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1 Introduction
For more than a century after Poincaré and Lyapunov, the existence theory of periodic
solutions for a periodic system has been well developed; for example, see [7, 9, 12, 26, 29].
Besides periodicity, many systems may also have other symmetric structures. The anti-
periodic system together with the existence of anti-periodic solutions, for example, is paid
high attention to; see [1–5, 20, 25, 27].

If a system is subjected to an external force with a certain symmetry structure, a natu-
ral question is whether the system has a solution with the same symmetry structure. For
example, one may ask whether the system under a spiral external force has a spiral form
solution. Recently, the concept of affine periodicity, including the spiral symmetry was
introduced. Some problems and methods concerning affine-periodic solutions, such as
Levinson’s problem, Lyapunov function type theorems, the dissipative second order ro-
tating periodic systems, LaSalle type theorems, Hamiltonian systems and the averaging
method of higher order perturbed systems were given; see [8, 16, 18, 19, 23, 24, 28].

Consider the following (Q, T)-affine-periodic system:

x′ = f (t, x), (1.1)

where f (t, x) : R × Rn → Rn is continuous and f (t + T , x) = Qf (t, Q–1x) for every (t, x) ∈
R × Rn, Q ∈ GL(n) (all nonsingular n × n matrices). We want to find the solution of (1.1)
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with

x(t + T) = Qx(t) ∀t ∈ R.

Such a solution is called a (Q, T)-affine-periodic solution.
According to the structure of Q, it will be seen that

(i) x(t) is a T-periodic solution if Q = I (the identity matrix), and an anti-periodic one
if Q = –I ;

(ii) If Q ∈ O(n), that is, Q is an orthogonal matrix, x(t) is a special quasi-periodic
solution corresponding to the rotation of a rigid body;

(iii) A (Q, T)-affine-periodic solution x(t) can be unbounded and x(t)
|x(t)| is quasi-periodic,

like a helical line, for example, x(t) = eat(cosωt, sinωt).
For periodic systems, Krasnosel’skii and Perov gave an interesting existence theorem of

periodic solutions in [13, 14], which is well known today by using the method of topolog-
ical degree. They proved that, if each solution starting from the boundary of a bounded
region will not return to the initial point during a periodic time and the topological de-
gree of f (0, ·) is not equal to zero, then the system will have a periodic solution. In this
paper, we give Krasnosel’skii–Perov type results for affine-periodic systems. When I – Q
is not invertible, we give a general result, which is comparable with Krasnosel’skii and
Perov’s theorem in the periodic case. It is well known that sometimes the conditions of
the Krasnosel’skii–Perov type theorem are difficult to verify, but we give a more flexible
condition. When I – Q is invertible, we find that the existence of affine-periodic solutions
can also be obtained without calculating the topological degree of f (0, ·).

It is also meaningful to find the relationship for the existence of periodic solutions be-
tween asymptotically equivalent equations. It is well known that the existence of periodic
solutions of a system is rather related to that of another asymptotically equivalent one;
see [15, 17]. In the asymptotically linear case, more results have been obtained; for exam-
ple see [6, 10]. In this paper, we use the method of asymptotically equivalent equation to
study the existence of affine-periodic solutions. In our results, the asymptotically equiv-
alent equation can be nonlinear, and the conditions are much easier to verify in linear
case.

In the study of periodic solutions for differential equations, the alternative is an inter-
esting phenomenon. Krasnosel’skii and Perov’s theorem is a kind of alternative theorem.
Another alternative result is achieved by the homotopy method. If the solutions of the
auxiliary equations starting at the boundary are not periodic, then the system will have at
least one periodic solution in the interior of the region; for example, see [11, 21, 22]. In
this paper, we give a method to study the existence of affine-periodic solutions by using
homotopy approach.

If there is a linear coordinate transformation u = Bx with B ∈ GL(n), then system (1.1)
becomes

u′ = g(t, u),

where g(t, u) = Bf (t, B–1u). According to the symmetry of f (t, x), we have

g(t + T , u) = Bf
(
t + T , B–1u

)

= BQf
(
t, Q–1B–1u

)
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= BQB–1Bf
(
t, B–1BQ–1B–1u

)

= Q̃g
(
t, Q̃–1u

)
,

where Q̃ = BQB–1. This means the affine periodicity is invariant under linear transforma-
tions.

In Sect. 2 and Sect. 4 of the paper, we assume Q has the following Jordan normal form:

J =

(
Im×m O

O C(n–m)×(n–m)

)

, (1.2)

where O denotes the zero matrix, 0 ≤ m ≤ n, and I(n–m)×(n–m) – C(n–m)×(n–m) is invertible.
For example, Q is a symmetric or orthogonal matrix. Meanwhile in Sect. 3, we only need
Q ∈ GL(n).

