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Abstract
The aim of this paper is establishing the existence of a nontrivial solution for the
following quasilinear Schrödinger–Poisson system:

⎧
⎨

⎩

–�u + V(x)u – u�(u2) + K (x)φ(x)u = g(x,u), x ∈ R
3,

–�φ = K (x)u2, x ∈ R
3,

u ∈ H1(R3), u > 0,

where V , K , g are continuous functions. To overcome the technical difficulties caused
by the quasilinear term, we change the variable to guarantee the feasibility of
applying the mountain pass theorem to solve the above problems. We use the
mountain pass theorem and the concentration–compactness principle as basic tools
to gain a nontrivial solution the system possesses under an asymptotic periodicity
condition at infinity.
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1 Introduction and main results
In this paper, we consider the following quasilinear asymptotically periodic Schrödinger–
Poisson system:

⎧
⎪⎨

⎪⎩

–�u + V (x)u – u�(u2) + K(x)φ(x)u = g(x, u), x ∈R
3,

–�φ = K(x)u2, x ∈ R
3,

u ∈ H1(R3), u > 0,
(1.1)

where V , K : R3 →R and g : R3 ×R →R are continuous functions.
The so-called quasilinear Schrödinger–Poisson system was introduced in [5, 25] and

is a quantum mechanical model of extremely small devices in semiconductor nanostruc-
tures taking into account the quantum structure and longitudinal field oscillations during
the beam propagation. As far as we know, this new significant physical system was not
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mentioned before [5, 25], even though it is worth exploring from a mathematical point of
view.

System (1.1) without quasilinear potential –u�(u2) is called the Schrödinger–Poisson
system,

{
–�u + V (x)u + K(x)φ(x)u = g(x, u), x ∈R

3,
–�φ = K(x)u2, x ∈R

3,

which has been widely studied, and many meaningful results were achieved for the sub-
critical growth [7, 27, 44, 45, 47] or the critical exponent [46] under various assumptions
on the potentials and nonlinearities. Furthermore, nontrivial solutions, radial solutions
[10, 13, 29], ground state solutions [2, 4] and also semiclassical solutions [14, 23, 24] were
obtained generally. Moreover, quasilinear Schrödinger equations with –u�(u2):

–�u + V (x)u – u�
(
u2) = g(x, u), x ∈R

N ,

have been accepted as models of several physical phenomena; we refer the reader to the
introduction in [30] and references therein for a discussion on the subject. The existence
of solutions of quasilinear equations was considered in [1, 6, 11, 12, 18, 43].

There are scarce existing results on system (1.1), which is a new combination of two dif-
ferent equations. So our discussion is worth considering and has an excellent prospect; this
paper is also an innovation of the pioneering work. When K(x) = 1 in system (1.1), the au-
thors in [8] took into account the systems by applying the perturbation method, and hence
the existence of a sign-changing solution with precisely two nodal domains was derived.
The authors in [15] studied the existence and asymptotic behavior of ground state in the
whole spaceR3 for the quasilinear Schrödinger–Poisson system with asymptotically linear
f (t) with respect to t at infinity; see also [28] for more related results. Figueiredo and Sicil-
iano [19, 20] paid close attention to two different systems with critical growth and obtained
the existence and asymptotic behavior of solutions for the previous system in R

3 and also
achieved a similar result for the latter system in a bounded domain in R

2. The authors
in [31] considered a system with radial potentials and discontinuous nonlinearity and ob-
tained multiplicity results for radial solutions. By using Ekeland’s variational principle and
the mountain pass theorem the authors in [33] obtained the existence of the ground state
solution for a generalized quasilinear Schrödinger–Poisson system in R

3. For related re-
sults on nonlinear problems based on variational methods, we refer to [21, 28, 32, 38–42],
which are recent contributions to Kirchhoff-type problems. Tang [35] developed a direct
method, a non-Nehari manifold method, to find a minimizing Cerami sequence for the en-
ergy functional outside the Nehari–Pankov manifold by using the diagonal method. Tang,
Lin, and Yu [36] first introduced a local superquadratic condition instead of the classical
global superquadratic condition. Chen and Tang [9] proposed a new approach to recover
the compactness for the Cerami sequence.

Guided by the method of [34], our main goal is establishing the existence of a solution
to problem (1.1) under an asymptotic periodicity condition at infinity.

Letting F denote the class of functions h ∈ C(R3,R) ∩ L∞(R3) such that, for every ε > 0,
the set {x ∈ R

3 : |h(x)| ≥ ε} has finite Lebesgue measure, we suppose that V and K are
perturbations of periodic functions at infinity. More specifically, we impose the following
assumptions on V and K :
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(V ) there exist a constant α > 0 and a function V0 ∈ C(R3,R), 1-periodic in xi, 1 ≤ i ≤ 3,
such that V0 – V ∈F and

V0(x) ≥ V (x) ≥ α > 0, ∀x ∈R
3.

(K) K ∈ L2(R3)∩L∞(R3), and there exist a constant k > 0 and a function K0 ∈ C(R3,R)∩
L2(R3), 1-periodic in xi, 1 ≤ i ≤ 3, such that K0 – K ∈F and

K0(x) ≥ K(x) ≥ k > 0, ∀x ∈ R
3.

