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Abstract
This paper aims to investigate the class of quasilinear Schrödinger equations

–�u –
[
�(1 + u2)

γ
2
] γ u

2(1 + u2)
2–γ
2

= αh(|x|)|u|p–1u + βH(|x|)|u|q–1u, x ∈R
N , (0.1)

where N > 2, 1≤ γ ≤ 2, α,β ∈ R and either 0 < p < 1 < q or 1 < p < q. Functions
h(|x|), H(|x|) are continuous and positive inR

N . Relying on some special arguments
and the Schauder–Tychonoff fixed point theorem, nonexistence criteria, existence of
positive ground state solutions and blow-up solutions to Eq. (0.1) with 0 < p < 1 < q or
1 < p < q will be obtained.
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1 Preliminaries
This paper is concerned with the following quasilinear Schrödinger equation:

–�u –
[
�

(
1 + u2) γ

2
] γ u

2(1 + u2)
2–γ

2
= αh

(|x|)|u|p–1u + βH
(|x|)|u|q–1u, x ∈R

N , (1.1)

where 1 ≤ γ ≤ 2, α,β ∈R and either 0 < p < 1 < q or 1 < p < q.
This class of equations is often referred to as so-called modified nonlinear Schödinger

equations due to the quasilinear term [�(1 + u2)
γ
2 ] γ u

2(1+u2)
2–γ

2
, whose solutions are related

to the standing wave solutions for the quasilinear Schrödinger equation

izt = –�z + V (x)z – h
(|z|2)z –

[
�Ψ

(|z|2)]Ψ ′(|z|2)z, x ∈R
N , (1.2)

where V is a given potential, Ψ and h are real functions.
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The quasilinear Schrödinger equation (1.2) has been derived as models of several physi-
cal phenomena corresponding to different types of Ψ ; see [1, 2]. The super fluid film equa-
tion in plasma physics has this structure for Ψ (s) = s2α [1, 3, 4]. For the case Ψ (s) = (1+s)α/2,
Eq. (1.2) was used to model the self-channeling of a high-power ultrashort laser in matter
[5–8]. Especially, Cheng in [9] solved the existence of positive solutions to the following
equation by a dual approach:

–�u + Ku –
[
�

(
1 + u2)α/2] αu

2(1 + u2)(2–α)/2 = |u|q–1u + |u|p–1u, (1.3)

where K > 0, α ≥ 1, 2 < q + 1 < p + 1 ≤ α2∗. Similar work can be found in [10, 11] and the
references therein.

Besides, Zhang, Liu, Wu and Cui [12] focused on the existence and nonexistence of
entire blow-up solutions for the following quasilinear p-Laplacian Schrödinger equation
with a non-square diffusion term:

⎧
⎨

⎩
–�pz – �p(|z|2γ |z|2γ –2z) = q(x)g(z),

z > 0, in R
N , z(x) → ∞, as |x| → ∞,

(1.4)

where p ≥ 2γ , γ > 1
2 , the nonnegative radial function q is continuous on R

N , g is a contin-
uous positive and non-decreasing function on [0,∞). Chen and Chen [13] concentrated
on the nonexistence of stable solutions for the quasilinear Schrödinger equation

–�u –
[
�

(
1 + u2) 1

2
] u

2(1 + u2) 1
2

= h(x)|u|q–1u, x ∈R
N , (1.5)

where N ≥ 3, q > 5
2 , h(x) is continuous and positive in R

N .
Throughout the paper, we consider (1.1) with the following two cases:
(i) 0 < p < 1 < q, α,β > 0, h(|x|), H(|x|) > 0,

(ii) 1 < p < q, α,β > 0, h(|x|), H(|x|) > 0.
With the aid of a variational argument, the question of the existence and multiplicity of
nontrivial solutions to problem (1.1) is largely open. Compared with the work on weak
solutions by variational way, we are interested in investigating the radial solutions and
asymptotic behavior. In the present paper, the first task is to obtain the nonexistence cri-
teria of positive ground state solutions to (1.1) involving superlinear nonlinearities, which
mainly relies on some special techniques. Immediately after that, the sufficient conditions
for existence of positive ground state solutions are solved by the Schauder–Tychonoff fixed
point theorem. At last, we aim at the sufficient conditions for existence of blow-up so-
lutions involving concave-convex nonlinearities by the Schauder–Tychonoff fixed point
theorem. As far as the authors are aware, it seems that there is little work concerning the
nonexistence criteria of the positive ground state solutions to problem (1.1) involving su-
perlinear nonlinearities. Furthermore, there is almost no work on the existence of blow-up
solutions involving concave-convex nonlinearities.
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Motivated by [14–17], we take the changing of variables u = g(z) or z = g–1(u), where
g(t) is given by

g ′(t) =
[

1+
γ 2g2(t)

