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Abstract
We consider the existence of multiple solutions of the following singular nonlocal
elliptic problem:

{
–M(

∫
RN |x|–ap|∇u|p) div(|x|–ap|∇u|p–2∇u) = h(x)|u|r–2u + H(x)|u|q–2u,

u(x) → 0 as |x| → ∞,

where x ∈R
N , andM(t) = α + βt. By the variational method we prove that the

problem has infinitely many solutions when some conditions are fulfilled.
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1 Introduction and main results
In this paper, we consider the existence of multiple solutions for the following singular
elliptic problem:

⎧⎪⎪⎨
⎪⎪⎩

–M(
∫
RN |x|–ap|∇u|p) div(|x|–ap|∇u|p–2∇u)

= h(x)|u|r–2u + H(x)|u|q–2u, x ∈ R
N ,

u(x) → 0 as |x| → ∞,

(1.1)

where M(t) = α+βt with parameters α,β > 0, a < N–p
p , h(x) and H(x) are nonnegative func-

tions in R
N , and further assumptions will be listed later. It is well known that problem like

(1.1) originally comes from Kirchhoff’s important work [1], and Kirchhoff-type equations
received much attention only after the paper by Lions [2]; see [3–8] and the references
therein. Zhang and Perera [6] considered the following problem:

⎧⎨
⎩–(a + b

∫
Ω

|∇u|2 dx)�u = f (x, u), x ∈ Ω ,

u(x) = 0 on ∂Ω ,
(1.2)

where Ω is a bounded domain of RN . By the variational method the authors proved that
problem (1.2) has a positive solution, a negative solution, and a sign-changing solution.
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We note that the function f (x, t) in (1.2) is required to meet the condition

uf (x, u) ≥ vF(x, u), v > 4,∀x ∈ R
N ,∀u ∈R. (1.3)

Condition like (1.3) also appears in [9]. In our paper, f (x, u) = h(x)|u|r–2u + H(x)|u|q–2u. If
r < p < q or min{r, q} < p, then f (x, u) does not satisfy (1.3) even for p = 2. Therefore the
methods applied in [6] cannot be simply extended to p-Kirchhoff problem (1.1). In [10]
the authors considered the following Kirchhoff-type equation in R

3:

⎧⎨
⎩–(a + b

∫
R3 |∇u|2 dx)�u + V (x)u = f (x, u),

u(x) → 0 as |x| → ∞.
(1.4)

By applying the symmetric mountain pass theorem, the authors proved the existence of
infinitely many high-energy solutions for (1.4). The authors in [11] studied the following
superlinear Kirchhoff equation:

⎧⎨
⎩–(a

∫
RN |∇u|2 dx + b)�u + λV (x)u = f (x, u),

u(x) ∈ H1(RN ).
(1.5)

Under some new superlinear hypotheses on f (x, u), the authors proved the existence and
nonexistence of solutions for (1.5). The results show that the existence of solutions is
closely related to the parameters λ and a. Particularly, the authors proved that one so-
lution blows up as the nonlocal term vanishes.

In recent years, Kirchhoff-type equations with p-Laplacian operator have been an in-
teresting topic; see [12–16]. When a = 0, in [16] the authors studied the following critical
Kirchhoff problem with p-Laplacian on a bounded domain:

⎧⎨
⎩–[M(

∫
Ω

|∇u|p dx)]p–1�pu = f (x, u), x ∈ Ω ,

u(x) = 0 on ∂Ω .
(1.6)

By the genus theorem the authors proved the existence of multiple solutions of (1.6). The
function f (x, u) in (1.6) satisfies the following condition:

(f1) there exist constants Q1 and Q2 such that

Q1tq–1 ≤ f (x, t) ≤ Q2tq–1 (1.7)

for all t ≥ 0 and x ∈ Ω , where q ∈ (p, p∗ = Np/(N – p)). In the present paper, however, it is
not difficult to check that when max{r, q} < p, the function f (x, u) in (1.1) does not satisfy
condition (1.7). Thus problem (1.6) does not include our problem (1.1). Chen and Chen
[17] considered a class of more general Kirchhof-type equations

(
a + μ

(∫
RN

(|∇u|p + V (x)|u|p)dx
)τ)(

–�pu + V (x)|u|p–2u
)

= f (x, u), x ∈R
N , (1.8)
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where f (x, u) = λ1h1(x)|u|m–2u + h2(x)|u|q–2u. Under appropriate assumptions, the authors
proved that there exists λ0 > 0 such that (1.8) has infinitely many high-energy solutions
for λ ∈ [0,λ0). Particularly, when β = 0 and α = 1, problems like (1.1) reduce to elliptic
equation without nonlocal term. This class of problems have been investigated by many
authors; we refer to [18–21] and the references therein.