The paper is organized as follows. In Sect. 2, we give some Krasnosel’skii–Perov type
results. In Sect. 3, we study the existence of affine-periodic solutions by asymptotic equiv-
alence. In Sect. 4, we give an existence theorem through the homotopy method. In Sect. 5,
some examples are given to illustrate the characteristics of (Q, T)-affine-periodic systems
and to show the effectiveness of the theorems.

2 Krasnosel’skii–Perov type results
Now we give our first main result.

Theorem 2.1 Consider the (Q, T)-affine-periodic system (1.1), where f (t, x) is continuous
and locally Lipschitz continuous in the variable x. Assume there exists an open bounded
subset V ⊂ Rn such that the following conditions hold:

(i) For every y ∈ V , the solution x(t, y) of system (1.1) exists at least on [0, T].
(ii) Ker(I – Q) �= {0}. There exists a continuous matrix function Q(t) : [0, T] → GL(n),

such that Q(T) = Q. For every t ∈ [0, T], Q(t) has the Jordan normal form (1.2) and
I – Q(t) has the same kernel space. If y ∈ ∂V , then

x(ω, y) �= Q(ω)y, ∀ω ∈ (0, T].

(iii) Denote by P : Rn → Ker(I – Q) the orthogonal projection. For every
y ∈ ∂V ∩ Ker(I – Q), Pf (0, y) �= 0 and

deg
(
Pf (0, ·), V ∩ Ker(I – Q), 0

) �= 0.

Then there exists at least one (Q, T)-affine-periodic solution of system (1.1).

Proof Suppose x(t) is a solution of system (1.1) with boundary condition x(T) = Qx(0).
For t ∈ [T , 2T], take x(t) = Qx(t – T), we have

dx(t)
dt

=
dQx(t – T)

d(t – T)

= Qf
(
t – T , x(t – T)

)
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= Qf
(
t – T , Q–1x(t)

)

= f
(
t, x(t)

)
.

For t ∈ R, let

x(t) = Qmx(t – mT),

where m is an integer such that t – mT ∈ [0, T], the solution x(t) can be extended to the
whole real line. So to prove the existence of (Q, T)-affine-periodic solutions of system (1.1),
we just need to prove the existence of solutions of (1.1) with boundary condition

x(T) = Qx(0). (2.1)

We define an operator Φ : V → Rn by

Φ(y) = (I – Q)y + (I – P)
∫ T

0
f
(
t, x(t, y)

)
dt +

1
T

∫ T

0
Pf

(
t, x(t, y)

)
dt.

We claim that, for each zero y of Φ , x(t, y) is a solution of (1.1) with boundary condition
(2.1).

In fact, if y is a zero of Φ , we have

1
T

∫ T

0
Pf

(
t, x(t, y)

)
dt = 0, (2.2)

(I – Q)y + (I – P)
∫ T

0
f
(
t, x(t, y)

)
dt = 0. (2.3)

Then

(I – Q)y +
∫ T

0
f
(
t, x(t, y)

)
dt = 0, (2.4)

and hence

x(T , y) = Qy.

Consider the homotopy operator H : V × (0, 1] → Rn:

H(y,λ) =
(
I – Q(λT)

)
y + (I – P)

∫ λT

0
f
(
t, x(t, y)

)
dt +

1
λT

∫ λT

0
Pf

(
t, x(t, y)

)
dt.

For (y,λ) ∈ V × (0, 1],

lim
λ→0

1
λT

∫ λT

0
Pf

(
t, x(t, y)

)
dt = Pf (0, y).

When λ = 0, denote

H(y, 0) =
(
I – Q(0)

)
y + Pf (0, y).
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It is easy to prove the operator

H : V × [0, 1] → Rn

is continuous, we omit the proof.
Now we prove that

0 /∈ H
(
∂V × [0, 1]

)
.

Suppose on the contrary that there exists (ỹ, λ̃) ∈ ∂V × [0, 1], such that

H(ỹ, λ̃) = 0.

(I): When λ̃ = 0, we have

(
I – Q(0)

)
ỹ + Pf (0, ỹ) = 0.

That is,

(
I – Q(0)

)
ỹ = 0 (2.5)

and

Pf (0, ỹ) = 0.

By (2.5), we get ỹ ∈ ∂V ∩ Ker(I – Q), which contradicts assumption (iii).
(II): When λ̃ ∈ (0, 1], we have

1
λ̃T

∫ λ̃T

0
Pf

(
t, x(t, ỹ)

)
dt = 0, (2.6)

(
I – Q(λ̃T)

)
ỹ + (I – P)

∫ λ̃T

0
f
(
t, x(t, ỹ)

)
dt = 0. (2.7)

Then

(
I – Q(λ̃T)

)
ỹ +

∫ λ̃T

0
f
(
t, x(t, ỹ)

)
dt = 0, (2.8)

which implies

x(λ̃T , ỹ) = Q(λ̃T)ỹ.