For g(x, s) and G(x, s) =
∫ s

0 g(x, t) dt, we need the following hypotheses:
(G1) g(x, s) = o(|s|) as s → 0+, uniformly in R

3;
(G2) there are constants a1, a2 > 0 and 8 ≤ q1 < 12 such that

∣
∣g(x, s)

∣
∣ ≤ a1 + a2|s|q1–1, ∀(x, s) ∈R

3 × [0, +∞);

(G3) there exist a constant q2 > 3(q1–4)
2 and a function h1 ∈ L1(R3) such that

1
4

g(x, s)s – G(x, s) ≥ sq2 – h1(x), ∀(x, s) ∈R
3 × [0, +∞),

where q1 is given by hypothesis (G2).
We observe that conditions (G1) and (G2) allow us to employ variational methods to study
problem (1.1) and to verify that the associated functional has a local minimum at the ori-
gin. As a matter of fact, we study the functional associated with the modified problem.
Condition (G2) imposes a subcritical growth on g . However, under these hypotheses, this
functional does not satisfy a compactness condition of Palais–Smale type since the domain
is the whole space R3. We also observe that from (G2) and (G3) we obtain 0 < q2 ≤ q1. Note
that 22∗ = 4N

N–2 = 12 behaves like a critical exponent for problem (1.1). The asymptotic pe-
riodicity of g at infinity is given by the following condition:

(G4) there exist a constant 4 ≤ q3 < 12 and functions h2 ∈ F , and g0 ∈ C(R3 × R,R+),
1-periodic in xi, 1 ≤ i ≤ 3, such that

(i) G(x, s) ≥ G0(x, s) =
∫ s

0 g0(x, t) dt, ∀(x, s) ∈R
3 × [0, +∞),

(ii) |g(x, s) – g0(x, s)| ≤ h2(x)sq3–1, ∀(x, s) ∈R
3 × [0, +∞),

(iii) the function s → g0(x,s)
s7 is nondecreasing in the variable s > 0.

Finally, we also suppose that G satisfies:
(G) G(x,s)

s8 → ∞ as s → ∞ uniformly in R
3.

The first main result is stated as follows.

Theorem 1.1 Suppose that (V ), (K), (G1)–(G4), and (G) are satisfied. Then system (1.1)
admits a solution.

We observe that in the particular case V = V0, K = K0, and g = g0, Theorem 1.1 clearly
gives us a solution for the periodic problem. Indeed, to show the existence of a solution for
the periodic problem, condition (G4) is not necessary. Consider the following problem:

⎧
⎪⎨

⎪⎩

–�u + V0(x)u – u�(u2) + K0(x)φ(x)u = g0(x, u), x ∈R
3,

–�φ = K0(x)u2, x ∈ R
3,

u ∈ H1(R3), u > 0
(1.2)
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under the following hypotheses:
(V0) V0 ∈ C(R3,R), 1-periodic in xi, 1 ≤ i ≤ 3, and there exists a constant α > 0 such that

V0(x) ≥ α > 0, ∀x ∈R
3.

(K0) K0 ∈ L2(R3)∩L∞(R3)∩C(R3), 1-periodic in xi, 1 ≤ i ≤ 3, and there exists a constant
k > 0 such that

K0(x) ≥ k > 0, ∀x ∈R
3.

Then with the function g0 satisfying (G1)–(G3) and (G), we obtain the second main result.

Theorem 1.2 Suppose that (V0), (K0), (G1)–(G3), and (G) are satisfied. Then system (1.2)
admits a solution.

The remainder of this paper is organized as follows. In Sect. 2, we present two versions
of the mountain pass theorem to be employed later. In Sect. 3, we introduce the variational
framework associated with problem (1.1). In Sect. 4, we verify the geometric conditions
of the mountain pass theorem and show the boundedness of the Cerami sequences asso-
ciated with the minimax level. In Sect. 5, we prove the main results, and so the existence
of a solution for problems (1.1) and (1.2) is established.

2 Preliminary
In this section, we present two versions of the mountain pass theorem due to Ambrosetti
and Rabinowitz [3], which are essential tools in this paper.

Let E be a real Banach space, and let I : E → R a functional of class C1. Let M be
the set of critical points of I . For b ∈ R, we define Ib = {u ∈ E : I ≤ b} and Mb = {u ∈ E :
u ∈ M, I(u) = b}.

As we noted in the Introduction, the functional associated with problem (1.1) does not
satisfy the Palais–Smale condition. To overcome this difficulty, we will use versions of the
mountain pass theorem. To this end, we state the first version of this theorem (see [17, 37]).

We recall that I ∈ C1(E,R) satisfies the Cerami condition on level c, denoted by (C)c, if
any sequence {un} ⊂ E satisfying

(i) I(un) → c and (ii)
∥
∥I ′(un)

∥
∥
(
1 + ‖un‖

) → 0

as n → ∞, possesses a convergent subsequence, where ‖ · ‖E denotes the norm on E.
A function I satisfies the Cerami condition, denoted by (C), if it satisfies (C)c for every
c ∈ R. We say that {un} ⊂ E is a (C)c sequence if it satisfies (i)–(ii).

Theorem 2.1 Let E be a real Banach space, and let I ∈ C1(E,R). Let S be a closed subset
of E that disconnects E into distinct connected components E1 and E2. Suppose further that
I(0) = 0 and:

(I1) 0 ∈ E1 and there is σ > 0 such that infu∈S I(u) ≥ σ > 0,
(I2) there is e ∈ E2 such that I(e) ≤ 0.
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Then I possesses a (C)c sequence with c ≥ σ > 0 given by

c = inf
γ∈�

max
t∈[0, 1]

I
(
γ (t)

)
, (2.1)

where

Γ =
{
γ ∈ C

(
[0, 1], E

)
: γ (0) = 0,γ (1) ∈ I0 ∩ E2

}
. (2.2)

We will also need a local version of Theorem 2.1, which is proved in [26].

