(

1 –
γ

4

)
φ +

γ

4
φ5. (3.19)

Applying (3.19) to φ
1+ 2x1

n–2–x1n , φ1+ 2s
σ , φ1+( 2s

σ + 2x1
n–2–x1n ), φ1+ 2s(n–2)+2x1σ

σ (n–2–x1n) in (3.18), respectively, we
obtain

φ′(t) ≤ a(t)φ(t) + b(t)φ5(t), (3.20)

where

a(t) =
(
nα + 2r1k2x20ε

– x10
x20

2 + 2r4x20ε
– x10

x20
2 x12k1 + r4x22k1

)

+
(

2r1k2r7k
n– x2(n–2)n

n–2–x1n
1 + 2r1k2r6knx1– x1n2

n–2
1

n – 2 – x1n
n – 2

ε
– x1n

n–2–x1n
3

+ 2r4r7x12k
n+1– x2(n–2)n

n–2–x1n
1

+ 2r4r6x12knx1+1– x1n2
n–2

1
n – 2 – x1n

n – 2
ε

– x1n
n–2–x1n

5

)[
1 –

x1

2(n – 2 – x1n)

]

+
1
2

r2k2ε
–1
1 r5

(
2x20ε

– x10
x20

2 x11 + x21
)(

1 –
s

2σ

)

+
1
2

r2k2ε
–1
1 r5x11k

n– x2(n–2)
n–2–x1n

1 2r7

[
1 –

s(x2n – 2) + x1σ

2σ (n – 2 – x1n)

]

+ r2k2ε
–1
1 r5r6x11knx1– x1n2

n–2
1

n – 2 – x1n
n – 2

ε
– x1n

n–2–x1n
4

[
1 –

s(n – 2) + x1σ

2σ (n – 2 – x1n)

]
(3.21)
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and

b(t) =
(

2r1k2r7k
n– x2(n–2)n

n–2–x1n
1 + 2r1k2r6knx1– x1n2

n–2
1

n – 2 – x1n
n – 2

ε
– x1n

n–2–x1n
3

+ 2r4r7x12k
n+1– x2(n–2)n

n–2–x1n
1

+ 2r4r6x12knx1+1– x1n2
n–2

1
n – 2 – x1n

n – 2
ε

– x1n
n–2–x1n

5

)
x1

2(n – 2 – x1n)

+
1
2

r2k2ε
–1
1 r5

(
2x20ε

– x10
x20

2 x11 + x21
) s

2σ

+
1
2

r2k2ε
–1
1 r5x11k

n– x2(n–2)
n–2–x1n

1 2r7

[
s(x2n – 2) + x1σ

2σ (n – 2 – x1n)

]

+ r2k2ε
–1
1 r5r6x11knx1– x1n2

n–2
1

n – 2 – x1n
n – 2

ε
– x1n

n–2–x1n
4

s(n – 2) + x1σ

2σ (n – 2 – x1n)
. (3.22)

Multiplying both sides of (3.20) by φ–5(t), we obtain

φ′(t)φ–5(t) ≤ a(t)φ–4(t) + b(t). (3.23)

That is,

–
(
φ–4(t)

)′ ≤ 4a(t)φ–4(t) + 4b(t). (3.24)

Setting H(t) =
∫ t

0 a(τ ) dτ , (3.24) can be rewritten as

(
φ–4(t)e4H(t))′ ≥ –4b(t)e4H(t). (3.25)

Integrating (3.25) from 0 to t, we have

φ–4(t)e4H(t) – φ–4(0) ≥ –4
∫ t

0
b(τ )e4H(τ ) dτ . (3.26)

That is to say,

e4H(t)

φ4(t)
–

1
φ4(0)

≥ –4Θ(t), (3.27)

where Θ(t) =
∫ t

0 b(τ )e4H(τ ) dτ .
Taking the limit to (3.27) as t → t∗, we get

Θ
(
t∗) ≥ 1

4φ4(0)
.

From the definition of Θ(t), we have dΘ(t)
dt = b(t)e4H(t) > 0. We get Θ(t) is a strictly in-

creasing function. So we can get

t∗ ≥ Θ–1
(

1
4φ4(0)

)
,

from which we complete the proof of Theorem 3.1. �
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