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Abstract
This paper is devoted to the existence and non-existence of positive solutions to the
following negative power nonlinear integral equation related to the sharp reversed
Hardy–Littlewood–Sobolev inequality:

f q–1(x) =
∫

Ω

K (x)f (y)K (y)
|x – y|n–α dy + λ

∫
Ω

G(x)f (y)G(y)
|x – y|n–α–β dy, f ≥ 0, x ∈ Ω ,

where 0 < q < 1, α > n, 0 < β < α – n, λ ∈ R, Ω is a smooth bounded domain, K (x),
G(x) are positive continuous functions in Ω . For K ≡ G ≡ 1, the existence and
non-existence of positive solutions to the equation have been studied by
Dou–Guo–Zhu (2019). In this paper we consider the existence and non-existence of
positive solutions to the above integral equation with the general weight functions
K (x), G(x).
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1 Introduction
In this paper we consider the existence and non-existence of positive solutions to the fol-
lowing negative power nonlinear integral equation:

f q–1(x) =
∫

Ω

K(x)f (y)K(y)
|x – y|n–α

dy + λ

∫
Ω

G(x)f (y)G(y)
|x – y|n–α–β

dy, f ≥ 0, x ∈ Ω , (1.1)

where 0 < q < 1, α > n, 0 < β < α – n, λ ∈R, Ω is a smooth bounded domain, K(x), G(x) are
positive continuous functions in Ω .

For 0 < α < n, G(x) ≡ 1, the existence and non-existence of positive solutions to (1.1)
were studied by Dou–Zhu [2] and Guo–Wang [3] recently. Notice that when 0 < α < n
this nonlinear integral equation is closely related to the sharp Hardy–Littlewood–Sobolev
(HLS for short) inequality [4–7].
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For α > n, the existence and non-existence of positive solutions to (1.1) are also studied
by Dou–Guo–Zhu [1] when K(x) ≡ G(x) ≡ 1. In this case the nonlinear integral equation
is related to the sharp reversed HLS inequality obtained by Beckner [8] and Dou–Zhu [9],
respectively. In fact, Eq. (1.1) (when K(x) ≡ 1, λ = 0) can be seen as the Euler–Lagrange
equation of the following minimizing problem related to the reversed HLS inequality:

ξα(Ω) = inf
f ∈L

2n
n+α (Ω),f ≥0,f �=0

∫
Ω

∫
Ω

f (x)|x – y|–(n–α)f (y) dx dy
‖f ‖2

L
2n

n+α (Ω)

.

On the other hand, for Eq. (1.1) with K(x) ≡ 1 and λ = 0, the blowup behavior of energy
maximizing positive solutions as q → ( 2n

n+α
)+ when 1 < α < n, and the blowup behavior of

energy minimizing positive solution as q → ( 2n
n+α

)– when α > n are also analyzed by Guo
[10].

In this paper we consider the integral equation (1.1) for general weight functions K(x),
G(x) and α > n.

The following condition is needed.
(T ). K(x∗) – K(x) = o(|x – x∗|γ ) as x → x∗, where K(x∗) = minx∈Ω K(x), γ > 0.
Denote G(x̃∗) = maxx∈Ω G(x).
The main results are stated as follows.

Theorem 1.1 Assume α > n, β ∈ (0,α – n), Ω is a smooth bounded domain of diameter
d(Ω).

(i) For 0 < q < 2n
n+α

(subcritical case), – K2(x∗)
dβ (Ω)G2(x̃∗) < λ, the positive functions

K(x), G(x) ∈ C1(Ω), then there is a positive solution f ∈ C1(Ω) to Eq. (1.1).
(ii) For q = 2n

n+α
(critical case), – K2(x∗)

dβ (Ω)G2(x̃∗) < λ < 0, the positive functions
K(x), G(x) ∈ C1(Ω), assume further that β < n and (T ) holds, then there is a positive
solution f ∈ C1(Ω) to Eq. (1.1).

(iii) For 2n
n+α

≤ q < 1 (critical case and supercritical case), λ ≥ 0, the nonnegative
functions K(x), G(x) ∈ C1(Ω), if Ω is a star-shaped domain with respect to x̃,
(x – x̃,∇K(x)) ≥ 0 and (x – x̃,∇G(x)) ≥ 0, then there is not any positive C1(Ω)
solution to Eq. (1.1).