2(1 + g2(t))2–γ

]– 1
2

=
√

2
(
1+g2(t)

) 2–γ
2

(
2
(
1+g2(t)

)2–γ +γ 2g2(t)
)– 1

2 , t ≥ 0,

and g(t) = –g(–t) on (–∞, 0].
Thus, we can obtain the properties of the function g(t) as below.

Lemma 1.1 ([8]) The function g(t) satisfies
(f1) g is uniquely defined, C∞ and invertible;
(f2) 0 < g ′(t) ≤ 1, for all t ∈R;
(f3) |g(t)| ≤ |t|, for all t ∈R;
(f4) g(t)

t → 1 as t → 0;
(f5) g(t) ≤ 2γ tg ′(t) ≤ 2γ g(t), for all t ∈ R

+ = [0,∞);
(f6) there exists b0 > 0 such that

∣∣g(t)
∣∣ ≥

⎧
⎨

⎩
b0|t| if |t| ≤ 1,

b0|t|1/γ if |t| ≥ 1.

After making the change u = g(z), (1.1) turns into the following equation:

–�z = αh
(|x|)∣∣g(z)

∣
∣p–1g(z)g ′(z) + βH

(|x|)∣∣g(z)
∣
∣q–1g(z)g ′(z), x ∈R

N . (1.6)

Definition 1.1 The function z ∈ C1,δ
loc(RN ) (0 < δ < 1) is said to be a weak solution of (1.6)

if
∫

RN
∇z∇ζ dx =

∫

RN
αh

(|x|)G1(z)ζ dx +
∫

RN
βh

(|x|)G2(z)ζ dx, ζ ∈ C1
0
(
R

N)
,

where and in the sequel, G1(z) = |g(z)|p–1g(z)g ′(z), G2(z) = |g(z)|q–1g(z)g ′(z).

We observe that z = z(|x|) = z(r) is a positive radial solution of (1.6) if and only if the
function z(r) satisfies the following equation:

–
(
rN–1z′(r)

)′ = αrN–1h(r)
∣
∣g(z)

∣
∣p–1g(z)g ′(z) + βrN–1H(r)

∣
∣g(z)

∣
∣q–1g(z)g ′(z), r > 0. (1.7)

As usual, we focus on the existence and nonexistence of weak solutions to (1.1) via (1.7).
Our main conclusions in this work are as below.

Theorem 1.1 Let 1 < p < q, α,β > 0, suppose that functions h(t), H(t) are positive, contin-
uous in R

N and
(P1) A1(r) → ∞ or A2(r) → ∞, as r → ∞, where for all s > 0, A1(r) =

∫ r
s tN–1–(N–2)(p+1)h(t) dt,

A2(r) =
∫ r

s tN–1–(N–2)(q+1)H(t) dt,
then problem (1.7) does not possess any positive ground state solutions.

Theorem 1.2 Let 1 < p < q, α,β > 0, suppose that functions h(t), H(t) are positive, contin-
uous in R

N and
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(P2) ϕ1(t) → ∞ or ϕ2(t) → ∞, as t → ∞, where ϕ1(t) =
∫ t

1 rN–1h(r) dr · t1–N ,
ϕ2(t) =

∫ t
1 rN–1H(r) dr · t1–N ;

(P3) (tN h(t))′ ≤ (N–2)(p+1)
4γ

tN h(t), (tN H(t))′ ≤ (N–2)(q+1)
4γ

tN H(t), for all t > 0,
then problem (1.7) has at least one positive ground state solution.

