Yang et al. Boundary Value Problems (2020) 2020:79 @ BOU n da ry Va I ue PrO b I ems
https://doi.org/10.1186/513661-020-01375-8 a SpringerOpen Journal

RESEARCH Open Access
()]

Pullback attractor of a non-autonomous
order-2y parabolic equation for an epitaxial
thin film growth model

Xiaojie Yang', Hui Liu'" and Chengfeng Sun?

“Correspondence:
liuhuinanshi@qfnu.edu.cn Abstract

'School of Mathematical Sciences, . . . . . N
Qufu Normal University, Qufu The non-autonomous order-2y parabolic partial differential equation for an epitaxial

PR. China thin film growth model with dimension d = 3 is investigated by the method of

Full list of author information is uniform estimates. The existence of a pullback attractor for the 3D model is proved for
available at the end of the article y> 3

Keywords: Pullback attractor; Asymptotic compactness; Non-autonomous parabolic
eqguation

1 Introduction
In [1], Duan and Zhao showed the existence of pullback D-attractor for a non-autono-
mous fourth-order parabolic equation. Inspired by [1], we consider the following non-

autonomous order-2y parabolic equation:

W+ V- (1= |Vh" 2)Vh+ (-A)'h=g(xt), in$ x [r,00),
h|t:r = hr (x)r

(1)

where & = h(x, t) is the scaled height of a thin film. £2 = [0, L]*> C R? is the periodic domain.
y > 3 is a positive constant.

The system (1) is modified by equations in [1] and [2]. In [2], the global well-posedness
of strong solution for a y-order epitaxial growth model with g=0, y >2andd =1,2 or
g£=0,y >d > 3 wasstudied by Fan—Alsaedi—Hayat—Zhou. Fan—Samet—Zhou [3] showed
the global well-posedness of weak solutions and the regularity of strong solutions for an
epitaxial growth model with g = 0. In this note, we study the order-2y non-autonomous
equation of an epitaxial growth model.

Pullback attractors which form a family of compact sets that is bounded in phase space
and has invariability under the dynamics system. And the pullback attractor plays a key
role in the larger-time behavior of solutions. Compared with uniform attractors, the exis-
tence of pullback attractor is easy to get with the weak assumption of a force term. Since the
pullback attractor appeared, it has aroused the interest of lots of authors and also has been
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made great progress. In [4—8], the pullback attractor was presented and proved. The pull-
back D-attractor of systems for non-autonomous dynamics has been proposed in [9] and
pullback D-attractor of non-linear evolution equation was showed in [10]. In [11], the pull-
back attractors of the n-dimensional non-autonomous parabolic equation was considered.
In [12], the norm-to-weak continuous process has been proposed and the proof of the ex-
istence of the pullback D-attractor for non-autonomous equation in H} was showed by
Li and Zhong. The continuity of pullback and uniform attractors was studied by Hoanga,
Olsonb and Robinson [13]. And in [14], Cheskidov and Kavlie did many studies with pull-
back attractors. However, the existence of pullback D-attractor for a non-autonomous
order-2y parabolic has not been studied for y > 3 yet.

In this paper, we need to overcome the difficulty of the non-linear term V - (1 —
|Vh|Y2)Vh and (—A)? k. In [15], Park and Park put the condition of exponential growth
on the external forcing term g(x, £) and gave the proof of the existence of a modified non-
autonomous equation. Inspired by [15], we also assume that the external forcing term
g(x,t) satisfies the condition of exponential growth, which we give in Sect. 2. To obtain
an appropriate prior condition, we must limit the parameter y > 3 and use the Sobolev
inequality many times.

In this note, the pullback D-attractor of an order-2y non-autonomous model (1) with
y > 3isstudied. The paper is organized as follows. In Sect. 2, we do some preparatory work
and give the main result. In Sect. 3, using the method of uniform estimates, the existence
of a pullback D-attractor for system (1) is proved for y > 3.