Theorem 2.2 Let E be a real Banach space. Suppose that I ∈ C1(E,R) satisfies I(0) = 0,
(I1), and (I2). If there exists γ0 ∈ Γ , where Γ is defined by (2.2), such that

c = max
t∈[0,1]

I
(
γ0(t)

)
> 0, (2.3)

then I possesses a nontrivial critical point u ∈ Mc ∩ γ0([0, 1]).

3 The variational framework
In this section, we introduce the variational framework associated with problem (1.1).
Here, we consider the space H1(R3) endowed with one of the following norms:

‖u‖ =
(∫

R3

(|∇u|2 + V (x)u2)dx
) 1

2
,

‖u‖0 =
(∫

R3

(|∇u|2 + V0(x)u2)dx
) 1

2
.

Note that, in view of condition (V ), these norms are both equivalent to the standard norm
on H1(R3). As far as we know, system (1.1) can be easily transformed into a single nonlinear
Schrödinger equation with nonlocal term. Briefly, the Poisson equation is solved by using
the Lax–Milgram theorem, so for all u ∈ H1(R3), there is a unique φu ∈ D1,2(R3) such that
–�φ = K(x)u2, which inserted into the first equation gives

–�u + V (x)u – u�
(
u2) + K(x)φuu = g(x, u).

In fact, for each u ∈ H1(R3), we define the operator Tu on D1,2(R3) by

Tu(v) =
∫

R3
K(x)u2v dx.

The Hölder inequality and the fact K ∈ L2(R3) yield that there is a constant C > 0 such that
for every v ∈ D1,2(R3),

∣
∣Tu(v)

∣
∣ ≤ C|K |2‖u‖2‖v‖D1,2(R3).

Hence by the Riesz representation theorem there exists a unique φu ∈ D1,2(R3) such that

∫

R3
∇φu∇v dx =

∫

R3
K(x)u2v dx.
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Thus φu is a weak solution of –�φu = K(x)u2 and can be represented by

φu(x) =
1

4π

∫

R3

K(y)
|x – y|u2(y) dy.

Moreover, it is obvious that

‖φ‖D1,2(R3) = ‖Tu‖L(D1,2,R) ≤ C|K |2‖u‖2,

where L(D1,2,R) denotes the linear space of linear function from D1,2 to R. Also, we have

∫

R3
K(x)φu(x)u2 dx ≤ C|K |2‖u‖2‖φ‖D1,2(R3) ≤ C|K |22‖u‖4. (3.1)

Moreover,

∣
∣φu(x)

∣
∣ =

1
4π

∣
∣
∣
∣

∫

B1(0)

K(y)
|x – y|u2(y) dy +

∫

Bc
1(0)

K(y)
|x – y|u2(y) dy

∣
∣
∣
∣

≤ 1
4π

(

|K |∞
(∫

B1(0)

1
|x – y|2 dy

) 1
2 |u|24 + |K |4

(∫

Bc
1(0)

1
|x – y|4 dy

) 1
4 |u|24

)

< C(K)|u|24. (3.2)

We observe that formally problem (1.1) is the Euler–Lagrange equation associated with
the energy functional

J(u) =
1
2

∫

R3

(
1 + 2u2)|∇u|2 dx +

1
2

∫

R3
V (x)u2 dx +

1
4

∫

R3
K(x)φuu2 dx –

∫

R3
G(x, u) dx.

From the variational point of view, the first difficulty associated with problem (1.1) is find-
ing an appropriate function space where the functional J is well defined. To avoid such a
difficulty, we use the change of variable introduced in [30], that is, we consider v = f –1(u),
where f is defined by

⎧
⎨

⎩

f ′(t) = 1

(1+2f 2(t))
1
2

on [0, +∞),

f (t) = –f (–t) on [0, +∞),

having the following properties proved in [11, 16].

Lemma 3.1 The function f satisfies the following properties:
(1) f is uniquely defined, C1, and invertible;
(2) |f ′(t)| ≤ 1 for all t ∈R;
(3) |f (t)| ≤ t for all t ∈ R;
(4) f (t)

t → 1 as t → 0;
(5) f (t)√

t → 2 1
4 as t → +∞;

(6) f (t)
2 ≤ tf ′(t) ≤ f (t) for all t ≥ 0;

(7) |f (t)| ≤ 2 1
4 |t| 1

2 for all t ∈R;
(8) f 2(t) – f (t)f ′(t)t ≥ 0 for all t ∈R;
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(9) there exists a positive constant C such that

∣
∣f (t)

∣
∣ ≥

{
C|t|, |t| ≤ 1,
C|t| 1

2 , |t| ≥ 1;

(10) |f (t)f ′(t)| ≤ 1√
2 for all t ∈R.

As a consequence of Lemma 3.1, the following conclusion is proved in [17].

Corollary 3.1
(1) The function f (t)f ′(t)t–1 is decreasing for all t > 0.
(2) The function f 3(t)f ′(t)t–1 is increasing for all t > 0.

So, after the change of variables from J , we obtain the following functional:

I(v) =
1
2

∫

R3
|∇v|2 dx +

1
2

∫

R3
V (x)f 2(v) dx

+
1
4

∫

R3
K(x)φf (v)f 2(v) dx –

∫

R3
G

(
x, f (v)

)
dx, (3.3)

which is well defined in H1(R3) and belongs to C1 under the hypotheses (V ), (K), (G1),
and (G2).