Motivated by the references mentioned, we consider the existence of multiple solutions
of singular problem (1.1) by variational methods and the genus theorem. To our best
knowledge, there are few results on singular problem (1.1). We prove that problem (1.1)
has infinitely many solutions when some certain conditions are fulfilled. Note that our
problem (1.1) is considered in the whole space RN ; the loss of compactness of the Sobolev
embedding renders the variational technique more delicate.

The natural space in this paper is the weighted Sobolev space X = D1,p
a (RN ), which is the

completion of the space C∞
0 (RN ) endowed with the norm

‖u‖X =
(∫

RN
|x|–ap|∇u|p dx

) 1
p

.

The following weighted Sobolev–Hardy inequality is due to Caffarelli et al. [22], which
is called the Caffarelli–Kohn–Nirenberg inequality: There exist constants S1, S2 > 0 such
that

(∫
RN

|x|–bp∗ |u|p∗
dx

)p/p∗

≤ S1

∫
RN

|x|–ap|∇u|p dx, ∀u ∈ C∞
0

(
R

N)
, (1.9)

and ∫
RN

|x|–(a+1)p|u|p dx ≤ S2

∫
RN

|x|–ap|∇u|p dx, ∀u ∈ C∞
0

(
R

N)
, (1.10)

where –∞ < a < (N – p)/p, p∗ = pN/(N – pd), d = a + 1 – b, and a ≤ b < a + 1.
In this paper, we make the following assumptions:
(A1) for 1 < r < p, h(x) ∈ L∞(RN ) ∩ Lr1 (RN , g1) with r1 = p

p–r , g1 = |x|(a+1)rr1 ;
(A2) for 1 < p ≤ r < 2p, h(x) ∈ L∞(RN ) ∩ Lr2 (RN , g2) with r2 = p∗

p∗–r , g2 = |x|brr2 ;
(A3) for 1 < p ≤ q < 2p, H(x) ∈ L∞(RN ) ∩ Lq1 (RN , f1) with q1 = p∗

p∗–q , f1 = |x|bqq1 ;
(A4) for 1 < q < p, H(x) ∈ L∞(RN ) ∩ Lq2 (RN , f2) with q2 = p

p–q , f2 = |x|(a+1)qq2 .
Here the space L∞(RN ) consists of all functions u : RN → R such that |u| is bounded on
R

N\Ω for some Ω ⊂R
N of Lebesgue measure zero with norm ‖u‖∞ = sup

RN |u|, and the
space Lp(RN ) with 1 ≤ p < ∞ consists of all functions u : R →R such that

∫
RN |u|p dx < ∞

and ‖u‖Lp(RN ) = (
∫
RN |u|p dx)1/p. Now we give the definition of weak solution for problem

(1.1).

Definition 1.1 A function u ∈ X is said to be a weak solution of problem (1.1) if for any
ϕ ∈ X, we have

(
α + β‖u‖p

X
)∫

RN
|x|–ap|∇u|p–2∇u · ∇ϕ dx

=
∫
RN

h(x)|u|r–2uϕ dx +
∫
RN

H(x)|u|q–2uϕ dx. (1.11)
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Assumptions (A1)–(A4) mean that all the integrals in (1.11) are well defined and con-
verge.

Our main result is the following:

Theorem 1 Assume that one of the following cases holds:
(i) (A1) and (A3);

(ii) (A1) and (A4);
(iii) (A2) and (A4).

Then problem (1.1) has infinitely many solutions. Particularly, if (A2) and (A3) hold and
α > 0 is small enough, then problem (1.1) also has infinitely many solutions.

This paper is organized as follows. In Sect. 2, we give some basic definitions and set up
the variational framework. Particularly, we prove some compact embedding theorems. In
Sect. 3, by the variational methods and the genus theorem we consider the multiplicity
results and prove Theorem 1.