We use c, C throughout the paper to represent positive constants, which may vary from
line to line.

2 Preliminaries
For simplicity, we denote pα := 2n

n–α
, qα := 2n

n+α
throughout the paper. For 0 < q < 1, we also

denote Lq(Ω) := {f | ∫
Ω

|f |q(x) dx < ∞} for any domain Ω ⊂R
n, Lq

+(Ω) := {f ∈ Lq(Ω) \ {0} :
f ≥ 0} and define ‖f ‖Lq(Ω) := (

∫
Ω

|f |q(x) dx)
1
q for f ∈ Lq(Ω). Notice that ‖f ‖Lq(Ω) is not a

norm if 0 < q < 1.
We first recall the sharp reversed HLS inequality on R

n.

Theorem A (see [8, 9]) Let α > n. Then

∣∣∣∣
∫
Rn

∫
Rn

f (x)|x – y|–(n–α)g(y) dx dy
∣∣∣∣ ≥ Nα‖f ‖Lqα (Rn)‖g‖Lqα (Rn) (2.1)
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for all f , g ∈ Lqα (Rn), where Nα := π
n–α

2
Γ ( α

2 )
Γ ( n

2 + α
2 ) ( Γ ( n

2 )
Γ (n) )– α

n . Moreover, the equality holds if and

only if f (x) = c1g(x) = c2( 1
c3+|x–x0|2 ) n+α

2 , where c1, c2, c3 are any constants, x0 ∈R
n.

3 Proofs of the main results
Here and hereafter we always assume α > n.

3.1 Existence—subcritical case
We first prove the existence of positive solution to Eq. (1.1) in the subcritical case 0 < q <
qα . The following lemma from [2] is needed.

Lemma 3.1 (see [2]) Let q ∈ (0, qα). There exists a positive constant C(n, q,α,Ω) > 0 such
that

∫
Ω

∫
Ω

f (x)|x – y|–(n–α)f (y) dx dy ≥ C(n, q,α,Ω)‖f ‖2
Lq(Ω) (3.1)

for any nonnegative function f ∈ Lq(Ω).

Now we prove the following lemma, which implies the existence result of part (i) in
Theorem 1.1.

Lemma 3.2 Assume the positive functions K(x), G(x) ∈ C1(Ω). Then, for 0 < q < qα , λ >
– K2(x∗)

dβ (Ω)G2(x̃∗) , the infimum

Qλ,q(Ω)

:= inf
f ∈Lq

+(Ω)

∫
Ω

∫
Ω

f (x)(K(x)|x – y|–(n–α)K(y) + λG(x)|x – y|–(n–α–β)G(y))f (y) dx dy
‖f ‖2

Lq(Ω)

is attained by some nonnegative function in Lq
+(Ω).

Proof Notice that λ > – K2(x∗)
dβ (Ω)G2(x̃∗) and

K(x)K(y) + λG(x)|x – y|βG(y) ≥ K2(x∗) + λdβ (Ω)G2(x̃∗) > 0, x, y ∈ Ω .

Then by Lemma 3.1, Qλ,q(Ω) > 0.
Now we can choose the minimizing positive sequence {fj}∞j=1 in Lq

+(Ω) and argue as
Lemma 3.2 in [1]. We sketch it for the reader’s convenience. Assume fj ∈ Lqα (Ω) and
‖fj‖Lqα (Ω) = 1. Then, up to a subsequence,

f q
j ⇀ f q

∗ in L
qα
q (Ω), as j → ∞,

and
∫

Ω

f q
j →

∫
Ω

f q
∗ , as j → ∞.

As in [1], we have ‖fj‖L1(Ω) ≤ C. Thus
∫
Ω

f q
∗ > C > 0 via an interpolation inequality and

f q
j ⇀ f q

∗ weakly in L
1
q (Ω). For any fixed x ∈ Ω , f 1–q

∗ (y)|x – y|α–n(K(x)K(y) + λG(x)|x –
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y|βG(y)) ∈ L
1

1–q (Ω). Therefore

∫
Ω

f q
j (y)f 1–q

∗ (y)|x – y|α–n(K(x)K(y) + λG(x)|x – y|βG(y)
)

dy

→
∫

Ω

f∗(y)|x – y|α–n(K(x)K(y) + λG(x)|x – y|βG(y)
)

dy, as j → ∞.