In the following sections, let (1); represent the first equation of (1). And note that con-
stant C shows different data in different rows.

2 Preliminaries
Assume that X is a complete metric space and {h(t, 7)} = {h(¢, 7)|t > 7,7 € R} is a two-
parameter family of mappings acton X : hi(t,7): X - X, t > 1,7t € R.

Definition 2.1 (See [16]) A two-parameter family of mappings {/(t, )} is called a norm-
to-weak continuous process in X if

(1) h(t,s)h(s,t)=h(t,t)forallt >s>1,

(2) h(t,t)=1d is the identity operator for all T € R,

(3) h(t,t)x, — h(t,7)x, if x,, - x in X.

Assume B(X) is the collection of bounded subsets for X and A, B C X. Then we denote
the Kuratowski measure of non-compactness «(B) of B as follows:

a(B) = inf{8 > 0: B has a finite open cover of sets of diameter < §}. 2)

Let D be a nonempty class of parameterized sets D= {D(t):t € R} C B(X).

Definition 2.2 (See [12]) A process {/(t, t)} is said to be pullback w-D-limit compact if
for any € > 0 and D e D, there exists a 1o(D, £) < ¢ such that o:(UTZT0 h(t,7)D(1)) <.
Definition 2.3 (See [12]) The family A= {A(t) : t € R} C B(X) is called a pullback D-
attractor for (¢, t) if

(1) A(t) is compact for all £ € R,
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(2) A is invariant, i.e., h(t, T)A(t) = A(¢) forall £ > t,
3) Ais pullback D-attracting, i.e.,

lim dist(h(t, 7)D(r),A(t)) =0, VDeD,teR.
T—>—-00

(4) If {C(t)}ier is another family of closed attracting sets, then A(z) C C(¢) for all £ € R.

Next, we show Lemma 2.4 which was given in [12]. It is important for the existence proof

of pullback attractor for a non-autonomous model.

Lemma 2.4 Suppose {h(t,t)}.<; is a norm-to-weak continuous process such that
{h(t, T)}r <t is pullback w-D-limit compact. If there exists a family of pullback D-absorbing
sets {B(t):t e R} € D, i.e, for any t € R and D € D there is a ro(ﬁ, t) <t such that
h(t, 7)D(t) C B(¢) for all T < 1y, then there is a pullback D-attractor {A(t) : t € R} and

A@) = Jne D).

S<t T<s

For convenience, assume that

t+1
glxt) e L} (R;L*(2)) and sup/ lg(x, s)|2 ds < 0o.
teR Jt

Assume that there exist 8 > 0and 0 < a < ( 4}/2”_)'92}“6)25 for any ¢ € R, such that

le@)]* < pet, 3)

where & is the first eigenvalue of A = (-A)”. And in this paper, let (—A)% =A.
Using (3), we can obtain for any £ € R

t
Gi(t) = / eSSHg(s) szs < 00, (4)
t s
Go(t) := / / e‘g’”g(r) ||2drds < 00, (5)
ft - 2(2yi:§w2)55[[(;1 (s)] a2oyse . [G2 (s)] 4y V—fzwe ] o< oo ©

By a slight modification of the classical results in the autonomous framework, mainly of
the Faedo—Galerkin method [17]. In the following, we obtain the result on the existence

and uniqueness of solution for system (1).

Lemma 2.5 Assume that g(x,t) € leoc(R;LZ(.Q)). There is a unique solution h(x,t) such
that

(1) ifho = h, € L*(22) = h(x,1) € C°([r,00); L*(£2));

(2) ifho =h, € HY (£2) = h(x,t) € CO([r, 00); H} (£2)).
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By Lemma 2.5, we can see that the solution is continuous with initial condition /4, in the
space H} (£2). Then we define h(t, ) : H} (2) — H} (£2) by h(t, t)h,. We can find that the
process k(t, T) is a norm-to-weak continuous process in the space H}, (£2).