This contradicts assumption (ii).
By (I) and (II), we obtain

0 /∈ H
(
∂V × [0, 1]

)
.
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Without loss of generality, we assume that Q(0) has the form (1.2).
Let Pf (0, y) be twice continuously differentiable and satisfy

0 /∈ Pf (0, Nfm ),

where

Nfm =
{

y : y ∈ V ∩ Ker(I – Q), det

(
∂fi(y)
∂yj

; 1 ≤ i, j ≤ m
)

= 0
}

.

It is easy to see that H(y∗, 0) = 0 if and only if y∗ ∈ Ker(I – Q) and Pf (0, y∗) = 0. Moreover,

det

(
∂H(y∗, 0)

∂y

)
= det

(
I – Q(0) +

∂Pf (0, y∗)
∂y

)

= det(I – C(n–m)×(n–m)) · det

(
∂fi(y∗)

∂yj
; 1 ≤ i, j ≤ m

)
.

Hence

deg
(
H(·, 0), V , 0

)
= γ deg

(
Pf (0, ·), V ∩ Ker(I – Q), 0

)
,

where γ = 1 or γ = –1.
When Pf (0, y) is only continuous, the same result can be obtained by selecting suitable

twice continuously differentiable functions to approximate it.
From the homotopy invariance of topological degree, we have

deg
(
H(·, 1), V , 0

) �= 0.

Then there exists a y∗ ∈ V such that

Φ
(
y∗) = 0,

and x(t, y∗) is a solution of equation (1.1) with boundary condition (2.1). Thus the existence
of (Q, T)-affine-periodic solutions of system (1.1) is obtained. �

When Q = I , Theorem 2.1 is consistent with Krasnosel’skii and Perov’s theorem. For a
perturbed system, we give the following corollary.

Corollary 2.1 Consider the system

x′ =
k∑

i=1

εifi(t, x) + εk+1r(t, x, ε), (2.9)

where ε is a small parameter, fi(t, x) (i = 1, . . . , k) and r(t, x, ε) are continuous, locally Lips-
chitz in x and (Q, T)-affine-periodic.

(i) Assume det(I – Q) = 0.
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(ii) Let V be an open bounded subset of Rn, and P : Rn → Ker(I – Q) the orthogonal
projection, and denote Pfi(t, x) = ((Pfi)1(t, x), . . . , (Pfi)n(t, x))�. Suppose that, for every
point p ∈ ∂V ∩ Ker(I – Q), there exists a neighborhood Up of p, a constant σp > 0
that are both independent of ε, and an integer 1 ≤ j ≤ n, such that

∣∣
∣∣∣

1
εk

k∑

i=1

εi(Pfi)j(t, x)

∣∣
∣∣∣
≥ σp (2.10)

for all x ∈ Up, t ∈ [0, T], and ε ∈ [–ε0, ε0] \ {0}, where ε0 is a positive constant.
(iii) Let

F(y, ε) =
k∑

i=1

εifi(0, y). (2.11)

Assume that, for each ε ∈ [–ε0, ε0] \ {0},

deg
(
PF(·, ε), V ∩ Ker(I – Q), 0

) �= 0. (2.12)

Then system (2.9) has a (Q, T)-affine-periodic solution for |ε| > 0 small enough.

Proof It is easy to prove that there exist positive constants r and σ , such that, for every
p ∈ ∂V ∩ Ker(I – Q) and every y ∈ Br(p), one has

∣
∣∣∣
∣

1
εk

k∑

i=1

εi(Pfi)j(t, y)

∣
∣∣∣
∣
≥ σ (2.13)

for all t ∈ [0, T], and ε ∈ [–ε0, ε0] \ {0}, where Br(p) is the open ball centered at p with
radius r. Now we prove that x(ω, y) �= Qy for every y ∈ ∂V and ω ∈ (0, T]. Denote 	 =
⋃

p∈∂V∩Ker(I–Q) Br(p).
When y ∈ ∂V \ 	, there exists a constant ρ > 0, such that

∣
∣(I – Q)y

∣
∣ ≥ ρ. (2.14)

At the same time, one has

x(ω, y) = y +
∫ ω

0

( k∑

i=1

εifi
(
t, x(t, y)

)
+ εk+1r

(
t, x(t, y), ε

)
)

dt.

If x(ω, y) = Qy, then

(I – Q)y +
∫ ω

0

( k∑

i=1

εifi
(
t, x(t, y)

)
+ εk+1r

(
t, x(t, y), ε

)
)

dt = 0.