Now we prove that the convergence is uniform for all x ∈ Ω . Firstly, as Lemma 3.2 in [1],
we have

∫
Ω

f q
j (y)f 1–q

∗ (y)|x–y|α–n(K(x)K(y)+λG(x)|x–y|βG(y)) dy is uniformly bounded for
x ∈ Ω . Now it is left to prove that

∫
Ω

f q
j (y)f 1–q

∗ (y)|x – y|α–n(K(x)K(y) +λG(x)|x – y|βG(y)) dy
is equicontinuous in Ω . Notice that K(x), G(x) ∈ C1(Ω) and for any x1, x2, y ∈ Ω ,

∣∣|x1 – y|α–n – |x2 – y|α–n∣∣ ≤
⎧⎨
⎩

C|x1 – x2|α–n, 0 < α – n ≤ 1,

C|x1 – x2|, α – n > 1.

Then since
∫
Ω

f q
j (y)f 1–q

∗ (y)K(y) dy is bounded, for any x1, x2 ∈ Ω ,

∣∣∣∣
∫

Ω

f q
j (y)f 1–q

∗ (y)|x1 – y|α–nK(y) dy –
∫

Ω

f q
j (y)f 1–q

∗ (y)|x2 – y|α–nK(y) dy
∣∣∣∣

≤
∫

Ω

f q
j (y)f 1–q

∗ (y)K(y)
∣∣|x1 – y|α–n – |x2 – y|α–n∣∣dy

≤ C max
(|x1 – x2|α–n, |x1 – x2|

)
.

So
∫
Ω

f q
j (y)f 1–q

∗ (y)|x – y|α–nK(y) dy and, by a similar argument, λ
∫
Ω

f q
j (y)f 1–q

∗ (y)|x –
y|α+β–nG(y) dy are equicontinuous in x ∈ Ω . Thus we see that

∫
Ω

f q
j (y)f 1–q

∗ (y)|x – y|α–n ×
(K(x)K(y) + λG(x)|x – y|βG(y)) dy is equicontinuous in Ω .

Now similar to Lemma 3.2 in [1], we can prove

lim inf
j→∞

∫
Ω

∫
Ω

fj(x)|x – y|α–n(K(x)K(y) + λG(x)|x – y|βG(y)
)
fj(y) dx dy

≥
∫

Ω

∫
Ω

f∗(x)|x – y|α–n(K(x)K(y) + λG(x)|x – y|βG(y)
)
f∗(y) dx dy.

By ‖fj‖Lq(Ω) → ‖f∗‖Lq(Ω) > 0 and the above,

lim inf
j→∞

∫
Ω

∫
Ω

fj(x)|x – y|α–n(K(x)K(y) + λG(x)|x – y|βG(y))fj(y) dx dy
‖fj‖2

Lq(Ω)

≥
∫
Ω

∫
Ω

f∗(x)|x – y|α–n(K(x)K(y) + λG(x)|x – y|βG(y))f∗(y) dx dy
‖f∗‖2

Lq(Ω)
.

That is, f∗ is the minimizer. �

Again as that in [1], we obtain u ∈ C1(Ω). Thus we complete the proof of Theorem 1.1
(i).

Remark 3.3 We assume λ > – K2(x∗)
dβ (Ω)G2(x̃∗) here to make sure that Qλ,q(Ω) is positive.
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3.2 Existence—critical case
Now we establish the existence and the regularity results for the weak solution to (1.1)
with critical exponent for λ < 0. Consider

Qλ,qα (Ω)

= inf
f ∈Lqα

+ (Ω)

∫
Ω

∫
Ω

f (x)(K(x)|x – y|–(n–α)K(y) + λG(x)|x – y|–(n–α–β)G(y))f (y) dy dx
‖f ‖2

Lqα (Ω)
.

Notice that the corresponding Euler–Lagrange equation for extremal functions, up to a
constant multiplier, is the integral equation (1.1) with q = qα .

We first show the following lemma.

Lemma 3.4 Assume that the positive functions K(x), G(x) ∈ C1(Ω) and (T ) holds.
Then Qλ,qα (Ω) < K2(x∗)Nα for all λ < 0. Further, 0 < Qλ,qα (Ω) < K2(x∗)Nα for any λ ∈
(– K2(x∗)

dβ (Ω)G2(x̃∗) , 0), where β > 0.