Next we give main result.

Theorem 2.6 Assume that g(x,t) € L*

loc

(R; L*(£2)) satisfies (3) and h, € H}, (2) with y > 3.
Then there exists a unique pullback D-attractor in space HY (2) which is in control of the
process corresponding to system (1).

3 Proof of main result

In this section, we prove the existence of pullback D-attractors for (1). Firstly, we show
uniform estimates of solutions for system (1). It has an important effect on the proof that
the model (1) has an absorbing set of {A(t, 7)}.

Lemma 3.1 Assume that g(x,t) € L2 (R;L*(82)) satisfies (3) and h, € H} (2) where y > 3.

loc
Counsider the system (1), we have, for all t > T,

t
|h@|* < e h > + ée-éf / &) ds + C )
and

/tess HA”h(s)H2 ds < [1 +&(t- t)]esf A 0% + éGl(t) +Gy(t) + Cétt, (8)

Proof Multiplying (1); by h and integrating it over §2, we can deduce that

li 2 Y % 2
2dt/;2h (t)dx+/g|Vh(t)| dx+/;2(/l h(t))" dx

- /Q |Vh(e)| dx + (g(2), h(2))
< 1w + Le e + 2 |arne P+ ©)
-2 vo2 2 ’
From (9), we can get
e T R Y D) e P e (10)
dt v ~ £
and
o e e el P )
dt & ’
Multiplying (11) by f¢=?) and integrating it over (z,), we have

t
”h(t)H2 <eFE )% + ée’st/ esS”g(s)szs +C. (12)

Multiplying (12) by €** and integrating it over (¢, ), we obtain

‘/TtessHh(S)”stf (t—7)e e ) + é/_; /oo &g drds + Cé*. (13)
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Similarly, multiplying (10) by e¢ and integrating it over (¢, 7), using (13), it is easy to get
t t
/ & Vh)| ds + / &5 A7 H(s) | ds
£T 2 I £s 2 ! £s 2 £t
<e|hl +§/ e | g(s)|| ds+f§/ || h(s)|” ds + Cé

<[1e- e+ L [ el as

T

t s
+ / / e g(r) ||2 drds + Ce®'. (14)

The proof is complete. O

Lemma 3.2 Let h, € H} (2), g(x,t) € L2 _(R;L*(2)) and g(«, t) satisfy (3) with y > 3. In

loc

system (1) for any t > t, we have
1
VA ||2 < C{e_é(t_r)[HVhr 1% + A |17] + e-“[Gl(t) + EGz(t)] + 1}. (15)

Proof Multiplying (1); by Ak and integrating it over £2, we derive that

d §
%% |Va@) | + | A1) | + (V- (|VA@)| > VR@), Ah@))
= | An@)|” - (¢@), A(z)). (16)

Now we have
(V- (|VEO| 2 Vh()), Ah(r))

- / V(o) 72| Ah(e)| dx + / Vi)V (|VA©)| ) Ah(t) dx
2 2

- / Vh() [ Ak dx+ ¥ =2 / Vi)V (|VA©)[*)| V@)~ Ah() dx
o 2 Je

3 3
- / (Va2 AR(@)| dx + +(y - 2) f (Zhi,»h,-h,> (thk)\w,(t)yux
2 2

ij=3 k=1

3 3
- f (Va2 | AR(@)| dx+ (v - 2) f (Z h,»,»h?) (Z hkk> V()| dx
2 2\ i1 k=1
3 3
+(y-2) / ( 3 hi,hih,) <Z hkk) |Vh(e)|" ™" dx
2 1

ij=1,i%f k=
3
- / \Vh(e)] 7| AR@®)|*dx + (y -2 Y / \Vh(e)|” " 12 dx
2 i-1 792
3
-2 ) / |Vh(e)|” ™ W2 hyhy; dx
ij=Liz %