Let F(v) =
∫

R3 K(x)φf (v)f 2(v) dx. Then by Lemma 3.1(3) we have

F(v) ≤
∫

R3
K(x)φvv2 ≤ C|K |22‖v‖4

for v ∈ H1(R3). Then by the Lebesgue and Fubini theorems

lim
t→0

F(v + tw) – F(v)
t

= lim
t→0

(∫

R3

K(x)
t

φf (v+tw)f 2(v + tw) dx –
∫

R3

K(x)
t

φf (v)f 2(v) dx
)

= lim
t→0

(∫

R3

K(x)
t

1
4π

∫

R3

K(y)
|x – y| f 2(v + tw) dyf 2(v + tw) dx –

∫

R3

K(x)
t

φf (v)f 2(v) dx
)

= lim
t→0

∫

R3

K(x)
t

1
4π

∫

R3

K(y)
|x – y|

(
f (v) + f ′(v)tw + o(t)

)2 dy
(
f (v) + f ′(v)tw + o(t)

)2 dx

– lim
t→0

∫

R3

K(x)
t

φf (v)f 2(v) dx

= lim
t→0

(∫

R3

K(x)
t

1
4π

∫

R3

K(y)
|x – y| f 2(v) dyf 2(v) dx

+
∫

R3

K(x)
t

1
4π

∫

R3

K(y)
|x – y| f 2(v) dy2f (v)f ′(v)tw dx

+
∫

R3

K(x)
t

1
4π

∫

R3

K(y)
|x – y|2f (v)f ′(v)tw dyf 2(v) dx

)
+ o(t)

– lim
t→0

∫

R3

K(x)
t

φf (v)f 2(v) dx
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= 4 lim
t→0

∫

R3

1
4π

∫

R3

K(x)K(y)
|x – y| f 2(v)f (v)f ′(v)w dy dx

= 4
∫

R3
K(x)φf (v)f (v)f ′(v)w dx.

As a consequence, the critical points of I are weak solutions of the problem

–�v + V (x)f (v)f ′(v) + K(x)φf (v)f (v)f ′(v) = g
(
x, f (v)

)
f ′(v), v ∈ H1(

R
3), (3.4)

that is,

〈
I(v), w

〉
=

∫

R3

(∇v∇w + V (x)f (v)f ′(v)w
)

dx

+
∫

R3
K(x)φf (v)f (v)f ′(v)w dx –

∫

R3
g
(
x, f (v)

)
f ′(v)w dx

= 0

for all v, w ∈ H1(R3). We observe (see [11, 16]) that if v ∈ C2(R3)∩H1(R3) is a critical point
of the functional I , then the function u = f (v) is a classical solution of problem (1.1).

Remark 3.1 We also observe that to obtain a nonnegative solution for (3.4), we set g(x, s) =
0 for all x ∈ R

3, s < 0. Indeed, let v be a critical point of I . Taking w = –v–, where v– =
max{–v, 0}, we get

∫

R3
(
∣
∣∇v–∣

∣2 + V (x)f (v)f ′(v)
(
–v–)

dx +
∫

R3
K(x)φf (v)f (v)f ′(v)

(
–v–)

dx = 0.

Since f (v)(–v–) ≥ 0, we have

∫

R3

∣
∣∇v–∣

∣2 dx = 0,
∫

R3

V (x)f (v)(–v–)
√

1 + 2f 2(v)
dx = 0,

and
∫

R3

K(x)φf (v)f (v)(–v–)
√

1 + 2f 2(v)
dx = 0.

Hence we may conclude that v– = 0 almost everywhere in R
3 and, therefore, v = v+ ≥ 0.

As u = f (v), we conclude that u is a nonnegative solution for problem (1.1).

Similarly, associated with the periodic problem, we have the functional I0 ∈
C1(H1(R3),R) defined by

I0(v) =
1
2

∫

R3
|∇v|2 dx +

1
2

∫

R3
V0(x)f 2(v) dx

+
1
4

∫

R3
K0(x)φ̃f (v)f 2(v) dx –

∫

R3
G0

(
x, f (v)

)
dx, (3.5)

where G0(x, s) = 0 for all x ∈R
3, s < 0.
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We also observe that for δ > 0, because of (G1) and (G2), there is a constant Cδ > 0 such
that

∣
∣g(x, s)

∣
∣ ≤ δ|s| + Cδ|s|q1–1, ∀(x, s) ∈R

3 ×R, (3.6)
∣
∣G(x, s)

∣
∣ ≤ δ

2
|s|2 +

Cδ

q1
|s|q1 , ∀(x, s) ∈R

3 ×R. (3.7)

4 Geometric properties
In this section, we present the variational results that will be used in the proof of main re-
sults. Firstly, we verify the geometric conditions of the mountain pass theorem. Then we
present results concerning the behavior of the Cerami sequences of the associated func-
tional. Finally, we establish two technical results necessary for the proof of Theorem 1.1.
The following lemma shows that the (modified) functional associated with problem (1.1)
satisfies the geometric properties of the mountain pass theorem.

Lemma 4.1 Suppose that (V ), (G1), (G2), and (G) are satisfied. Then the functional I de-
fined by (3.3) satisfies conditions (I1) and (I2) of Theorem 2.1.

Proof For ρ > 0, define

Sρ =
{

v ∈ H1(
R

3) :
∫

R3

(|∇v|2 + V (x)f 2(v)
)

dx = ρ2
}

.