Proof We distinguish two cases: (I) x∗ ∈ Ω ; (II) x∗ ∈ ∂Ω .
(I) Let x∗ ∈ Ω . By (T ), there exists small R > 0 such that K(x) – K(x∗) ≤ c|x – x∗|γ when

x ∈ BR(x∗) ⊂ Ω . For small ε > 0, we define

f̃ε(x) =

⎧⎨
⎩

fε(x), x ∈ BR(x∗) ⊂ Ω ,

0, x ∈R
n \ BR(x∗),

where fε(x) = ε– n+α
2 f1( x–x∗

ε
) = ( ε

ε2+|x–x∗|2 ) n+α
2 , f1(x) = ( 1

1+|x|2 ) n+α
2 . Notice that f1 and its con-

formal equivalent class fε are the extremal functions to the sharp reversed HLS inequality
(2.1). Obviously, f̃ε ∈ Lqα (Rn). By (T ), we have

∫
Ω

∫
Ω

(
K(x)K(y)
|x – y|n–α

+
λG(x)G(y)
|x – y|n–α–β

)
f̃ε(x)̃fε(y) dx dy

=
∫

BR(x∗)

∫
BR(x∗)

(
K(x)K(y)
|x – y|n–α

+
λG(x)G(y)
|x – y|n–α–β

)
fε(x)fε(y) dx dy

≤
∫

BR(x∗)

∫
BR(x∗)

(K(x∗) + c|x – x∗|γ )(K(x∗) + c|y – x∗|γ )
|x – y|n–α

fε(x)fε(y) dx dy

+ λ

∫
BR(x∗)

∫
BR(x∗)

G(x)G(y)fε(x)fε(y)
|x – y|n–α–β

dx dy

=
∫

BR(x∗)

∫
BR(x∗)

K2(x∗) + K(x∗)(c|x – x∗|γ + c|y – x∗|γ ) + c2|x – x∗|γ |y – x∗|γ
|x – y|n–α

× fε(x)fε(y) dx dy

+ λ

∫
BR(x∗)

∫
BR(x∗)

G(x)G(y)fε(x)fε(y)
|x – y|n–α–β

dx dy

≤
∫
Rn

∫
Rn

K2(x∗)fε(x)fε(y)
|x – y|n–α

dx dy + λ

∫
BR(x∗)

∫
BR(x∗)

G(x)G(y)fε(x)fε(y)
|x – y|n–α–β

dx dy

+ c2
∫

BR(x∗)

∫
BR(x∗)

|x – x∗|γ |y – x∗|γ fε(x)fε(y)
|x – y|n–α

dx dy
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+ 2c
∫

BR(x∗)

∫
BR(x∗)

K(x∗)|x – x∗|γ fε(x)fε(y)
|x – y|n–α

dx dy

= K2(x∗)Nα‖fε‖2
Lqα (Rn) + I1 + I2 + I3, (3.2)

where

I1 : = λ

∫
BR(x∗)

∫
BR(x∗)

G(x)G(y)fε(x)fε(y)
|x – y|n–α–β

dx dy,

I2 : = c2
∫

BR(x∗)

∫
BR(x∗)

|x – x∗|γ |y – x∗|γ fε(x)fε(y)
|x – y|n–α

dx dy,

I3 : = 2c
∫

BR(x∗)

∫
BR(x∗)

K(x∗)|x – x∗|γ fε(x)fε(y)
|x – y|n–α

dx dy.

For I1, we have

I1 = λ

∫
BR(x∗)

∫
BR(x∗)

G(x)G(y)
|x – y|n–α–β

(
ε

ε2 + |x – x∗|2
) n+α

2
(

ε

ε2 + |y – x∗|2
) n+α

2
dx dy

≤ Cλε–(n–α–β)–(n+α)
∫

BR(0)

∫
BR(0)

∣∣∣∣x – y
ε

∣∣∣∣
–(n–α–β)(

1 +
∣∣∣∣x
ε

∣∣∣∣
2)– n+α

2
(

1 +
∣∣∣∣ y
ε

∣∣∣∣
2)– n+α

2
dx dy

= Cλεβ

∫
B R

ε
(0)

∫
B R

ε
(0)

|ξ – η|–(n–α–β)(1 + |ξ |2)– n+α
2

(
1 + |η|2)– n+α

2 dξ dη

≤ C1λεβ .