2 Preliminary results
It is clear that problem (1.1) has a variational structure. Let J(u) : X → R

1 be the corre-
sponding Euler functional of problem (1.1) defined by

J(u) =
1
p

M̂
(‖u‖p

X
)

–
1
r

∫
RN

h(x)|u|r dx –
1
q

∫
RN

H(x)|u|q dx, (2.1)

where M̂(t) =
∫ t

0 M(s) ds. Then J(u) ∈ C1(X,R1), and for any ϕ ∈ X, we have

〈
J ′(u),ϕ

〉
= M

(‖u‖p
X
)∫

RN
|x|–ap|∇u|p–2∇u · ∇ϕ dx –

∫
RN

h(x)|u|r–2uϕ dx

–
∫
RN

H(x)|u|q–2uϕ dx. (2.2)

Particularly, we have

〈
J ′(u), u

〉
= M

(‖u‖p
X
)∫

RN
|x|–ap|∇u|p dx –

∫
RN

h(x)|u|r dx –
∫
RN

H(x)|u|q dx. (2.3)

It is well known that the weak solution of problem (1.1) is the critical point of J(u). Thus,
to prove the existence of infinitely many weak solutions for problem (1.1), it is sufficient to
show that J(u) admits a sequence of critical points. Our proof is based on the variational
method, and one important aspect of applying this method is showing that the functional
J(u) satisfies the condition (PS)c, which is introduced in the following definition.

Definition 2.1 Let c ∈ R
1, and let X be a Banach space. The functional J(u) ∈ C1(X,R)

satisfies the condition (PS)c if any {un} ⊂ X such that

J(un) → c and J ′(un) → 0 in X∗ as n → ∞ (2.4)

contains a convergent subsequence in X.
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The following embedding theorem is an extension of the classical Rellich–Kondrachov
compactness theorem, see [23].

Lemma 2.1 Suppose Ω ⊂ R
N is an open bounded domain with C1 boundary and 0 ∈ Ω ,

and let 1 < p < N and a < (N – p)/p. Then the embedding W 1,p
0 (Ω , |x|–ap) ↪→ Lr(Ω , |x|–α)

is continuous if 1 ≤ r ≤ Np/(N – p) and 0 ≤ α ≤ (1 + a)r + N(1 – r/p) and is compact if
1 ≤ r < Np/(N – p) and 0 ≤ α < (1 + a)r + N(1 – r/p).

We further give some embedding theorems, which play an important role in the paper.

Lemma 2.2 Assume (A3) or (A4). Then the embedding X ↪→ Lq(RN , H) is compact.

Proof We divide the proof into two cases.
Case 1. 1 < p ≤ q < p∗.

Let

μ1 =
p∗

q
, μ2 = q1 =

p∗

p∗ – q
.

Thus μ1,μ2 > 1 and 1
μ1

+ 1
μ2

= 1. From (1.9) and the Hölder inequality it follows that

‖u‖q
Lq(RN ,H(x)) =

∫
RN

H(x)|x|bq|u|q|x|–bq dx

≤
(∫

RN
|x|–bp∗ |u|p∗

dx
) q

p∗ (∫
RN

H(x)q1 |x|bqq1 dx
) 1

q1

≤ S
q
p
1

(∫
RN

|x|–ap|∇u|p dx
) q

p
(∫

RN
H (x

)
q1|x|bqq1 dx)

1
q1

≤ S
q
p
1 ‖u‖q

X
∥∥H(x)

∥∥
Lq1 (RN ,f1), (2.5)

where q1 and f1 are defined in (A3). Then (2.5) yields that the embedding is continuous.
Next, we will prove that the embedding is compact. Let BR be the ball with center at the
origin and radius R > 0. Denote Lq(Ω , H(x)) by Y (Ω). Then Y (RN ) = Lq(RN , H(x)). Let
{un} be a bounded sequence in X. Then {un} is bounded in X(BR), where X(BR) is the
completion of C∞

0 (RN ) with respect to the norm

‖ · ‖ =
(∫

BR

|x|–ap|∇ · |p dx
) 1

p
.