Since Ψ : H1(R3) →R given by

Ψ (v) =
∫

R3

(|∇v|2 + V (x)f 2(v)
)

dx

is continuous, Sρ is a closed subset that disconnects the space H1(R3) → R. Taking 0 <
λ < 1 such that q1

2 = λ + 6(1 – λ), by (V ), relation (3.7), Hölder’s inequality, Lemma 3.1(7),
the Sobolev embedding theorem, and the result of [34] we have

∫

R3
G

(
x, f (v)

)
dx ≤ δ

2α
ρ2 +

23(1–λ)C0Cδ

q1αλ
ρ2λ+6(1–λ)

for every v ∈ Sρ and some constant C0 > 0. Hence we have

I(v) ≥
(

1
2

–
δ

2α

)

ρ2 –
23(1–λ)C0Cδ

q1αλ
ρ2λ+6(1–λ)

for every v ∈ Sρ . Since 2λ + 6(1 – λ) > 2, choosing 0 < δ < α, we conclude that, for ρ suffi-
ciently small,

c0 := inf
Sρ

I ≥ σ > 0,

that is, condition (I1) is satisfied.
To verify condition (I2), it suffices to exhibit w ∈ H1(R3) such that

I(tw) → –∞ as t → +∞. (4.1)
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Indeed, consider w ∈ H1(R3). Hence by properties (3) of Lemma 3.1 we get, for every t > 0,

I(tw) ≤ t2

2

∫

R3

(|∇w|2 + V (x)w2)dx +
t4

4

∫

R3
K(x)φww2 dx –

∫

R3
G

(
x, f (tw)

)
dx

≤ t2

2

∫

R3

(|∇w|2 + V (x)w2)dx +
t4

4
|K |2|φw|6|w|26

– t4
∫

w �=0

G(x, f (tw))
f 8(tw)

f 8(tw)
(tw)4 w4 dx.

Then by Lemma 3.1(5), assumption (G), and the Fatou lemma the last integral on the
right-hand side tends to infinity with t. Hence I(tw) → –∞ as t → ∞. �

As a consequence of Theorem 2.1 and Lemma 3.1, we have the following corollary.

Corollary 4.1 Suppose that (V ), (G1), (G2), and (G) are satisfied. Then the functional I
possesses a (C)c sequence with c given by (2.1).

Here we verify the boundedness of the (C)c sequences associated with the functional I
and a result concerning the behavior of such sequences.

Lemma 4.2 Suppose that (V ) and (G1)–(G3) are satisfied. Then every Cerami sequence
{vn} in H1(R3) associated with the functional I is bounded.

Proof According to the proof of [34], if there exists a constant M > 0 such that

∫

R3

(|∇vn|2 + V (x)f 2(vn)
)

dx ≤ M, (4.2)

then {vn} is bounded in H1(R3). So we only need to prove (4.2).
Now let {vn} ∈ H1(R3) be an arbitrary Cerami sequence for I on level c ∈R, that is,

I(vn) → c,
∥
∥I ′(vn)

∥
∥
(
1 + ‖vn‖

) → 0. (4.3)

Taking 0 < δ < α, by the first condition in (4.3), (3.7), and the condition (V ) we have

1
2

∫

R3

(|∇vn|2 + V (x)f 2(vn)
)

dx +
1
4

∫

R3
K(x)φvn f 2(vn) dx

=
∫

R3
G

(
x, f (vn)

)
dx + c + on(1)

≤ δ

2α

∫

R3
V (x)f 2(vn)) dx +

Cδ

q1

∫

R3

∣
∣f (vn)

∣
∣q1 dx + c + on(1),

which yields

1
2

∫

R3
|∇vn|2 dx +

(
1
2

–
δ

2α

)∫

R3
V (x)f 2(vn) dx +

1
4

∫

R3
K(x)φf (vn)f 2(vn) dx

≤ Cδ

q1

∫

R3

∣
∣f (vn)

∣
∣q1 dx + c + on(1). (4.4)
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By the second condition in (4.3) and Lemma 3.1(6) we have

〈
I ′(vn), vn

〉 ≤
∫

R3

(|∇vn|2 + V (x)f 2(vn)
)

dx +
∫

R3
K(x)φf (vn)f 2(vn) dx

–
∫

R3

1
2

g
(
x, f (vn)

)
f (vn) dx.

Consequently, by (G3) we have

I(vn) –
1
2
〈
I ′(vn), vn

〉

≥ –
1
4

∫

R3
K(x)φf (vn)f 2(vn) dx +

∫

R3

[
1
4

g
(
x, f (vn)

)
f (vn) – G

(
x, f (vn)

)
]

dx

≥ –
1
4

∫

R3
K(x)φf (vn)f 2(vn) dx +

∫

R3

∣
∣f (vn)

∣
∣q2 dx –

∫

R3
h1(x) dx.

Since h1 ∈ L1(R3), we have

∫

R3

∣
∣f (vn)

∣
∣q2 dx ≤ C +

1
4

∫

R3
K(x)φf (vn)f 2(vn) dx.

Because of Lemma 3.1(3), we have

∫

R3
K(x)φf (vn)f 2(vn) dx ≤

∫

R3
K(x)φvn v2

n dx ≤ |K |2|φvn |6|vn|26.

Therefore

∫

R3

∣
∣f (vn)

∣
∣q2 dx ≤ C1. (4.5)

As we noted in the Introduction, q2 ≤ q1. If q2 = q1, then inequality (4.2) is given by (4.4),
(4.5), and our choice of δ. Now consider q2 < q1. Let 0 < λ < 1 be such that q1 = λq2 +
12(1 – λ). By Hölder’s inequality, (4.4), (4.5), Lemma 3.1(7), and the Sobolev embedding
theorem we have

1
2

∫

R3
|∇vn|2 dx +

(
1
2

–
δ

2α

)∫

R3
V (x)f 2(vn) dx +

1
4

∫

R3
K(x)φf (vn)f 2(vn) dx

≤ Cδ

q1

(∫

R3

∣
∣f (vn)

∣
∣q2 dx

)λ(∫

R3

∣
∣f (vn)

∣
∣12 dx

)1–λ

+ c + on(1)

≤ Cδ

q1
Cλ

1 23(1–λ)
(∫

R3
|vn|6 dx

)1–λ

+ c + on(1)

≤ C
Cδ

q1
Cλ

1 23(1–λ)
(∫

R3
|∇vn|2 dx

)3(1–λ)

+ c + on(1).