For I2, we have

I2 := c2
∫

BR(x∗)

∫
BR(x∗)

|x – x∗|γ |y – x∗|γ fε(x)fε(y)
|x – y|n–α

dx dy

≤ c2R2γ

∫
BR(x∗)

∫
BR(x∗)

fε(x)fε(y)
|x – y|n–α

dx dy

≤ c2R2γ

∫
Rn

∫
Rn

fε(x)fε(y)
|x – y|n–α

dx dy

= C2R2γ ,

where C2 := c2Nα‖fε‖2
Lqα (Rn). For I3, we have

I3 := 2c
∫

BR(x∗)

∫
BR(x∗)

K(x∗)|x – x∗|γ fε(x)fε(y)
|x – y|n–α

dx dy

≤ 2cRγ

∫
BR(x∗)

∫
BR(x∗)

K(x∗)fε(x)fε(y)
|x – y|n–α

dx dy

≤ 2cRγ

∫
Rn

∫
Rn

K(x∗)fε(x)fε(y)
|x – y|n–α

dx dy

= C3Rγ ,
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where C3 := 2cK(x∗)Nα‖fε‖2
Lqα (Rn). Therefore, for λ < 0, we can take s satisfying β

γ
< s, and

R = εs > 0 for some ε > 0 small enough, such that

I1 + I2 + I3 ≤ C1λεβ + C2R2γ + C3Rγ

= C1λεβ + C2ε
2sγ + C3ε

sγ < 0.

Combining this with (3.2), for λ < 0, ε > 0 small enough, we have

∫
Ω

∫
Ω

(
K(x)K(y)
|x – y|n–α

+
λG(x)G(y)
|x – y|n–α–β

)
f̃ε(x)̃fε(y) dx dy < K2(x∗)Nα‖fε‖2

Lqα (Rn).

That is, for any λ < 0, Qλ,qα (Ω) < K2(x∗)Nα .
(II) Let x∗ ∈ ∂Ω . By (T ), there exists ρ1 > 0 such that K(x) – K(x∗) ≤ c|x – x∗|γ when

x ∈ V := Ω ∩ B(x∗,ρ1).
Let 0 < ρ0 < ρ1, x0 ∈ V satisfying Bρ0 (x0) ⊂ V – ∂V , |x0 – x∗| = 2ρ0. Then, for any x ∈

Bρ0 (x0), we have

K(x) – K(x∗) ≤ C
(|x – x0|γ + |x0 – x∗|γ

)
.

We define

f̃ε(x) =

⎧⎨
⎩

f ε(x), x ∈ Bρ0 (x0) ⊂ Ω ,

0, x ∈R
n \ Bρ0 (x0),

where f ε(x) = ε– n+α
2 f1( |x–x0|

ε
) = ( ε

ε2+|x–x0|2 ) n+α
2 .

Similar to (I),

∫
Ω

∫
Ω

(
K(x)K(y)
|x – y|n–α

+
λG(x)G(y)
|x – y|n–α–β

)
f̃ε(x)̃fε(y) dx dy

=
∫

Bρ0 (x0)

∫
Bρ0 (x0)

(
K(x)K(y)
|x – y|n–α

+
λG(x)G(y)
|x – y|n–α–β

)
f ε(x)f ε(y) dx dy

≤
∫

Bρ0 (x0)

∫
Bρ0 (x0)

(K(x∗) + C(|x – x0|γ + |2ρ0|γ ))(K(x∗) + C(|y – x0|γ + |2ρ0|γ ))
|x – y|n–α

× f ε(x)f ε(y) dx dy

+ λ

∫
Bρ0 (x0)

∫
Bρ0 (x0)

G(x)G(y)f ε(x)f ε(y)
|x – y|n–α–β

dx dy

≤
∫
Rn

∫
Rn

K2(x∗)f ε(x)f ε(y)
|x – y|n–α

dx dy + λ

∫
Bρ0 (x0)

∫
Bρ0 (x0)

G(x)G(y)f ε(x)f ε(y)
|x – y|n–α–β

dx dy

+ 2C
∫

Bρ0 (x0)

∫
Bρ0 (x0)

K(x∗)(|x – x0|γ + |2ρ0|γ )f ε(x)f ε(y)
|x – y|n–α

dx dy

+ C2
∫

Bρ0 (x0)

∫
Bρ0 (x0)