We choose α = 0 in Lemma 2.1. Then there exist u ∈ Y (BR) and a subsequence, still de-
noted by {un}, such that ‖un – u‖Y (BR) → 0 as n → ∞. We claim that

lim
R→∞ sup

u∈X\{0}

‖u‖Y (Bc
R)

‖u‖X
= 0, (2.6)

where Bc
R = R

N\BR. In fact, from (2.5) we obtain that

‖u‖q
Y (Bc

R) ≤ S
q
p
1 ‖u‖q

X‖H‖Lq1 (Bc
R ,f1). (2.7)
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From (A3) it follows that

lim
R→∞

∫
Bc

R

Hq1 f1 dx = 0. (2.8)

Then (2.7) and (2.8) imply (2.6). Since X is a separable Banach space and {un} is bounded
in X, we may assume, up to a subsequence, that

un ⇀ u in X. (2.9)

In view of (2.6), we get that for any ε > 0, there exists Rε > 0 large enough such that

‖un‖Y (Bc
Rε

) ≤ ε‖un‖X (n = 1, 2, . . .). (2.10)

On the other hand, due to the compact embedding X(BRε ) ↪→ Y (BRε ) in Lemma 2.1, we
have that

lim
n→∞‖un – u‖Y (BRε ) = 0. (2.11)

Therefore there is N0 ∈N such that

‖un – u‖Y (BRε ) < ε (2.12)

for n > N0. Then from (2.10) and (2.12) it follows that

‖un – u‖Y ≤ ‖un – u‖Y (BRε ) + ‖un‖Y (Bc
Rε

) + ‖u‖Y (Bc
Rε

) ≤ (
1 + ‖un‖X + ‖u‖X

)
ε, (2.13)

which implies that un → u strongly in Y (RN ).
Case 2. 1 < q < p.

By (1.10) and (A4) we get that

‖u‖q
Lq(RN ,H) =

∫
RN

H(x)|u|q dx

≤
(∫

RN
|x|–(a+1)p|u|p dx

) q
p
(∫

RN
|x|–(a+1)qq2 Hq2 (x) dx

) 1
q2

≤ S
q
p
2

(∫
RN

|x|–ap|∇u|p dx
) q

p
‖H‖Lq2 (RN ,f2), (2.14)

which implies that the embedding X ↪→ Lq(RN , H) is continuous. Furthermore, proceed-
ing in a similar manner to Case 1, we can also prove that the embedding is compact. �

In an analogous manner, we can prove the following result.

Lemma 2.3 Assume (A1) or (A2). Then the embedding X ↪→ Lr(RN , h) is compact.

We now prove that J(u) satisfies the condition (PS)c.
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Lemma 2.4 Assume that the hypotheses in Theorem 1 hold. Then J(u) satisfies the condi-
tion (PS)c for any c ∈R.

Proof Let {un} ⊂ X be a (PS)c sequence such that (2.4) holds. We divide the proof into four
cases. We only prove Case 1,

Case 1. 1 < max{r, q} < p.
Firstly, we prove that {un} is bounded in X. Choosing θ > 2p, from (A1), (A4), and (2.4) it
follows that for large n,

1 + c + ‖un‖X

≥ J(un) –
1
θ

〈
J ′(un), un

〉
=

(
1
p

–
1
θ

)
α‖un‖p

X + β

(
1

2p
–

1
θ

)
‖un‖2p

X

–
(

1
r

–
1
θ

)∫
RN

h(x)|un|r dx –
(

1
q

–
1
θ

)∫
RN

H(x)|un|q dx

≥
(

1
p

–
1
θ

)
α‖un‖p

X + β

(
1

2p
–

1
θ

)
‖un‖2p

X –
(

1
r

–
1
θ

)
S

r
p
2 ‖un‖r

X‖h‖Lr1 (RN ,g1)

–
(

1
q

–
1
θ

)
S

q
p
2 ‖un‖q

X‖H‖Lq2 (RN ,f2), (2.15)

which means that {‖un‖X} is bounded.
Secondly, we prove that {un} converges strongly in X. Since X is a separable Banach

space, there exists a subsequence, still denoted by {un}, such that un ⇀ u0 in X. The com-
pact embeddings in Lemmas 2.2 and 2.3 give that

∫
RN

h(x)|un|r dx →
∫
RN

h(x)|u0|r dx,
∫
RN

H(x)|un|q dx →
∫
RN

H(x)|u0|q dx.
(2.16)