This contradicts (2.14) for |ε| > 0 small enough.
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When y ∈ 	 and x(ω, y) = Qy, one has

∫ ω

0

( k∑

i=1

εiPfi
(
t, x(t, y)

)
+ εk+1 Pr

(
t, x(t, y), ε

)
)

dt = 0.

When |ε| > 0 small enough, this contradicts (2.13).
Consider the homotopy operator H : V ∩ Ker(I – Q) × [0, 1] → Rm:

H(y,λ) = PF(y, ε) + λεk+1 Pr(0, y, ε).

By (2.13), H(y,λ) �= 0 for every y ∈ ∂V ∩ Ker(I – Q), λ ∈ [0, 1] and |ε| > 0 small enough.
Then from the homotopy invariance, one has

deg
(
H(·, 1), V , 0

) �= 0.

By Theorem 2.1, there exists a (Q, T)-affine-periodic solution of system (2.9) for |ε| > 0
small enough. �

Theorem 2.1 depends on the existence of Q(ω). More generally if there exists a suitable
nonlinear function Q(ω, y), we have the following theorem.

Theorem 2.2 Consider the system (1.1). Assume f (t, x) is locally Lipschitz continuous in
the variable x and there exists an open bounded subset V ⊂ Rn which contains the origin,
such that the following conditions hold:

(i) For every y ∈ V , the solution x(t, y) of system (1.1) exists at least on [0, T].
(ii) There exists a continuous function Q(t, y) : [0, T] × V → Rn, such that Q(T , y) = Qy,

and x(ω, y) �= Q(ω, y) for every ω ∈ (0, T] and y ∈ ∂V .
(iii) deg(id – Q(0, ·), V , 0) �= 0.

Then there exists a (Q, T)-affine-periodic solution of system (1.1).

Proof Consider the homotopy operator H : V × [0, 1] → Rn

H(y,λ) = y – Q(λT , y) +
∫ λT

0
f
(
t, x(t, y)

)
dt.

By assumption (ii), we see 0 /∈ H(∂V ×[0, 1]). From the homotopy invariance of topological
degree, we have

deg
(
H(·, 1), V , 0

)
= deg

(
H(·, 0), V , 0

)
.

Then, by assumption (iii),

deg
(
H(·, 1), V , 0

) �= 0.

Hence there exists a y ∈ V , such that

y – Q(T , y) +
∫ T

0
f
(
t, x(t, y)

)
dt = 0.
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Since

x(T , y) = y +
∫ T

0
f
(
t, x(t, y)

)
dt = 0,

we obtain

x(T , y) = Q(T , y) = Qy,

and there exists a (Q, T)-affine-periodic solutions of system (1.1). �

Corollary 2.2 Consider the (Q, T)-affine-periodic system (1.1), where f (t, x) is continuous
and locally Lipschitz continuous in the variable x. Assume there exists an open bounded
subset V ⊂ Rn which contains the origin, such that the following conditions hold:

(i) For every y ∈ V , the solution x(t, y) of system (1.1) exists at least on [0, T];
(ii) x(ω, y) �= Qy for every ω ∈ (0, T] and y ∈ ∂V ;

(iii) I – Q is invertible.
Then there exists a (Q, T)-affine-periodic solution of system (1.1).

Denote by BR the open ball centered at the origin with radius R in Rn. By Theorem 2.1,
we have the following invariant sphere principle.

Theorem 2.3 Consider the system (1.1), where f (t, x) is continuous and locally Lipschitz
continuous in the variable x. Assume Q ∈ O(n), Ker(I – Q) �= {0} and there exists an R > 0,
such that, for every (t, y) ∈ [0, T] × ∂BR, f (t, y) is inward to BR. Then there exists at least
one (Q, T)-affine-periodic solution of system (1.1).

Proof Since f (t, y) is inward to BR for every (t, y) ∈ [0, T] × ∂BR, we get

x(ω, y) �= Qy, ∀ω ∈ (0, T], y ∈ ∂BR.

Now by Theorem 2.1, we only need to prove that

deg
(
Pf (0, ·), BR ∩ Ker(I – Q), 0

) �= 0.

It is easy to see that Pf (t, y) is inward to BR ∩ Ker(I – Q) for every (t, y) ∈ [0, T] × (∂BR ∩
Ker(I – Q)). Consider the following equation in Rn ∩ Ker(I – Q):

u(t, y) = y +
∫ t

0
Pf

(
s, u(s, y)

)
ds.

Note that

u
(
t, BR ∩ Ker(I – Q)

) ⊂ BR ∩ Ker(I – Q), ∀0 < t ≤ T .

By Rothe’s theorem we get

deg
(
id – u(t, ·), BR ∩ Ker(I – Q), 0

)
= 1, ∀0 < t ≤ T .
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Consider the homotopy operator H : BR ∩ Ker(I – Q) × (0, 1] → Rm

H(y,λ) =
y – u(λT , y)

λT
= –

1
λT

∫ λT

0
Pf

(
t, u(t, y)

)
dt.