Theorem 1.3 Let 0 < p < 1 < q, α,β > 0, suppose that h(|x|), H(|x|) are positive, continuous
in R

N and satisfy

h
(|x|) ≤ L1

|x|λ1
, H

(|x|) ≤ L2

|x|λ2
, |x| ≥ 1,

where L1, L2 > 0, 0 < λ1 < 2, λ2 > 2, then problem (1.7) has multiple positive blow-up solu-
tions.

The organization of this work is as below. Sufficient conditions for nonexistence of pos-
itive ground state solutions to (1.7) will be set up in Sect. 2. Section 3 and Sect. 4 contain
the proof of the existence of positive ground state solutions and blow-up solutions.

2 Nonexistence criteria of positive ground state solutions
In this section, we aim at deriving some useful lemmas by special techniques and then
finishing the proof of Theorem 1.1. Throughout the paper, a function z is called a ground
state solution of problem (1.1) if the weak solution z tends to zero as |x| → ∞.

Let us denote operator

T(z)(r) = –
(
rN–1z′(r)

)′.

Lemma 2.1 Let z(r) ∈ C2(0,∞) be a positive solution of (1.7), if

T(z)(r) ≥ 0 (r > 0), z′(0) = 0, (2.1)

then the function F(r) = rN–2z(r) is increasing for r > 0. Moreover, F ′(r) = 0 iff z(r) = cr2–N ,
where c is a constant.

Proof It is easy to get T(z)(r) ≥ 0 and

T(z)(r) = –
(
rN–1z′(r)

)′ = –rN–2((N – 1)z′ + rz′′)

= –rN–2((N – 2)z + rz′)′ = –rN–2M′(r), (2.2)

where M(r) = (N – 2)z + rz′ and M′(r) ≤ 0 (r > 0). Integrating (1.7) over (0, r), we have
z′(r) ≤ 0.

In fact, we have M(t) > 0 for every t > 0. Otherwise, there exists t0 > 0 such that M(t0) < 0,
then

rz′ ≤ M(r) ≤ M(t0), r > t0,

that is, z′(r) ≤ M(t0)
r , r > t0.
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Integrating the above inequality over [t0, r], one can see

z(r) ≤ z(t0) + M(t0) ln
r
t0

→ –∞, as r → ∞,

which gives rise to a contradiction with the positive solution z(r). Therefore,

M(r) = (N – 2)z + rz′ =
(
rN–2z

)′r3–N > 0, for all r > 0.

which implies the function F(r) = rN–2z(r) is increasing for r > 0. Moreover, F ′(r) = 0 iff
z(r) = cr2–N . �

Proof of Theorem 1.1 By (2.2), one can get

T(z)(r) = –rN–2M′(r) = αrN–1h(r)
∣
∣g(z)

∣
∣p–1g(z)g ′(z) + βrN–1H(r)

∣
∣g(z)

∣
∣q–1g(z)g ′(z).

Namely

–M′(r) = αrh(r)
∣∣g(z)

∣∣p–1g(z)g ′(z) + βrH(r)
∣∣g(z)

∣∣q–1g(z)g ′(z).

Since z(r) is a positive ground state solution and g(z) satisfies properties

(f6)
∣
∣g(z)

∣
∣ ≥ b0|z|, |z| ≤ 1, (f4) g ′(z) → 1 as z → 0,

(f5) g(t) ≤ 2γ tg ′(t) ≤ 2γ g(t),

there exist b1, b2 > 0 such that

–M′(r) ≥ b1rh(r)zp(r) + b2rH(r)zq(r), (2.3)

integrating (2.3) over [s, r] yields

–M(r) + M(s) ≥ b1

∫ r

s
th(t)zp(t) dt + b2

∫ r

s
tH(t)zq(t) dt. (2.4)

Note that rN–2z(r) is an increasing function, then

M(s) ≥ b
∫ r

s

[
th(t)zp(t) + tH(t)zq(t)

]
dt

= b
∫ r

s

[
th(t)

(
tN–2z(t)

)pt–(N–2)p

+ tH(t)
(
tN–2z(t)

)qt–(N–2)q]dt

≥ b
(
sN–2z(s)

)p
∫ r

s
tN–1–(N–2)(p+1)h(t) dt

+ b
(
sN–2z(s)

)q
∫ r

s
tN–1–(N–2)(q+1)H(t) dt

= b min
{(

sN–2z(s)
)p,

(
sN–2z(s)

)q}(A1(r) + A2(r)
)
, (2.5)
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where b = min{b1, b2}. By (P1), A1(r) → ∞ or A2(r) → ∞ as r → ∞, it gives rise to a
contradiction. Thus, there is no positive ground state solution to (1.7).