Furthermore, the Brezis–Leib lemma shows that

∫
RN

h(x)|un – u0|r dx → 0,
∫
RN

H(x)|un – u0|q dx → 0. (2.17)

Then from the Hölder inequality and (2.17) it follows that

∫
RN

h(x)|un|r–2un|un – u0|dx → 0,
∫
RN

H(x)|un|q–2un|un – u0|dx → 0. (2.18)

Let ϕ = un – u0 in (2.2). Then

〈
J ′(un), un – u0

〉
=

(
α + β‖un‖p

X
)∫

RN
|x|–ap|∇un|p–2∇un · ∇(un – u0) dx

–
∫
RN

h(x)|un|r–2un(un – u0) dx –
∫
RN

H(x)|un|q–2un(un – u0) dx. (2.19)
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Note that J ′(un) → 0. Therefore from (2.18) and (2.19) we get that

∫
RN

|x|–ap|∇un|p–2∇un · ∇(un – u0) dx → 0 as n → +∞. (2.20)

On the other hand, from the weak convergence un ⇀ u0 it follows that

∫
RN

|x|–ap|∇u0|p–2∇u0 · ∇(un – u0) dx → 0 as n → +∞. (2.21)

Consequently, relations (2.20) and (2.21) yield that

∫
RN

|x|–ap(|∇un|p–2∇un – |∇u0|p–2∇u0
) · ∇(un – u0) dx → 0. (2.22)

Furthermore, by the standard inequalities (see [24])

|ξ – ζ |p ≤
⎧⎨
⎩c〈|ξ |p–2ξ – |ζ |p–2ζ , ξ – ζ 〉 for p ≥ 2,

c〈|ξ |p–2ξ – |ζ |p–2ζ , ξ – ζ 〉p/2(|ξ |p + |ζ |p)(2–p)/2 for 1 < p < 2,

we obtain that

∫
RN

|x|–ap∣∣∇(un – u0)
∣∣p dx → 0, (2.23)

that is, un → u0 strongly in X.
Case 2. 1 < p < min{r, q} and max{r, q} < 2p.

We choose θ = 2p. Since r, q < 2p, from (A2) and (A3) it follows that

1 + c + ‖un‖X ≥ J(un) –
1
θ

〈
J ′(un), un

〉
=

(
1
p

–
1

2p

)
α‖un‖p

X –
(

1
r

–
1

2p

)∫
RN

h(x)|un|r dx

–
(

1
q

–
1

2p

)∫
RN

H(x)|un|q dx

≥
(

1
p

–
1

2p

)
α‖un‖p

X –
(

1
r

–
1

2p

)
S

r
p
2 ‖un‖r

X‖h‖Lr1 (RN ,g1)

–
(

1
q

–
1

2p

)
S

q
p
2 ‖un‖q

X‖H‖q2
L

(
R

N , f2
)
, (2.24)

which implies that {‖un‖X} is bounded in X. The remaining proofs are similar to those of
(2.16)–(2.23).

Case 3. 1 < r < p < q < 2p.
Using (A1) and (A3), we can similarly prove that that J(u) satisfies the conditions (PS)c.

Case 4. 1 < q < p < r < 2p.
By (A2) and (A4) we get that J(u) satisfies the conditions (PS)c. �
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3 Existence of solutions
In this section, we use the minimax procedure to prove the existence of infinitely many
solutions for problem (1.1). Let A denotes the class of A ⊂ X\{0} such that A is closed in
X and symmetric with respect to the origin. For A ∈A, the genus γ (A) is defined by

γ (A) = min
{

m ∈ N : ∃φ ∈ C
(
A, Rm\{0}),φ(x) = φ(–x)

}
.

We say that γ (A) = ∞ if there no such mapping for any m ∈ N . Particularly, γ (∅) = 0.
The following proposition gives some main properties of the genus; see [25, 26].

Proposition 3.1 Let A, B ∈A. Then:
(1) If there exists an odd map g ∈ C(A, B), then γ (A) ≤ γ (B).
(2) If A ⊂ B, then γ (A) ≤ γ (B).
(3) γ (A ∪ B) ≤ γ (A) + γ (B).
(4) If S is a sphere centered at the origin in R

N , then γ (S) = N .
(5) If A is compact, then γ (A) < ∞, and there exists δ > 0 such that Nδ(A) ∈A and

γ (Nδ(A)) = γ (A), where Nδ(A) = {x ∈ X : ‖x – A‖ ≤ δ}.