Now note that by (G3) that 3(1 – λ) = 3(q1–q2)
12–q2

< 1. Therefore estimate (4.2) is satisfied, and
the lemma is proved. �
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Lemma 4.3 Suppose that (V ), (G1), and (G2) are satisfied. Let {vn} ⊂ H1(R3) be a (C)c

sequence with c given by (2.1), and let vn ⇀ 0 weakly in H1(R3). Then there exist a sequence
{yn} ⊂R

3 and r,η > 0 such that |yn| → ∞ and

lim
n→∞ sup

∫

Br(yn)
|vn|2 dx ≥ η > 0.

Proof Suppose on the contrary that

lim
n→∞ sup

∫

Br(yn)
|vn|2 dx = 0, ∀r > 0.

Then by Lion’s concentration compactness lemma (see [37, Lemma 1.21]) we have

un → 0 in Lp(
R

3) for 2 < p < 6. (4.6)

According to Lemma 3.1(3, 6), we have

lim
n→∞ sup

∫

R3
K(x)φf (vn)f (vn)f ′(vn)vn dx

≤ lim
n→∞ sup

∫

R3
K(x)φf (vn)f 2(vn) dx

≤ lim
n→∞ sup

∫

R3
K(x)φvn v2

n dx ≤ |K |∞|φvn |6 lim
n→∞

(∫

R3
v

12
5

n dx
) 5

6
= 0. (4.7)

Let 0 < β < 2 be sufficiently small such that 2 + β < q1 < 12 – 2β . Now take 0 < λ < 1 such
that q1 = λ(2 + β) + (1 – λ)(12 – 2β). Applying Hölder’s inequality and Lemma 3.1(3, 7), we
have

∫

R3

∣
∣f (vn)

∣
∣q1 dx ≤

(∫

R3

∣
∣f (vn)

∣
∣2+β dx

)λ(∫

R3

∣
∣f (vn)

∣
∣2(6–β) dx

)1–λ

≤ 2
(1–λ)(6–β)

2

(∫

R3
|vn|2+β dx

)λ(∫

R3
|vn|6–β dx

)1–λ

.

Noting that 2 < 2 + β , 6 – β < 6, from (3.6), Lemma 3.1(6), and (4.6) it follows that for all
δ > 0,

lim
n→∞ sup

∫

R3

∣
∣g

(
x, f (vn)

)
f ′(vn)vn

∣
∣dx

≤ lim
n→∞ sup

∫

R3

∣
∣g

(
x, f (vn)

)
f (vn)

∣
∣dx

≤ lim
n→∞ sup

[

δ

∫

R3
|vn|2 dx + Cδ2

(1–λ)(6–β)
2

(∫

R3
|vn|2+β dx

)λ(∫

R3
|vn|6–β dx

)1–λ]

= δ lim
n→∞ sup

∫

R3
|vn|2 dx.
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Hence, since δ > 0 can be chosen arbitrarily small and the sequence {vn} ⊂ H1(R3) is
bounded, we get

lim
n→∞

∫

R3

∣
∣g

(
x, f (vn)

)
f ′(vn)vn

∣
∣dx = 0. (4.8)

Since 〈I ′(vn), vn〉 → 0, from (4.7) and (4.8) we obtain

lim
n→∞

∫

R3
|∇vn|2 + V (x)f (vn)f ′(vn)vn dx = 0.

Using Lemma 3.1(6), we get

lim
n→∞

∫

R3

(|∇vn|2 + V (x)f 2(vn)
)

dx = 0. (4.9)

By an argument similar to that used to verify (4.7) and (4.8) we conclude that

lim
n→∞

∫

R3
K(x)φf (vn)f 2(vn) dx = 0

and

lim
n→∞

∫

R3
G

(
x, f (vn)

)
dx = 0.

These two equalities, together with (4.9), imply that I(vn) → 0, which contradicts I(vn) →
c > 0. The lemma is proved. �

Lemma 4.4 Suppose that (V ), (K), and (G4) are satisfied. Let {vn} ⊂ H1(R3) be a bounded
sequence, and let wn(x) = w(x – yn), where w ∈ H1(R3) and (yn) ⊂R

3. If |yn| → ∞, then, as
n → ∞, we have

(1)
∫

R3 [V0(x) – V (x)]f (vn)f ′(vn)wn dx → 0,
(2)

∫

R3 [g0(x, f (vn)) – g(x, f (vn))]f ′(vn)wn dx → 0,
(3)

∫

R3 K0(x)φ̃f (vn)f (vn)f ′(vn)wn dx – K(x)φf (vn)f (vn)f ′(vn)wn dx → 0.

Proof The proof of (1) and (2) can found in [34], so we only need to prove (3). Let ζ (x) =
K0(x) – K(x). Then by Lemma 3.1(2, 3) we have

∫

R3

∣
∣K0(x)φ̃f (vn)f (vn)f ′(vn)wn – K(x)φf (vn)f (vn)f ′(vn)wn

∣
∣dx

≤
∫

R3

∣
∣K0(x)φ̃vn – K(x)φvn

∣
∣|vn||wn|dx

=
1

4π

(∫

R3

∫

R3

K(y)
|x – y| |vn||wn|dy

(
K0(x) – K(x)

)
v2

n dx

+
∫

R3

∫

R3

K(y)
|x – y|v2

n dy
(
K0(x) – K(x)

)|vn||wn|dx

+
∫

R3

∫

R3

(K0(y) – K(y))
|x – y| v2

n dy
(
K0(x) – K(x)

)|vn||wn|dx
)

= I1 + I2 + I3.
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We consider, for example, I2. Then the other two can be obtained in the same way.