When λ = 0, denote

H(y, 0) = –Pf (0, y).

Obviously, the operator

H : BR ∩ Ker(I – Q) × [0, 1] → Rn

is continuous. By the homotopy invariance of topological degree, we get

deg
(
Pf (0, ·), BR ∩ Ker(I – Q), 0

)
= (–1)m deg

(
id – u(T , ·), BR ∩ Ker(I – Q), 0

)

= (–1)m. �

3 Asymptotic equivalence
In this section, we study the relationship for the existence of affine-periodic solutions be-
tween system (1.1) and the following system:

x′ = A(t, x), (3.1)

where A(t, x) : R × Rn → Rn is continuous, and for every t ∈ R, A(t, x) is continuously
differentiable in the variable x. Moreover, A(t +T , x) = QA(t, Q–1x) for every (t, x) ∈ R×Rn,

Let

CQ,T =
{

x : x ∈ C1([0, T]; Rn), x(T) = Qx(0)
}

,

and define the norm as ‖x‖ = supt∈[0,T] |x(t)|. It is easy to see that CQ,T is a Banach space
with the norm ‖ · ‖.

Theorem 3.1 Consider the system (1.1) and system (3.1). Assume the following conditions
hold:

(i) limM→∞ 1
M sup|x|≤M

∫ T
0 |f (t, x) – A(t, x)|dt = 0;

(ii) Denote by λ(t, x) the eigenvalue of Ax(t, x). There exists a measurable function
β : [0, T] → R with κ := exp(

∫ T
0 β(τ ) dτ ) < ∞, such that

sup
x∈Rn

∣∣λ(t, x)
∣∣ ≤ β(t).

(iii) There exists a constant σ > 0 such that, for every ϕ ∈ CQ,T , the solution y(t) with
‖y‖ = 1 of the system

y′ = A1
(
t,ϕ(t)

)
y (3.2)

satisfies |y(T) – Qy(0)| ≥ σ , where A1(t,ϕ(t)) =
∫ 1

0 Ax(t, τϕ(t)) dτ .
Then there exists at least one (Q, T)-affine-periodic solution of system (1.1).
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Proof For each ϕ ∈ CQ,T and λ ∈ [0, 1], consider the following equation:

x′ = A1
(
t,ϕ(t)

)
x + λ

(
f
(
t,ϕ(t)

)
– A

(
t,ϕ(t)

)
+ A(t, 0)

)
. (3.3)

It is easy to see the system (3.3) is also a (Q, T)-affine-periodic system, and by assumption
(iii) it has a unique (Q, T)-affine-periodic solution xϕ,λ(t). Consider the homotopy operator
H : CQ,T × [0, 1] → CQ,T :

H
(
ϕ(t),λ

)
= xϕ,λ(t).

Denote Ωp = {x ∈ CQ,T ,‖x‖ ≤ p}. Now we prove that there exists a constant p0 > 0 large
enough, such that, for every ϕ ∈ ∂Ωp0 and λ ∈ [0, 1],

ϕ – H(ϕ,λ) �= 0.

Let Φϕ(t) be a fundamental matrix solution of (3.2) such that Φϕ(0) = I . Then

d
dt

∣∣Φϕ(t)
∣∣2 =

d
dt

tr
(
Φϕ(t)Φ�

ϕ (t)
)

= 2 tr
(
Φ ′

ϕ(t)Φ�
ϕ (t)

)

= 2 tr
(
A1

(
t,ϕ(t)

)
Φϕ(t)Φ�

ϕ (t)
)

≤ 2β(t)
∣
∣Φϕ(t)

∣
∣2,

for every ϕ ∈ CQ,T and t ∈ [0, T], where tr(A) denote the trace of matrix A. Thus, we have

∣∣Φϕ(t)
∣∣ ≤ κ , ∀ϕ ∈ CQ,T , t ∈ [0, T].

Denote by yϕ(t) the solution of (3.2) with initial value yϕ(0) = xϕ(0). Then there exists a
constant p1 > 0, such that

‖yϕ‖ ≤ p
2

for every ϕ ∈ Ωp with p ≥ p1. If not, there would exist ϕk ∈ Ωk , k = 1, 2, . . . , such that
‖yϕk ‖ > k

2 . By the variation of constants formula, we get

∣
∣yϕk (T) – Qyϕk (0)

∣
∣ ≤ κ

∫ T

0

∣
∣f

(
s,ϕk(s)

)
– A

(
s,ϕk(s)

)∣∣ds + κ

∫ T

0

∣
∣A(s, 0)

∣
∣ds.