Otherwise, A1(r) < ∞ and A2(r) < ∞ as r → ∞. Denote

B1(s) =
∫ ∞

s
tN–1–(N–2)(p+1)h(t) dt, B2(s) =

∫ ∞

s
tN–1–(N–2)(q+1)H(t) dt,

which implies that B1(s), B2(s) are bounded for all s > 0. One can see that

B′
1(s) = –sN–1–(N–2)(p+1)h(s), B′

2(s) = –sN–1–(N–2)(q+1)H(s).

On the other hand, one can have

F ′(r) =
(
rN–2z(r)

)′ = rN–3((N – 2)z + rz′) = rN–3M(r)

and by (2.5), one can obtain

F ′(s) = sN–3M(s)

≥ bsN–3 min
{(

sN–2z(s)
)p,

(
sN–2z(s)

)q}

·
(∫ ∞

s
tN–1–(N–2)(p+1)h(t) dt +

∫ ∞

s
tN–1–(N–2)(q+1)H(t) dt

)

= bsN–3 min
{

Fp(s), Fq(s)
}(

B1(s) + B2(s)
)
, as r → ∞. (2.6)

If min{Fp(s), Fq(s)} = Fp(s), one can get

F ′(s)
Fp(s)

≥ bsN–3(B1(s) + B2(s)
)
. (2.7)

Integrating (2.7) over [s, r], one can have

1
1 – p

[
F1–p(r) – F1–p(s)

]

≥ b
∫ r

s
tN–3(B1(t) + B2(t)

)
dt

=
b

N – 2

[
tN–2(B1(t) + B2(t)

)|rs –
∫ r

s
tN–2(B′

1(t) + B′
2(t)

)
dt

]

=
b

N – 2
[
rN–2B1(r) – sN–2B1(s) + rN–2B2(r) – sN–2B2(s)

]

+
b

N – 2

[∫ r

s
tN–1–(N–2)ph(t) +

∫ r

s
tN–1–(N–2)qH(t) dt

]
, (2.8)

which implies that

1
p – 1

F1–p(s)

≥ b
N – 2

(∫ r

s
tN–1–(N–2)ph(t) dt – sN–2B1(s)

)
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+
b

N – 2

(∫ r

s
tN–1–(N–2)qH(t) dt – sN–2B2(s)

)

=
b

N – 2
(
A∗

1(r) – sN–2B1(s) + A∗
2(r) – sN–2B2(s)

)
, (2.9)

where A∗
1(r) =

∫ r
s tN–1–(N–2)ph(t) dt, A∗

2(r) =
∫ r

s tN–1–(N–2)qH(t) dt.
If A∗

1(r) → ∞ or A∗
2(r) → ∞ as r → ∞, we can get F1–p(s) → +∞. Since the function

F(s) is increasing, we have F(s) ≤ 0. It yields a contradiction.
As to the other case, if min{Fp(s), Fq(s)} = Fp(s), we can apply the same argument. Thus,

Eq. (1.7) has no positive ground state solution and the proof is completed. �

Remark 2.1 Since

A1(r) =
∫ r

s
tN–1–(N–2)(p+1)h(t) dt ≤ A∗

1(r) =
∫ r

s
tN–1–(N–2)ph(t) dt, for s ≥ 1,

we can get

A1(r) → ∞ ⇒ A∗
1(r) → ∞, as r → ∞.

3 Existence of positive ground state solutions
Let us consider (1.7),

⎧
⎨

⎩
–(rN–1z′(r))′ = αrN–1h(r)|g(z)|p–1g(z)g ′(z) + βrN–1H(r)|g(z)|q–1g(z)g ′(z),

z0 = z(0) > 0, r > 0, z(r) → 0, as r → ∞,

where α,β > 0, 1 < p < q.