I2 =
∫

BR(0)

(
K0(x) – K(x)

)
φvn |vn||wn|dx +

∫

R3\(BR(0)

(
K0(x) – K(x)

)
φvn |vn||wn|dx

= I21 + I22.

Given δ > 0, since w ∈ H1(R3) ⊂ Lp(R3) with 2 ≤ p ≤ 6, we can find 0 < ε < δ such that, for
every measurable set Ω ⊂R

3 satisfying |Ω| < ε,

∫

Ω

|w|2 dx < δ,
∫

Ω

|w|6 dx < δ. (4.10)

We fix ε > 0 and set Dε(R) = {x ∈ R
3 : |K0(x) – K(x)| ≥ ε, |x| ≥ R}. By condition (K) we

can find R > 0 such that |Dε(R)| < ε. Then, according to (3.2), applying Lemma 3.1(2, 3),
Hölder’s inequality, condition (K), h ∈F , and (4.10), we get

|I22| = |φvn |∞
(∫

Dε (R)

(
K0(x) – K(x)

)|vn||wn|dx

+
∫

R3\(BR(0)∪Dε(R))

(
K0(x) – K(x)

)|vn||wn|dx
)

≤ |φvn |∞
(

|h|∞
∫

Dε (R)
|vn||wn|dx + ε

∫

R3\(BR(0)∪Dε(R))
|vn||wn|dx

)

≤ |φvn |∞
(

|h|∞|vn|2
(∫

Dε (R)
|wn|2 dx

) 1
2

+ ε|vn|2|wn|2
)

≤ C
(
δ

1
2 + δ

)
.

Applying Hölder’s inequality, condition (K), Lemma 3.1(2, 3), and the fact that {vn} ⊂
H1(R3) is bounded, we can find C̃ such that

|I21| ≤ |φvn |∞
∫

BR(0)

∣
∣K0(x) – K(x)

∣
∣|vn||wn|dx

≤ |φvn |∞|h|∞||vn|2
(∫

BR(0)
|wn|2 dx

) 1
2

≤ C̃
(∫

BR(–yn)

∣
∣w(x)

∣
∣2 dx

) 1
2

.

Hence, since w ∈ H1(R3) and |yn| → ∞, there is n0 ∈N such that

∫

BR(0)

(
K0(x) – K(x)

)
φvn |vn||wn|dx ≤ C̃δ, ∀n ≥ n0.

Since δ > 0 can be chosen arbitrarily small, the last three inequalities imply that

∫

R3
K0(x)φ̃f (vn)f (vn)f ′(vn)wn dx – K(x)φf (vn)f (vn)f ′(vn)wn dx → 0

strongly in L1(R3) as n → ∞. �
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Lemma 4.5 (see [34]) Suppose that 2 ≤ q ≤ 12 and h ∈F . Let {vn} ⊂ H1(R3) be a sequence
such that vn ⇀ v weakly in H1(R3). Then

∫

R3
h(x)

∣
∣f (vn)

∣
∣q dx →

∫

R3
h(x)

∣
∣f (v)

∣
∣q dx (4.11)

as n → ∞.

5 Proofs of the main results
In this section, we prove Theorems 1.1 and 1.2 by verifying that the functionals I and I0,
defined by (3.3) and (3.5), respectively, have nontrivial critical points.

Proof of Theorem 1.1 Firstly, by Corollary 4.1 we can find a Cerami sequence {vn} on level
c, that is, such that

I(vn) → c ≥ σ > 0 and
∥
∥I ′(vn)

∥
∥
(
1 + ‖vn‖

) → 0 (5.1)

as n → ∞ with c given by Theorem 2.1. Applying Lemma 4.3, we may assume, without
loss of generality, that vn ⇀ v weakly in H1(R3).

Step 1. Note that, for every z ∈ C∞
0 (R3),

〈
I ′(vn), z

〉
–

〈
I ′(v), z

〉

=
∫

R3
∇(vn – v)∇z dx +

∫

R3
V (x)

[
f (vn)f ′(vn) – f (v)f ′(v)

]
z dx

+
∫

R3
K(x)

[
φf (vn)f (vn)f ′(vn) – φf (v)f (v)f ′(v)

]
z dx

–
∫

R3

[
g
(
x, f (vn)

)
f ′(vn) – g

(
x, f (v)

)
f ′(v)

]
z dx. (5.2)

Since vn ⇀ v weakly in H1(R3), we have that vn → v in Ls
loc(R3) with 1 ≤ s < 6. Then, up to

a subsequence,

vn(x) → v(x) a.e. on Ω = supp z as n → ∞,
∣
∣vn(x)

∣
∣ ≤ ∣

∣ωs(x)
∣
∣ for every n ∈ N and a.e. on Ω , with ωs ∈ Ls.

Consequently, as n → ∞,

f (vn)f ′(vn) → f (v)f ′(v),

φf (vn)f (vn)f ′(vn) → φf (v)f (v)f ′(v),

g
(
x, f (vn)

)
f ′(vn) – g

(
x, f (v)

)
f ′(v),

a.e. on Ω . Furthermore, from conditions (V ) and (K), Lemma 3.1(2, 3), and (3.2) we have

∣
∣V (x)f (vn)f ′(vn)z

∣
∣ ≤ ∣

∣V (x)vnz
∣
∣ ≤ |V |∞|ω2||z|

and

∣
∣K(x)φf (vn)f (vn)f ′(vn)z

∣
∣ ≤ ∣

∣K(x)φvn vnz
∣
∣ ≤ |K |∞|φvn |∞|ω2||z|.
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Moreover, by (3.6) and Lemma 3.1(2, 3, 6, 7) we have, for |vn(x)| ≤ 1,

|g(x, f (vn)f ′(vn)z| ≤ δ|vn||z| + Cδ

∣
∣f (vn)

∣
∣q1–1|z| ≤ δ|ω2||z| + Cδ|ω2||z|.