Then

1
‖yϕk ‖

∣∣yϕk (T) – Qyϕk (0)
∣∣ ≤ 2κ

k

∫ T

0

∣∣f
(
s,ϕk(s)

)
– A

(
s,ϕk(s)

)∣∣ds

+
2κ

k

∫ T

0

∣
∣A(s, 0)

∣
∣ds
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≤ 2κ

k
sup
|x|≤k

∫ T

0

∣∣f (s, x) – A(s, x)
∣∣ds

+
2κ

k

∫ T

0

∣
∣A(s, 0)

∣
∣ds.

By assumption (i), we get

lim
k→∞

1
‖yϕk ‖

∣
∣yϕk (T) – Qyϕk (0)

∣
∣ = 0,

which contradicts assumption (iii). Also by the variation of constant formula, for each
t ∈ [0, T] and λ ∈ [0, 1], we have

∣∣xϕ,λ(t) – yϕ(t)
∣∣ ≤ κ

∫ T

0

∣∣f
(
s,ϕ(s)

)
– A

(
s,ϕ(s)

)∣∣ds + κ

∫ T

0

∣∣A(s, 0)
∣∣ds.

By assumption (i), there exists a p2 > 0, such that

∣∣xϕ,λ(t) – yϕ(t)
∣∣ ≤ p

3
, ∀ϕ ∈ Ωp, p ≥ p2.

Take p0 = max{p1, p2}, then

‖xϕ,λ‖ ≤ ‖xϕ,λ – yϕ‖ + ‖yϕ‖ ≤ 5p
6

, ∀ϕ ∈ Ωp, p ≥ p0. (3.4)

Next we prove H : Ωp0 × [0, 1] → CQ,T is compact and continuous. By (3.3) and (3.4), it
is easy to see that there exists a constant M0 > 0, such that

∥∥x′
ϕ,λ

∥∥ ≤ M0, ∀(ϕ,λ) ∈ Ωp0 × [0, 1].

Then

∣
∣xϕ,λ(t) – xϕ,λ(s)

∣
∣ ≤ M0|t – s|, ∀s, t ∈ [0, T].

By Arzela–Ascoli’s theorem, H is compact.
Take (ϕk ,λk) ∈ Ωp0 × [0, 1], (ϕ̃, λ̃) ∈ Ωp0 × [0, 1], such that ‖ϕk – ϕ̃‖ → 0, |λk – λ̃| → 0 as

k → ∞. We claim that ‖xϕk ,λk – xϕ̃,λ̃‖ → 0. If not by the compactness of H , there would be
a subsequence {xϕkj ,λkj

} of {xϕk ,λk } and u ∈ Ωp0 , u �= xϕ̃,λ̃, such that

lim
j→∞‖xϕkj ,λkj

– u‖ → 0.

Let w(t) = xϕ̃,λ̃(t) – u(t). Then w(t) is a solution of (3.2) and w(T) = Qw(0), this contradicts
assumption (iii).

Now by the homotopy invariance of topological degree, we get

deg
(
id – H(·, 1),Ωp0 , 0

)
= deg

(
id – H(·, 0),Ωp0 , 0

)
.

By assumption (iii), we see deg(id – H(·, 0),Ωp0 , 0) �= 0 which implies

deg
(
id – H(·, 1),Ωp0 , 0

) �= 0.
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Then there exists a ϕ ∈ Ωp0 , such that

ϕ(t) = xϕ,1(t), ∀t ∈ [0, T],

which can be extended to a (Q, T)-affine-periodic solution of system (1.1). �

We give the asymptotically linear case as a corollary.
Consider the system

x′ = A(t)x, (3.5)

where A(t) : R → Rn is continuous and A(t + T) = QA(t)Q–1 for every t ∈ R.

Corollary 3.1 Assume that

lim
M→∞

1
M

sup
|x|≤M

∫ T

0

∣∣f (t, x) – A(t)x
∣∣dt = 0,

and system (3.5) has only trivial (Q, T)-affine-periodic solution. Then there exists at least
one (Q, T)-affine-periodic solution of system (1.1).

4 Homotopy method
To investigate the affine-periodic solutions of system (1.1), in this section we consider the
following auxiliary equation:

x′ = λf (t, x) (4.1)

with λ ∈ [0, 1].

Theorem 4.1 Consider the system (1.1), where f (t, x) is continuous and locally Lipschitz
continuous in the variable x. Assume there exists an open bounded subset V of Rn such that
the following conditions hold:

(i) For every y ∈ V and λ ∈ (0, 1], the solution xλ(t, y) of system (4.1) exists at least on
[0, T].

(ii) If y ∈ ∂V , then

xλ(T , y) �= Qy, ∀λ ∈ (0, 1].