3
+(y-2) fg |Vh(t)|y_4Ah(t)< 3 hl,«hih,> dx. (17)

ij=1,i%j



Yang et al. Boundary Value Problems (2020) 2020:79

By Young’s inequality, we obtain

(y =2) / |V ~*h? hyhy; dx
ij=1,i#

3
Z_yT—z 3 / V12 (2 + 1) dx
ij=1,i% Y 2

3
—2
:_VTZ/ \Vh|"12h2 dax
-1 V%

S — Z / \Vh) i dx. (18)
i,j=1,i#f
On account of the regularity theorem of elliptic equations, we have

(y -2) / |Vh|"~ 4Ah< > h,,hh)dx

ij=1,i#j

-2
> Yz f V|7 2| A dx. (19)
2 Jo
Using (17), (18) and (19), we get

(V- (|VEO| 2 Vh()), Ah())

/|Vh(t)|y 2| A(e)[* dx+ L / VA h2H dx
y-2 -2 2
-5 |Vh|"=*|Ah|*dx > 0. (20)
2

Using the Sobolev inequality, we deduce

—

y-

| ano)] = a7 ho] 7 [n)| . (21)

Combining (16), (20) and (21) gives

L2 NvhO ¢ 4o
< |an®)|” - (g(), b))

< | an@)]’ + @) HAh(t)H

y+1

v h(t)

<1 Av+lh(t)||2+c(uh(t)||2+ le®[?), (22)

<5

that is,

d
ZIVHO + [ah@[* < c(Ino] + le@]) (23)

Page 6 of 12
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and
LI + | vho | = (o] + g0, (24)
Multiplying (24) by €5*~®) and integrating over (t, 7), we derive that
|Va@)|® < et Vi |? + c{eff /[eﬁ”h(s) |? ds + et /teés”g(s) ||2ds}. (25)

By (13) and (25), we get

1
|Vh(e) ”2 < c{e-f“-f)[nwlr 1% + 172 11*] + e-ff[Gl(t) + ng(t)] + 1}. (26)
Hence, the proof is complete. O

Lemma 3.3 Suppose that h, € H (2), g(x,t) € L} (R; L*(£2)) and g(x,t) satisfies (3) with
y > 3. Consider the system (1), we have for all t > t

2(4y2-9y+6)

R | R S U e

2 9y
+ || Vi | - 6>] + (1 + %) {1+e¥[Gi() + G(®)]}

+e§t‘/‘lf e_%ﬁ[[cﬁ(g]‘Lyszzy+6
—00
4y2-9y46
+[Ga(s)] 7 ]ds}. )

Proof Multiplying (1); by (—A)” & and integrating over £2, then using the Sobolev inequal-
ity we can get

1d 2 2
E%‘/Q(Ayh(t)) dx+/g((—A)yh(t)) dx

= A7 @) | + (V- (|VRE)| 2 VRO), (~A) (@) + (¢(8), (-A) h())

< glearmol « |47 @ + (19 - (The) > vho) |+ le])
< %H =AY @) |* + C([|(-a) R | v | A7 h(2) | e e

+ | |Vh@)| 7 ane) )
< 1A HO + (| 47K + @] + |ho| 22D A)]2)

< in Ay h@|*+ (|27 hO| + e

3 49213y +13

(y-3) —1 _5 4y-7
TEvh@ | Ay RO [ VA@ | )

+ [ Ay n@)|

2(4y2-9y+6)

< 1Ay HO| + (| a7HO| + g@] + [vro] “ ), (28)

Page 7 of 12
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that is,

d 2(4y2-9y+6
Slarno) + [ayuol’ < camo]’  [so ] + [vho | ) e

and

2(4y2 -9y +6)
+2

d
Ao s g|arno|” < c(|arh@)|* + @] + [Vh@| 72 7). (60)