Proof of Theorem 1.2
Step 1. We claim that, for all z0 > 0, there exist δ > 0 and z = z(r) such that

–
(
rN–1z′(r)

)′ = αrN–1h(r)
∣∣g(z)

∣∣p–1g(z)g ′(z)

+ βrN–1H(r)
∣∣g(z)

∣∣q–1g(z)g ′(z), r ∈ (0, δ), (3.1)

with z0
2 ≤ z(r) ≤ z0, r ∈ [0, δ]; z′(r) < 0, r ∈ (0, δ).

By (f5), we have g(z) > 0, thus (3.1) can be rewritten as

–
(
rN–1z′(r)

)′ = αrN–1h(r)gp(z)g ′(z) + βrN–1H(r)gq(z)g ′(z), r ∈ (0, δ). (3.2)

Since the functions h(t) and H(t) are positive and continuous, we can get

lim
r→0

∫ r

0

(∫ t

0

(
s
t

)N–1

h(s) ds
)

dt = 0, lim
r→0

∫ r

0

(∫ t

0

(
s
t

)N–1

H(s) ds
)

dt = 0,

and there exists δ > 0 such that

zp
0

∫ δ

0

(∫ t

0

(
s
t

)N–1

h(s) ds
)

dt ≤ z0

4α
, zq

0

∫ δ

0

(∫ t

0

(
s
t

)N–1

H(s) ds
)

dt ≤ z0

4β
. (3.3)
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Let U1 denote locally convex space of all continuous function on [0,∞) with the usual
topology and consider the set

X =
{

z ∈ U1

∣
∣∣
z0

2
≤ z(r) ≤ z0, r ∈ [0, δ]

}
,

and the operator T : X → C[0, δ]

T z(r) = z0 – α

∫ r

0

(∫ t

0

(
s
t

)N–1

h(s)gp(s)g ′(s) ds
)

dt

– β

∫ r

0

(∫ t

0

(
s
t

)N–1

H(s)gq(s)g ′(s) ds
)

dt. (3.4)

It is easy to get T X ⊂ X, the operator T is continuous and relatively compact. Therefore
there exists a z ∈ X such that T z = z holds by the Schauder–Tychonoff fixed point theorem.

Besides, the solution z = z(r) can be extended and satisfies z′(r) < 0 as long as z(r) > 0.
Denote

Y =
{

r ≥ 0|z(t) > 0, 0 ≤ t < r
}

.

In fact, we have Y = [0,∞). Otherwise, if Y = [0,∞), then there exists R > 0 such that

z(t) > 0, 0 ≤ t < R; z(R) = 0, z′(t) < 0, 0 < t ≤ R.

Multiplying both sides of (3.2) by –rz′(r), we can obtain

1
2
[
rN(

z′)2]′ +
N – 2

2
rN–1(z′)2 = –

α

p + 1
rN h(r)

[
gp+1(z)

]′ –
β

q + 1
rN H(r)

[
gq+1(z)

]′, (3.5)

then integrating (3.5) from [0, R], one can see

1
2

RN(
z′(R)

)2 +
∫ R

0

{
N – 2

2
rN–1(z′)2 +

α

p + 1
rN h(r)

[
gp+1(z)

]′

+
β

q + 1
rN H(r)

[
gq+1(z)

]′
}

dr = 0. (3.6)

On the other hand, by (3.2) we get

∫ R

0
rN–1(z′)2 dr =

[
rN–1z′z

]∣∣R
0 –

∫ R

0
z
(
rN–1z′)′dz

= α

∫ R

0
rN–1h(r)gp(z)g ′(z)z dr + β

∫ R

0
rN–1H(r)gq(z)g ′(z)z dr (3.7)

and

∫ R

0
rN h(r)

[
gp+1(z)

]′ dr = rN h(r)
(
gp+1(z)

)∣∣R
0 –

∫ R

0

(
rN h(r)

)′gp+1(z) dr

= –
∫ R

0

(
rN h(r)

)′gp+1(z) dr, (3.8)
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and analogously

∫ R

0
rN H(r)

[
gq+1(z)

]′ dr = –
∫ R

0

(
rN H(r)

)′gq+1(z) dr. (3.9)

Substituting (3.7), (3.8), (3.9) and (f5) into (3.6) gives

0 =
1
2

RN(
z′(R)

)2 + α

∫ R

0

[
N – 2

2
rN–1h(r)gp(z)g ′(z)z –

1
p + 1

(
rN h(r)