(|x – x0|γ + |2ρ0|γ )(|y – x0|γ + |2ρ0|γ )f ε(x)f ε(y)
|x – y|n–α

dx dy

= K2(x∗)Nα‖f ε‖2
Lqα (Rn) + J1 + J2 + J3, (3.3)
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where

J1 := λ

∫
Bρ0 (x0)

∫
Bρ0 (x0)

G(x)G(y)f ε(x)f ε(y)
|x – y|n–α–β

dx dy,

J2 := 2C
∫

Bρ0 (x0)

∫
Bρ0 (x0)

K(x∗)(|x – x0|γ + |2ρ0|γ )f ε(x)f ε(y)
|x – y|n–α

dx dy,

J3 := C2
∫

Bρ0 (x0)

∫
Bρ0 (x0)

(|x – x0|γ + |2ρ0|γ )(|y – x0|γ + |2ρ0|γ )f ε(x)f ε(y)
|x – y|n–α

dx dy.

As in case (I), we know J1 ≤ C4λεβ . For J2, we have

J2 = 2C
∫

Bρ0 (x0)

∫
Bρ0 (x0)

K(x∗)(|x – x0|γ + |2ρ0|γ )f ε(x)f ε(y)
|x – y|n–α

dx dy

≤ CK(x∗)ργ
0

∫
Bρ0 (x0)

∫
Bρ0 (x0)

f ε(x)f ε(y)
|x – y|n–α

dx dy

≤ C5ρ
γ
0 .

For J3, we have

J3 = C2
∫

Bρ0 (x0)

∫
Bρ0 (x0)

(|x – x0|γ + |2ρ0|γ )(|y – x0|γ + |2ρ0|γ )f ε(x)f ε(y)
|x – y|n–α

dx dy

≤ C2ρ
2γ
0

∫
Bρ0 (x0)

∫
Bρ0 (x0)

f ε(x)f ε(y)
|x – y|n–α

dx dy

≤ C6ρ
2γ
0 .

Taking s with β

γ
< s and ρ0 = εs > 0, then

J1 + J2 + J3 ≤ C4λεβ + C5ρ
γ
0 + C6ρ

2γ
0

= C4λεβ + C5ε
sγ + C6ε

2sγ < 0

for ε > 0 small enough. Thus, combining this with (3.3), for λ < 0, ε > 0 small enough, we
have

∫
Ω

∫
Ω

(
K(x)K(y)
|x – y|n–α

+
λG(x)G(y)
|x – y|n–α–β

)
f̃ε(x)̃fε(y) dx dy < K2(x∗)Nα‖f ε‖2

Lqα (Rn).

That is, for any λ < 0, we have Qλ,qα (Ω) < K2(x∗)Nα .
On the other hand, for any λ ∈ (– K2(x∗)

dβ (Ω)G2(x̃∗) , 0), we also have Qλ,qα (Ω) > 0. So we com-
plete the proof. �

In order to prove the existence of weak solutions, we need to prove that the minimal
energy Qλ,qα (Ω) is attained.

Proposition 3.5 For given λ ∈ (– K2(x∗)
dβ (Ω)G2(x̃∗) , 0), Qλ,qα (Ω) is attained by some positive func-

tion f∗ ∈ Lqα (Ω).
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For q < qα , we consider

Qλ,q(Ω)

= inf
f ∈Lq

+(Ω)

∫
Ω

∫
Ω

f (x)(K(x)|x – y|–(n–α)K(y) + λG(x)|x – y|–(n–α–β)G(y))f (y) dx dy
‖f ‖2

Lq(Ω)
.

By Lemma 3.2, the infimum is attained by the positive function fq which satisfies the
integral equation with the subcritical exponent

Qλ,q(Ω)f q–1(x) =
∫

Ω

K(x)f (y)K(y)
|x – y|n–α

dy + λ

∫
Ω

G(x)f (y)G(y)
|x – y|n–α–β

dy, x ∈ Ω . (3.4)

That is, fq is the minimal energy solution to Eq. (3.4). It is easy to see that ‖fq‖Lq(Ω) = 1,
fq ∈ C(Ω) and Qλ,q → Qλ as q → (qα)–.