Multiplying (30) by (¢ — 7)e** and integrating it over (¢, 7), we get
(¢ - )| A h(p)||*
t t
< c{ / [1+(s— )] A7 hs) | ds + / (s — )¢ | g(s)||* ds
T T
13 2(4y2%-9y+6)
+ / (s— r)eéS”Vh(s) || 2 ds}. (31)
T
Hence,

t
| A” h(z) ”2 < C(l + i)e_a/ || A” h(s) ||2ds+ Ce ¢t Gy (¢)

¢ 24y2-9y+6)
+ Ce_gt/ | Vhs)| 7 ds
T
2111 +12 +13. (32)

It the follows from (8) that
L £t £t 2, 1 £t
L <C 1+ﬁ e [1+$(t—r)]e 172 ] +§G1(t)+G2(t)+Ce
L1 ey, 2 L\ &
<C|l+(t-1)+—|e " +Cl1+— )e [Gl(t)
t—-1 t—-1
1
+Gy(t)] + C(l + —> (33)
t—-1
On the other hand, by Holder’s inequality and (15), we get

t
I < Ce ¥t / &5 {e 0D (| V|12 + e 1)
T

4y2—9y+6

+ e‘gs[Gl(s) + Gz(s)] + 1} v¥ g

¢ t 4y2—9y+6
< Ce’st/ & ds+ce’§t/ e5e” E(S_r)(llhr||2
T T

492 -9y+6

Y
+ VR |1?) 77 ds

4y2—9y+6 4y2—9y+6

¢ 2.4,
+Ce_$t/ essejy 7 6ES{[Gl(S)] 74 [Ga(s)] T s

24y2-9y+6)
< Cefsz[est _ eér] + Ce*é(tff)(”],lr |~ 7+
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2(4y2 -9y +6) L a2 9y46,,
i) ) [ g
T

+ Ce—st /t e-%gs{[Gl (S)] 4y2y—f2)/+6 . [GZ(S)] 4)/2};92y+6 } s
T

2(4y2 -9y +6) 2(4y2 -9y +6)
<C+Ct-1)e s (|h ||~ 72 + || VRl 72 )

L 2y2-5y42) 4y2-9y+6 4y2-9y+6
+ Ce‘st/ e ES{[Gl(S)] 74 [Gols)] T ds. (34)
Combining (33) and (34) with (32), we complete the proof. O

Remark 3.4 By Sobolev inequality and (28), we can get the exponent of [|(—A)Y k()| is
32()’::?) > 0, which is in the seventh row in (28). Hence, we limit y > 3 with d = 3. Inspired
by [12] and [15], the existence of pullback D-attractor for system (1) is proved as follows.

Firstly, assume that fR is the set of all function r: R — (0, oo) such that

. 2(4y2-9y +6)
lim ¢y~ 72 (£)=0.
t—00

LetD:= {D(t): t € R} C B(H} (R2)), then D(¢t) C By (r(t)) for some r(t) € R. Here Bo(r(t))
HY () is a closed sphere and its radius is r(t). Assume

ra(t) = 2c{1 +e G (t) + e Gy(t)

b 2ey2-5y42) 429746
_,_e—ét/ e 72 55[[(;1(5)] y+2

(o .¢]

6] 7] ds}. (35)

Using the continuity of embedding H} (£2) < L*(£2), for any D € D and ¢ € R there
exists 7o(D, t) < t, such that

||A”h(t) || <ro(t), V1<t (36)
4y2"_+9?/+6)2§, we have By(ro(t)) € D. Hence, by Lemma 2.4,
there is a family of pullback D-absorbing sets By(ro(t)) in HY ().

Then the main idea is proved.

In addition, since 0 < o < (

Proof of Theorem 2.6 By Lemma 2.4, we need only to demonstrate that the process k(t, )
is pullback -D-limit compact. Then we can obtain the existence of pullback D-attractor.
The operator A~! € L2(£2) is continuous and compact, so there is a sequence {§}72, satis-
fying

§1 <& <. <g<---, §—o00asj— 00,

and there is a family {wj};fl, where w; € HY(2),j=1,2,.... The elements in {wj};’f1 are
orthonormal in L*(£2) such that

Aw; =&w;, forj=1,2,....