)′gp+1(z)
]

dr

+ β

∫ R

0

[
N – 2

2
rN–1H(r)gq(z)g ′(z)z –

1
q + 1

(
rN H(r)

)′gq+1(z)
]

dr

≥ 1
2

RN(
z′(R)

)2 + α

∫ R

0
gp+1(z)

[
N – 2

4γ
rN–1h(r) –

1
p + 1

(
rN h(r)

)′
]

dr

+ β

∫ R

0
gq+1(z)

[
N – 2

4γ
rN–1H(r) –

1
q + 1

(
rN H(r)

)′
]

dr, (3.10)

thus it gives rise to a contradiction with (P3), so Y = [0,∞).
Step 2. We consider the asymptotic behavior of solution z(r), that is, z(r) → 0, as r → ∞.
Since the function rN–1(–z′) is increasing, we have rN–1(–z′) ≥ –z′(1), r ≥ 1, then inte-

grating from [t, R], we get

z(t) – z(R) ≥ –z′(1)
1

2 – N
(
R2–N – t2–N)

, R > t ≥ 1, (3.11)

and z(t) ≥ z(∞) – z′(1) 1
N–2 t2–N , r ≥ 1, R → ∞.

On the other hand, integrating both sides of (3.2) on [0, R], we can acquire

∫ R

0
–
(
rN–1z′(r)

)′ dr = –RN–1z′(R)

= α

∫ R

0
rN–1h(r)gp(z)g ′(z) dr + β

∫ R

0
rN–1H(r)gq(z)g ′(z) dr. (3.12)

Let 0 < z0 ≤ 1 in X, since (f6), (f4) and z0
2 ≤ z(r) ≤ z0, there exist c1, c2 > 0 such that

–RN–1z′(R) ≥ c1

∫ R

1
rN–1h(r)zp(r) dr + c2

∫ R

1
rN–1H(r)zq(r) dr

≥ c1zp(R)
∫ R

1
rN–1h(r) dr + c2zq(R)

∫ R

1
rN–1H(r) dr

≥ c min
{

zp(R), zq(R)
}
(∫ R

1
rN–1h(r) dr +

∫ R

1
rN–1H(r) dr

)
, (3.13)

where c = min{c1, c2}. If zp(R) = min{zp(R), zq(R)}, then we can have

–z′(R)
zp(R)

≥ c
(∫ R

1
rN–1h(r) dr · R1–N +

∫ R

1
rN–1H(r) dr · R1–N

)

= c
(
ϕ1(R) + ϕ2(R)

)
, (3.14)
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where ϕi(R), i = 1, 2 denoted by (P2). Integrating (3.14) over [1, R], one can have

∫ R

1

–z′(t)
zp(t)

dt =
1

1 – p
[
z1–p(R) – z1–p(1)

] ≥ c
(∫ R

1
ϕ1(t) dt +

∫ R

1
ϕ2(t) dt

)
. (3.15)

Hence, by hypothesis (P2) we obtain

z(R) ≤
[

z1–q(1) – c(p – 1)
(∫ R

1
ϕ1(t) dt +

∫ R

1
ϕ2(t) dt

)] 1
1–p → 0, as R → ∞. (3.16)

As to the other case, if zq(R) = min{zp(R), zq(R)}, we can apply the same argument. Thus
limr→∞ z(r) = 0 is proved and the proof of Theorem 1.2 is completed. �

4 Existence of positive blow-up solutions
In this section, we investigate (1.7) with concave-convex nonlinearities and give a proof of
Theorem 1.3. Throughout the paper, a function z is called a blow-up solution of problem
(1.1) if a weak solution z satisfies z → ∞ as |x| → ∞.

We consider (1.7),

⎧
⎨

⎩
–(rN–1z′(r))′ = αrN–1h(r)|g(z)|p–1g(z)g ′(z) + βrN–1H(r)|g(z)|q–1g(z)g ′(z),

z0 = z(0) > 0, r > 0, z(r) → ∞, as r → ∞,

where α,β > 0, 0 < p < 1 < q.