Lemma 3.6 For λ ∈ (– K2(x∗)
dβ (Ω)G2(x̃∗) , 0), q ∈ (0, qα). Let fq > 0 be a minimal energy solution to

(3.4), where ‖fq‖Lq(Ω) = 1. If 0 < Qλ,q(Ω) ≤ K2(x∗)Nα – ε for some ε > 0, then there exists
C > 0 such that 1

C ≤ fq(x) ≤ C uniformly for all x ∈ Ω , q ∈ (0, qα).

Proof We prove it by modifying the argument of Lemma 4.3 in [1].
For any x ∈ Ω , q ∈ (0, q1), we see that maxΩ fq(x) = fq(xq) ≤ C < ∞ holds uniformly,

where 0 < q1 < qα .
We first prove that maxΩ fq(x) = fq(xq) ≤ C < ∞ holds uniformly as q → (qα)–. Other-

wise, fq(xq) → ∞, where xq → x̃, up to a subsequence, as q → (qα)–. Denote

μq := f – 2–q
α

q (xq), Ωμ :=
Ω – xq

μq
=

{
z
∣∣∣ z =

x – xq

μq
, x ∈ Ω

}
.

We define

gq(z) = μ
α

2–q
q fq(μqz + xq), z ∈ Ωμ.

Thus gq satisfies

Qλ,q(Ω)gq–1
q (z) =

∫
Ωμ

K(μqz + xq)gq(y)K(μqy + xq)
|z – y|n–α

dy

+ λμβ
q

∫
Ωμ

G(μqz + xq)gq(y)G(μqy + xq)
|z – y|n–α–β

dy, z ∈ Ωμ, (3.5)

and gq(0) = 1, gq(z) ∈ (0, 1].
For convenience, we define hq(z) := gq–1

q (z). So (3.5) is equivalent to

Qλ,q(Ω)hq(z) =
∫

Ωμ

K(μqz + xq)hp–1
q (y)K(μqy + xq)

|z – y|n–α
dy

+ λμβ
q

∫
Ωμ

G(μqz + xq)hp–1
q (y)G(μqy + xq)

|z – y|n–α–β
dy, z ∈ Ωμ,

where 1
p + 1

q = 1, hq(0) = 1, hq(z) ≥ 1.
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Claim: There exist C1, C2 > 0 such that

0 < C1
(
1 + |z|α–n) ≤ hq(z) ≤ C2

(
1 + |z|α–n), z ∈ Ω̃ , (3.6)

holds uniformly for any domain Ω̃ ⊂ Ωμ as q → (qα)–.
The claim can be verified by a similar argument to that in [1], we omit it here. Thus hq(z)

is equicontinuous in any bounded domain Ω̂ ⊂ Ωμ as q → (qα)–. In fact, for R > 0,

Qλ,q(Ω)hq(z)

=
∫

Ωμ\B(0,R)

K(μqz + xq)hp–1
q (y)K(μqy + xq)

|z – y|n–α
dy

+
∫

Ωμ∩B(0,R)

K(μqz + xq)hp–1
q (y)K(μqy + xq)

|z – y|n–α
dy

+ λμβ
q

∫
Ωμ\B(0,R)

G(μqz + xq)hp–1
q (y)G(μqy + xq)

|z – y|n–α–β
dy

+ λμβ
q

∫
Ωμ∩B(0,R)

G(μqz + xq)hp–1
q (y)G(μqy + xq)

|z – y|n–α–β
dy.

Notice that

∫
Ωμ\B(0,R)

hp–1
q (y)

|z – y|n–α

(
K(μqz + xq)K(μqy + xq) + λμβ

q G(μqz + xq)G(μqy + xq)|z – y|β)
dy

≥ (
K2(x∗) – |λ|dβ (Ω)G2(x̃∗)

)∫
Ωμ\B(0,R)

hp–1
q (y)

|z – y|n–α
dy ≥ 0.

For any ε > 0 small enough, by (3.6), we have

0 ≤
∫

Ωμ\B(0,R)

hp–1
q (y)

|z – y|n–α

(
K(μqz + xq)K(μqy + xq)

+ λμβ
q G(μqz + xq)|z – y|βG(μqy + xq)

)
dy

≤ C
∫

Ωμ\B(0,R)

hp–1
q (y)
|y|n–α

dy

≤ C
∫ ∞

R
r(α–n)(p–1)+α–1 dr

= CR(α–n)(p–1)+α < ε, (3.7)

where R > 0 is large enough, q → (qα)–, z ∈ Ω̂ . Since β < n, by using the same argument as
above, we also have