Page 9 of 12
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Let X,, = span{w,wy,...,w,} C H} (£2) and P, : H} (£2) — X,, be an orthogonal projec-
tor. Therefore

h=P,h+(I-P)h:=h +hy. (37)
Testing (1)1 by (—A)? h,, using Young’s inequality, we get

d
Sl A @] + oy hao]”

[

< LAy @« clarn] « e | + [T ), (39)

which means
d 24y2-9y+6)
A @ + 6| 470 < (|47 m@ | + g + |[Va@]| 7). 69)
Multiplying (39) by (¢ — 7)e and integrating it over (z,t), we obtain

(¢ - )" | A” By (1)

t
S/ eéns
T
(4y 9V+6)

+C/(s—r E"s”g(s H ds+C/(s—1: é”s”Vh H ds

< / efns
T

£ £ 204y2-9y+6)
e [Ceteoase [ v T as). 0)

AV h(s) szs

t
A Iy(s)|* ds + c/ (s — T)ebrs

A h(s)| ds

A”h(s)||2dS+C(t—t){/ ¢frs

Combining (36) and (40) gives for any 7 < 7

|47 k@)

t t
<(t-7)tedt / | A7 h(s) | ds + Ce¥nt / & A7 (s)||* dis
T T
t ) t 2472 -9y +6)
+ Ce’s”t/. eé”S”g(s) H ds+Cef‘§”‘/ & HVh(s)” v2 s
T T
t t
<(t- t)_le’g”tf Snsy2(s) ds + Ce ot f e r2(s) ds

t
+Ce_$”t/ e g(s
T

Note that

24y2-9y+6)

t
)szs+ Ce_s"t/ sy T (s)ds. (41)

t t
e_é"t/ e ra(s)ds < Ce_é”t/ es”s[l +e75GL(S) + e‘ést(s)] ds

T T

< Cg+ CE - 6) e [Git) + Ga(D)] (42)

Page 10 of 12
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and

t 2(4y2-9y+6)
—&nt s V+2
e / e Ty (s)ds
T

t
= Ce 5nt / eg"s{l + 755G (s) + €55 Gyl(s)

S T ) 4y2-9y+6 4y2-9y+6 41/2;7792”6
y2-5y+ —9y+ —9y+ +
+ei§5/‘ e r¥2 Er[[Gl(r)] v 4 [Gz(r)] v+2 ]dr} ds
—00
<Cg!
4v2_9y +6 -1 _ay2-9y+6 4y2-9y+6 4929y 6
N C<5n _ Ay -9y +6 ) T [6,0] T < [60] )
y+2
4y -9y +6 \ 7' _ar’ope
+ C(fn - Y ); s) - +2}/
Yy +
t 202y2-5y+2) 4y%-9y+6 Mﬁf&
) {(/ e VT/QL fs[Gl(S)] y+2 dS)
—00
¢ 2 5 p 4y2—9y+6
2(2y“-5y+2) 4y“-9y+ y+2
+ (/ e T ES[Gl(s)] V2 ds) }
—00

On the other hand, by simple calculations, we get

t —~Ent [ Eus —as t<0
" - 9 Be &t [Cerseds, <0,
¢ / ¢ |g(S)|| ds = —Ent [T pEns putls|
T Be 5t [T efrsetSlds, t>0
ﬂe—at t <
< En—a’ -
— ﬂeo(t 'Be—énz
Enta Ep—a

Page 11 of 12

(43)

(44)

By (41), (42), (43) and (44), we see that, for any ¢ > 0, there exist 7o < £ and N € N such

that for every n > N and every 7 < 19
|AY hy(@)| < e.

It shows that the process {/(¢, 7)} is pullback w-D-limit compact.
Then, using Lemma 2.4, the proof of Theorem 2.6 is complete.
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