Proof of Theorem 1.3 At first, we choose z0 > 0 such that

⎧
⎨

⎩
2α(2z0)p[max{∫ 1

0 h(s) ds, L1
N–λ1+kp }] 1

2–λ1+kp ≤ z0
4 ,

2β(2z0)q[max{∫ 1
0 H(s) ds, L2

N–λ2+kq }] 1
2–λ2+kq ≤ z0

4 ,
(4.1)

and

α(2z0)p
∫ 1

0
h(s) ds ≤ z0

4
, β(2z0)q

∫ 1

0
H(s) ds ≤ z0

4
, (4.2)

where k = 2–λ1
1–p = λ2–2

q–1 ≥ 0, 0 < λ1 < 2, λ2 > 2.
It is well known that (1.7) is equivalent to the following integral form:

z(r) = z0 + α

∫ r

0
t1–N

∫ t

0
sN–1h(s)gp(z)g ′(z) ds dt

+ β

∫ r

0
t1–N

∫ t

0
sN–1H(s)gq(z)g ′(z) ds dt. (4.3)

Let U2 denote locally convex space of all continuous function on [0,∞) with the usual
topology and consider the set

W =
{

z ∈ U2|z0 ≤ z(r) ≤ A(r), r ≥ 0
}

,
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where

A(r) =

⎧
⎨

⎩
2z0, 0 ≤ r ≤ 1,

2z0rk , r ≥ 1,
(4.4)

and the operator T : W → CR+, R+ = [0, +∞) is given by T z = z̃,

z̃(r) = z0 + α

∫ r

0
t1–N

∫ t

0
sN–1h(s)gp(z)g ′(z) ds dt

+ β

∫ r

0
t1–N

∫ t

0
sN–1H(s)gq(z)g ′(z) ds dt. (4.5)

Obviously, W is a nonempty closed convex set of CR+. In order to apply the Schauder–
Tychonoff fixed point theorem, we are going to verify in three steps.

Step 1. T maps W into itself. For 0 ≤ r ≤ 1, by (4.2) we have

z̃(r) ≤ z0 + α

∫ r

0
t1–N

∫ t

0
sN–1h(s)zp(s) ds dt + β

∫ r

0
t1–N

∫ t

0
sN–1H(s)zq(s) ds dt

≤ z0 + α(2z0)p
∫ r

0

∫ t

0
h(s) ds dt + β(2z0)q

∫ r

0

∫ t

0
H(s) ds dt

≤ z0 + α(2z0)p
∫ 1

0
h(s) ds + β(2z0)q

∫ 1

0
H(s) ds ≤ z0 +

z0

4
+

z0

4
≤ 2z0, (4.6)

and for r ≥ 1, by (4.1),(4.2), we have

z̃(r) = z0 + α

(∫ 1

0
+

∫ r

1

)
t1–N

∫ t

0
sN–1h(s)gp(z)g ′(z) ds dt

+ β

(∫ 1

0
+

∫ r

1

)
t1–N

∫ t

0
sN–1H(s)gq(z)g ′(z) ds dt

≤ z0 +
z0

4
+

z0

4
+ α

∫ r

1
t1–N

∫ t

0
sN–1h(s)zp(s) ds dt

+ β

∫ r

1
t1–N

∫ t

0
sN–1H(s)zq(s) ds dt

=
3z0

2
+ α

∫ r

1
t1–N

(∫ 1

0
+

∫ t

1

)
sN–1h(s)zp(s) ds dt

+ β

∫ r

1
t1–N

(∫ 1

0
+

∫ t

1

)
sN–1H(s)zq(s) ds dt

≤ 3z0

2
+ α

∫ r

1
t1–N

[
(2z0)p

∫ 1

0
h(s) ds + (2z0)pL1

∫ t

1
sN–1–λ1 skp ds

]
dt

+ β

∫ r

1
t1–N

[
(2z0)q

∫ 1

0
H(s) ds + (2z0)qL2

∫ t

1
sN–1–λ2 skq ds

]
dt

≤ 3z0

2
+ 2α(2z0)p

[
max

{∫ 1

0
h(s) ds,

L1

N – λ1 + kp

}]∫ r

1
t1–N tN–λ1+kp dt

+ 2β(2z0)q
[

max

{∫ 1

0
H(s) ds,

L2

N – λ2 + kq

}]∫ r

1
t1–N tN–λ2+kq dt
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≤ 3z0

2
+ 2α(2z0)p

[
max

{∫ 1

0
h(s) ds,

L – 1
N – λ1 + kp

}]
· 1

2 – λ1 + kp
· r2–λ1+kp

+ 2β(2z0)q
[

max

{∫ 1

0
H(s) ds,

L2

N – λ2 + kq

}]
· 1

2 – λ2 + kq
· r2–λ2+kq

≤ 3z0

2
+

z0

4
rk +

z0

4
rk ≤ 2z0rk , (4.7)