(iii) Ker(I – Q) �= {0}. Denote

g(y) = –
1
T

∫ T

0
Pf (t, y) dt,

where P : Rn → Ker(I – Q) is the orthogonal projection. For every
y ∈ ∂V ∩ Ker(I – Q), g(y) �= 0 and

deg
(
g(·), V ∩ Ker(I – Q), 0

) �= 0.

Then there exists at least one (Q, T)-affine-periodic solution of system (1.1).
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Proof Consider the homotopy operator H : V × (0, 1] → Rn:

H(y,λ) = Py +
1
T

∫ T

0
Pf

(
t, xλ(t, y)

)
dt + λL–1

p

∫ T

0
(I – P)f

(
t, xλ(t, y)

)
dt,

where L–1
p := (I – Q)|Im(I–Q). Now we prove that

0 /∈ (id – H)
(
∂V × [0, 1]

)
.

Suppose on the contrary that there exists a (ỹ, λ̃) ∈ ∂V × [0, 1], such that

(id – H)(ỹ, λ̃) = 0.

When λ̃ = 0, one has

(I – P)ỹ = 0, (4.2)

which implies ỹ ∈ Ker(I – Q), and

1
T

∫ T

0
Pf (t, ỹ) dt = 0. (4.3)

This contradicts assumption (iii).
When λ̃ ∈ (0, 1], one has

1
T

∫ T

0
Pf

(
t, xλ̃(t, ỹ)

)
dt = 0 (4.4)

and

(I – P)ỹ – λ̃L–1
p

∫ T

0
(I – P)f

(
t, xλ̃(t, ỹ)

)
dt = 0.

Then

(I – Q)ỹ = λ̃

∫ T

0
(I – P)f

(
t, xλ̃(t, ỹ)

)
dt. (4.5)

By (4.4) and (4.5), one has

xλ̃(T , ỹ) = Qỹ,

which contradicts assumption (ii).
From the homotopy invariance of topological degree, one gets

deg
(
id – H(·, 1), V , 0

)
= deg

(
id – H(·, 0), V , 0

)
.
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Since H(0, y) ∈ Ker(I – Q), one has

deg
(
id – H(·, 0), V , 0

)
= deg

(
id – H(·, 0), V ∩ Ker(I – Q), 0

)

= deg
(
g(·), V ∩ Ker(I – Q), 0

)

�= 0.

Then there exists a ỹ ∈ V , such that

H(ỹ, 1) = ỹ,

which implies x(T , ỹ) = Qỹ. �

5 Examples
Using the results in this paper, we can obtain periodic, anti-periodic, quasi-periodic or
general affine-periodic solutions. In this section we give some examples to show this.

Example 5.1 Consider the system

x′ = ε2x(sin t + 5) + ε3r1(t, x, y, z, ε),

y′ = ε
(
ey – 1

)
+ ε3r2(t, x, y, z, ε),

z′ = εy2z sin t + ε2 et

2 + sin t
xy + ε3r3(t, x, y, z, ε),

where ri (i = 1, 2, 3) are continuous and locally Lipschitz in the variable (x, y, z). Denote

Q =

⎛

⎜
⎝

1 0 0
0 1 0
0 0 e2π

⎞

⎟
⎠ ,

f1(t, x, y, z) =
(
0, ey – 1, y2z sin t

)�,

f2(t, x, y, z) =
(

x(sin t + 5), 0,
et

2 + sin t
xy

)�
,

r(t, x, y, z, ε) =
(
r1(t, x, y, z, ε), r2(t, x, y, z, ε), r3(t, x, y, z, ε)

)�.

Then, for i = 1, 2, fi(t + 2π , x, y, z) = Qfi(t, Q–1(x, y, z)�). Suppose

r(t + 2π , x, y, z, ε) = Qr
(
t, Q–1(x, y, z)�, ε

)
.

Denote by V the unit sphere

V =
{

(x, y, z)� ∈ R3 : x2 + y2 + z2 < 1
}

.

It is easy to see

Ker(I – Q) =
{

(x, y, 0)�; (x, y) ∈ R2},
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∂
(
V ∩ Ker(I – Q)

)
=

{
(x, y, 0)�; x2 + y2 = 1

}
.

Note that

Pf1 =
(
0, ey – 1, 0

)�,

Pf2 =
(
x(sin t + 5), 0, 0

)�.

Then, for (x0, y0, 0) ∈ ∂(V ∩ Ker(I – Q)), if (x, y, z) tends to (x0, y0, 0), we have |x| ≥ 1
2 or

|y| ≥ 1
2 .

If |x| ≥ 1
2 , we have

∣
∣x(sin t + 5)

∣
∣ ≥ 2.

If |y| ≥ 1
2 , for |ε| > 0 sufficiently small, we have

∣
∣∣∣
1
ε

(
ey – 1

)
∣
∣∣∣ ≥ 1.

Denote

F(x, y, z, ε) = εf1(0, x, y, z) + ε2f2(0, x, y, z).