Lemma 3.2 There exists ε = ε(m) such that

γ
{

u ∈ X : J(u) < –ε
} ≥ m.

Proof Given m ∈N
+, let Xm be an m-dimensional subspace of X. Similarly to Lemma 2.4,

we will proceed the discussion according to the relationship of p, q, r.
Case 1. 1 < r, q < p.

Without loss of generality, we assume that r < q. Then by (2.1)

J(u) ≤ α

p
‖u‖p

X +
β

2p
‖u‖2p

X –
1
r
‖u‖r

Lr (RN ,h). (3.1)

Note that since Xm is a finite-dimensional space, all norms on this space are equivalent.
Therefore for all u ∈ Xm,

J(u) ≤ α

p
‖u‖p

X +
β

2p
‖u‖2p

X – c‖u‖r
X (3.2)

for some constant c > 0. Then there exist small ρ1 > 0 and ε > 0 such that J(u) < –ε for
u ∈ Xm and ‖u‖X = ρ1. Set

Sρ1 =
{

u ∈ Xm : ‖u‖Xm = ρ1
}

. (3.3)

Then Sρ1 is a sphere centered at the origin with radius of ρ1, and

Sρ1 ⊂ {
u ∈ X : J(u) ≤ –ε

}
� J–ε . (3.4)

Therefore Proposition 3.1 shows that γ (J–ε) ≥ γ (Sρ1 ) = m.
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Case 2. 1 < p < min{r, q} and max{r, q} < 2p.
By the equivalence of norms on the finite-dimensional space Xm we get from (2.1) that

J(u) =
α

p
‖u‖p

X +
β

2p
‖u‖2p

X – c1‖u‖r
X – c2‖u‖q

X

= ‖u‖p
X

(
α

p
+

β

2p
‖u‖p

X – c1‖u‖r–p
X – c2‖u‖q–p

X

)
, (3.5)

where c1, c2 are positive constants. If α > 0 is sufficiently small, then there exists small ρ3

such that J(u) < –ε with ‖u‖Xm = ρ3.
Case 3. 1 < r < p < q < 2p.

We can similarly get that

J(u) ≤ α

p
‖u‖p

X +
β

2p
‖u‖2p

X – c‖u‖r
X

for u ∈ Xm and some constant c > 0. There exist small ρ4 > 0 and ε > 0 such that J(u) < –ε

with ‖u‖Xm = ρ4. Then Sρ4 ⊂ J–ε and γ (J–ε) ≥ γ (Sρ4 ) = m. The sphere Sρ4 with radius ρ4 is
defined as in (3.3).

Case 4. 1 < q < p < r < 2p.
It is not difficult to check that

J(u) ≤ α

p
‖u‖p

X +
β

2p
‖u‖2p

X – c‖u‖q
X

for u ∈ Xm and c > 0. Similarly, there exist small ρ5 > 0 and ε > 0 such that J(u) < –ε with
‖u‖Xm = ρ5 and γ (J–ε) ≥ γ (Sρ5 ) = m. Therefore we complete the proof of Lemma 3.2. �

Let Am = {A ∈A : γ (A) ≥ m}. Then Am+1 ⊂Am (m = 1, 2, . . .). Define

cm = inf
A∈Am

sup
u∈A

J(u).

Since J(u) is coercive, J(u) is bounded from below. It is not difficult to find that

c1 ≤ c2 ≤ · · · ≤ cm ≤ · · ·

and cm > –∞ for any m ∈N. Furthermore, set

Kc =
{

u ∈ X : J(u) = c, J ′(u) = 0
}

.

Then Kc is compact, and the following lemma can be similarly proved as Lemma 6 in [21];
see also [26].

Lemma 3.3 All cm are critical values of J(u). Moreover, if c = cm = cm+1 = · · · = cm+τ , then
γ (Kc) ≥ 1 + τ .

Now we can prove Theorem 1.
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Proof Lemma 2.4 shows that J(u) satisfies the conditions (PS)c in X. Then by the stan-
dard argument in [25–27] we obtain from Lemma 3.3 that J(u) has infinitely many critical
points, that is, problem (1.1) has infinitely many weak solutions in X. Therefore we com-
plete the proof of Theorem 1. �
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