where 2 – λ1 + kp = k, 2 – λ2 + kq = k, that is, k = 2–λ1
1–p = λ2–2

q–1 with 0 < λ1 < 2, λ2 > 2, thus
we prove that T W ⊂ W .

Step 2. T is continuous. Let {zn} be a sequence in W which converges to z ∈ W uniformly
on each compact subinterval of R+.

Let

ϕm(r) = r1–N
∫ r

0
sN–1h(s)gp(zm)g ′(zm) ds + r1–N

∫ r

0
sN–1H(s)gq(zm)g ′(zm) ds,

ϕ(r) = r1–N
∫ r

0
sN–1h(s)gp(z)g ′(z) ds + r1–N

∫ r

0
sN–1H(s)gq(z)g ′(z) ds.

Then one can see

∣∣ϕm(r) – ϕ(r)
∣∣ ≤

∫ r

0
h(s)

∣∣gp(zm)g ′(zm) – gp(z)g ′(z)
∣∣ds

+
∫ r

0
H(s)

∣
∣gq(zm)g ′(zm) – gq(z)g ′(z)

∣
∣ds (4.8)

and

∣
∣̃zm(r) – z̃(r)

∣
∣ ≤

∫ r

0

∣
∣ϕm(s) – ϕ(s)

∣
∣ds, (4.9)

from (4.8), (4.9), we see that {ϕm} converges to ϕ uniformly and {̃zm} converges to z̃ uni-
formly on each compact subinterval of R+. Hence, the mapping T is continuous.

Step 3. T (W ) is relatively compact. For R > 0 an arbitrary constant, one can have

z̃′(r) = α

∫ r

0

(
s
r

)N–1

h(s)gp(z)g ′(z) ds + β

∫ r

0

(
s
r

)N–1

H(s)gq(z)g ′(z) ds

≤ α

∫ r

0
h(s)zp(s) ds + β

∫ r

0
H(s)zq(s) ds

≤ α

∫ R

0
h(s)Ap(s) ds + β

∫ R

0
H(s)Aq(s) ds, (4.10)

it implies the local boundedness of the set {̃z′(r)|z ∈ W }. Thus, the relatively compactness
of T (W ) can be shown by the Ascoli–Arzelá theorem.

Therefore, the Schauder–Tychonoff fixed point theorem guarantees a z ∈ W satisfying
T z = z, namely, z(r) satisfies (1.7). Thus, z(|x|) gives a solution of (1.1). Besides, multiple
occurrences z0 fulfill (4.1) and (4.2), so multiple positive radial solutions of (1.1) can be
constructed.

Step 4. We consider the asymptotic behavior of solution z(r), that is, z(r) → ∞, as
r → ∞.



Li and Wang Boundary Value Problems         (2020) 2020:81 Page 13 of 14

Given z0 ≥ 1, r ≥ 1, γ – 1 < p < 1 < q and z0 ≤ z(r) ≤ A(r), one can get

gp(z)g ′(z) ≥ 1
2γ

gp(z)
g(z)

z
=

1
2γ

gp+1(z)
z

≥ b1z
p+1
γ –1(r) ≥ b1(z0)

p+1
γ –1 = b2 > 0, (4.11)

and gq(z)g ′(z) ≥ b3 > 0. Then

r1–N
∫ r

0
sN–1h(s)gp(z)g ′(z) ds + r1–N

∫ r

0
sN–1H(s)gq(z)g ′(z) ds

≥ b2r1–N
∫ r

0
sN–1h(s) ds + b3r1–N

∫ r

0
sN–1H(s) ds. (4.12)

By the hypothesis (P2), we can verify that limr→∞ z(r) = ∞ and the proof of Theorem 1.3
is completed. �
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