∣∣∣∣λμβ
q

∫
Ωμ∩B(0,R)

G(μqz + xq)hp–1
q (y)G(μqy + xq)

|z – y|n–α–β
dy

∣∣∣∣ < ε, (3.8)

when R > 0 large enough, q → (qα)–.
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On the other hand, it is easy to see that, for z ∈ Ω̂ ,
∫
Ωμ∩B(0,R)

K (μqz+xq)hp–1
q (y)K (μqy+xq)

|z–y|n–α dy ∈
C1(Ω̂). Combining this with (3.7) and (3.8), we conclude that hq(z) is equicontinuous in
any bounded domain Ω̂ ⊂R

n as q → (qα)–.
When q → (qα)–, we distinguish two cases:
Case 1. Ωμ →R

n
T := {(z1, z2, . . . , zn) | zn > –T} for some T ≥ 0, and hq(z) → h(z) ∈ C(Rn

T )
holds uniformly on any compact sets of Rn

T , where h(z) satisfying

Qλh(z) = K2(̃x)
∫
R

n
T

hpα–1(y)
|z – y|n–α

dy, h(0) = 1.

Then, similar to Lemma 4.3 in [1], we obtain a contradiction.
Case 2. Ωμ → R

n, hq(z) → h(z) ∈ C(Rn) holds uniformly on any compact sets of Rn,
where h(z) satisfying

Qλh(z) = K2(̃x)
∫
Rn

hpα–1(y)
|z – y|n–α

dy, h(0) = 1.

Again similar to Lemma 4.3 in [1], we obtain a contradiction.
Thus we conclude that there exists C > 0 such that fq(y) ≤ C uniformly for y ∈ Ω , q ∈

(0, qα).
On the other hand, if minΩ fq(x) := fq (̃xq) → 0 as q → (qα)–. Then

∞ ← f q–1
q (̃xq) =

∫
Ω

K (̃xq)fq(y)K(y)
|̃xq – y|n–α

dy + λ

∫
Ω

G(̃xq)fq(y)G(y)
|̃xq – y|n–α–β

dy ≤ C < ∞,

as q → (qα)–, which implies a contradiction. �

Proof of Proposition 3.5 By Lemma 3.6, {fq} are uniformly bounded above and bounded
below by a positive constant. Thus the {fq} are equicontinuous due to Eq. (3.4). It follows
that fq → f∗ as q → (qα)– in C(Ω), and f∗ is the energy minimizer for Qλ. �

Proof of Theorem 1.1 (ii) Lemma 3.4 and Proposition 3.5 imply the existence of a positive
solution f ∈ Lqα (Ω) ∩ C(Ω) to Eq. (1.1) for q = 2n

n+α
, λ ∈ (– K2(x∗)

dβ (Ω)G2(x̃∗) , 0). It is also easy to
see that f ∈ C1(Ω). �

3.3 Nonexistence—critical and supercritical case
We first state a Pohozaev type identity.

Lemma 3.7 Assume that the origin is in Ω and the domain is star-shaped with respect to
the origin. If u ∈ C1(Ω) is a nonnegative solution to

u(x) =
∫

Ω

K(x)up–1(y)K(y)
|x – y|n–α

dy + λ

∫
Ω

G(x)up–1(y)G(y)
|x – y|n–α–β

dy, x ∈ Ω ,

where p �= 0, λ ∈R, K(x), G(x) ∈ C1(Ω), then

(
n
p

+
α – n

2

)∫
Ω

up(x) dx



Chen et al. Boundary Value Problems         (2020) 2020:82 Page 12 of 12

= –
λβ

2

∫
Ω

∫
Ω

G(x)up–1(x)up–1(y)G(y)
|x – y|n–α–β

dy dx +
1
p

∫
∂Ω

(x · ν)up(x) dσ

–
∫

Ω

∫
Ω

(x,∇K(x))up–1(x)up–1(y)K(y)
|x – y|n–α

dy dx

– λ

∫
Ω

∫
Ω

(x,∇G(x))up–1(x)up–1(y)G(y)
|x – y|n–α–β

dy dx,

where ν is the outward unit normal vector to ∂Ω .

Proof The argument is standard. We omit it here. �

Proof of Theorem 1.1(iii) We can prove by using Lemma 3.7 and a similar argument to
that used in [1]. We omit it here. �
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