Then

PF(x, y, z, ε)|Ker(I–Q) =
(
5ε2x, ε

(
ey – 1

)
, 0

)�.

By simple calculations, we have

deg
(
PF(·, ε), V ∩ Ker(I – Q), 0

) �= 0.

By Corollary 2.1, when |ε| > 0 is small enough, the system has a (Q, T)-affine-periodic
solution (x(t), y(t), z(t)), such that

(
x(t + 2π ), y(t + 2π ), z(t + 2π )

)� = Q
(
x(t), y(t), z(t)

)�.

Clearly, it is unbounded.

Example 5.2 Consider the system

x′ = εx3 + ε2x cos t + ε3(y2 + z2)3,

y′ = εx sin

√
3t

2
+ ε2(y2 + z2) cos

√
3t

2
,

z′ = εx cos

√
3t

2
– ε2(y2 + z2) sin

√
3t

2
.
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Denote

Q =

⎛

⎜
⎝

1 0 0
0 cos

√
3π sin

√
3π

0 – sin
√

3π cos
√

3π

⎞

⎟
⎠ ,

f1(t, x, y, z) =
(

x3, x sin

√
3t

2
, x cos

√
3t

2

)�
,

f2(t, x, y, z) =
(

x cos t,
(
y2 + z2) cos

√
3t

2
, –

(
y2 + z2) sin

√
3t

2

)�
,

r(t, x, y, z, ε) =
((

y2 + z2)3, 0, 0
)�.

Then, for i = 1, 2,

fi(t + 2π , x, y, z) = Qfi
(
t, Q–1(x, y, z)�

)
,

r(t + 2π , x, y, z, ε) = Qr
(
t, Q–1(x, y, z)�, ε

)
.

Denote by V the unit sphere

V =
{

(x, y, z)� ∈ R3 : x2 + y2 + z2 < 1
}

.

Then we have

Ker(I – Q) =
{

(x, 0, 0)�; x ∈ R
}

,

∂
(
V ∩ Ker(I – Q)

)
=

{
(1, 0, 0)�, (–1, 0, 0)�

}
.

Note that

Pf1 =
(
x3, 0, 0

)�,

Pf2 = (x cos t, 0, 0)�,

where P : R3 → Ker(I – Q) is the orthogonal projection. Obviously there exists a neigh-
borhood Up of p ∈ {(1, 0, 0)�, (–1, 0, 0)�}, such that, for |ε| > 0 small enough,

∣
∣∣∣
1
ε

x3 + x cos t
∣
∣∣∣ ≥ 1, ∀(x, y, z) ∈ Up.

Let

F(x, y, z, ε) = εf1(0, x, y, z) + ε2f2(0, x, y, z).

Then

PF(x, y, z, ε)|Ker(I–Q) =
(
εx3 + ε2x, 0, 0

)�.
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It is easy to see that

deg
(
PF(·, ε), V ∩ Ker(I – Q), 0

) �= 0.

By Corollary 2.1, for |ε| > 0 small enough, the system has a quasi-periodic solution
(x(t), y(t), z(t)) such that

(
x(t + 2π ), y(t + 2π ), z(t + 2π )

)� = Q
(
x(t), y(t), z(t)

)�.

Example 5.3 Consider the following system in Rn:

x′ = –|x|2αx + e(t)x + h(t),

where α > 0 is a constant, e : R → Rn×n and h : R → Rn are continuous. Moreover,

e(t + T) = Qe(t)Q–1, h(t + T) = Qh(t), ∀t ∈ R,

with Q ∈ O(n). Since

〈
–|x|2αx + e(t)x + h(t), x

〉
< 0

for (t, x) ∈ [0, T] × ∂BR with R > 0 large enough, we see that the vector field is inward to
BR. By Theorem 2.3, the system has a (Q, T)-affine-periodic solution.

Example 5.4 Consider the following system in Rn:

x′ = A(t)x +
(
1 + |x|2)αx + g(t), (5.1)

where α < 0 is a constant, A : R → Rn×n and g : R → Rn are continuous. Moreover,

A(t + T) = A(t), g(t + T) = –g(t), ∀t ∈ R.

Denote by Φ(t) the fundamental matrix solution of

y′ = A(t)y, (5.2)

such that Φ(0) = I . We claim that if Φ(T) + I is invertible, the system (5.1) would have a
T-anti-periodic solution. In fact, the system (5.1) is a (–I, T)-affine-periodic system. Since
Φ(T) + I is invertible, the system (5.2) has only a trivial T-anti-periodic solution. It is easy
to see

lim
M→∞

1
M

sup
|x|≤M

∫ T

0

∣∣(1 + |x|2)αx + g(t)
∣∣dt = 0.

By Corollary 3.1, the system has a T-anti-periodic solution.
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