On the other hand, if |vn(x)| > 1, then

∣
∣g

(
x, f (vn)

)
f ′(vn)z

∣
∣ ≤ δ|vn||z| + Cδ

∣
∣f (vn)

∣
∣q1–1∣∣f ′(vn)

∣
∣|z|

≤ δ|ω2||z| + Cδ

∣
∣f (vn)

∣
∣q1–1 |f (vn)|

|vn| |z|

≤ δ|ω2||z| + 23Cδ|ω5|5|z|.

The two estimates imply that there exists a function ψ ∈ L1(Ω) such that

|g(x, f (vn)f ′(vn)z| ≤ ψ in R
3. (5.3)

Using (5.2), (5.3), the Lebesgue dominated convergence theorem, and the weak conver-
gence vn ⇀ v in H1(R3), for every z ∈ C∞

0 (R3), we obtain

〈
I ′(vn), z

〉 → 〈
I ′(v), z

〉
.

Since C∞
0 (R3) is dense in H1(R3) and I ′(vn) → 0, we conclude that I ′(v) = 0. In other words,

we have that v is a critical point of I .
Step 2. Now we need to prove that v �= 0. Assume that v = 0.
By Lemma 4.3 there exist a sequence (yn) ⊂ R

3 and r and η > 0 such that |yn| → ∞ as
n → ∞ and

lim
n→∞ sup

∫

Br(yn)
|vn|2 dx ≥ η > 0, ∀n ∈N. (5.4)

Without loss of generality, we may assume that (yn) ⊂ Z
3. Then defining un(x) = vn(x + yn),

n ∈N, we have ‖un‖0 = ‖vn‖0 for all n ∈N. Thus, taking a subsequence if necessary, there
exists u ∈ H1(R3) such that

un ⇀ u weakly in H1(
R

3),

un → u strongly in L2
loc

(
R

3),

un(x) → u(x) a.e. on R
3.

From (5.4) we get that u �= 0.
We claim that u is a critical point of I0. Indeed, we first observe that

〈
I ′

0(un), z
〉 → 〈

I ′
0(u), z

〉
, ∀z ∈ C∞

0
(
R

3), (5.5)
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as n → ∞. Effectively, writing

〈
I ′

0(un), z
〉
–

〈
I ′

0(u), z
〉

=
∫

R3
∇(un – u)∇z dx +

∫

R3
V0(x)

[
f (un)f ′(un) – f (u)f ′(u)

]
z dx

+
∫

R3
K0(x)

[
φ̃f (un)f (un)f ′(un) – φ̃f (u)f (u)f ′(u)

]
z dx

–
∫

R3

[
g0

(
x, f (un)

)
– g0

(
x, f (u)

)]
f ′(un)z dx + o(1). (5.6)

From the arguments used before we deduce that

∫

R3
∇(un – u)∇z dx → 0,

∫

R3
V0(x)

[
f (un)f ′(un) – f (u)f ′(u)

]
z dx → 0,

and
∫

R3
K0(x)

[
φ̃f (un )f (un)f ′(un) – φ̃f (u)f (u)f ′(u)

]
z dx → 0,

as n → ∞. Hence, to prove (5.5), it remains to analyze the last integral in (5.6). Note that

[
g0

(
x, f (un)

)
– g0

(
x, f (u)

)]
f ′(un)z dx =

[
g0

(
x, f (un)

)
– g

(
x, f (un)

)]
f ′(un)z dx

+
[
g
(
x, f (un)

)
– g0

(
x, f (u)

)]
f ′(un)z dx. (5.7)

Now, by condition (G4)(ii) and the arguments used in the proof of (5.3) we get ψ̃ ∈ L1(Ω),
Ω = supp z, such that

∣
∣
[
g
(
x, f (un)

)
– g0

(
x, f (u)

)]
f ′(un)z

∣
∣ ≤ ψ̃ . (5.8)

Hence, applying the Lebesgue dominated convergence theorem once more, we obtain

[
g
(
x, f (un)

)
– g0

(
x, f (un)

)]
f ′(un)z → [

g
(
x, f (u)

)
– g0

(
x, f (u)

)]
f ′(u)z (5.9)

in L1(Ω). The claim (5.3) and the Lebesgue dominated convergence theorem also yield

g
(
x, f (un)

)
f ′(un)z → g

(
x, f (u)

)
f ′(u)z

in L1(Ω). Furthermore, from (5.3), (5.8), and the Lebesgue dominated convergence theo-
rem we again have

g0
(
x, f (u)

)
f ′(un)z → g0

(
x, f (u)

)
f ′(u)z

in L1(Ω). Consequently,

[
g
(
x, f (un)

)
– g0

(
x, f (u)

)]
f ′(un)z → [

g
(
x, f (u)

)
– g0

(
x, f (u)

)]
f ′(u)z (5.10)
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in L1(Ω). Relations (5.7), (5.9), and (5.10) establish the verification of (5.5). On the other
hand, considering zn(x) = z(x – yn) for all n ∈ N, in view of the periodicities of V0, K0, and
g0, we get

〈
I ′

0(un), z
〉

=
〈
I ′

0(vn), zn
〉
, ∀n ∈N. (5.11)

Moreover, applying Lemma 4.4, we have

∣
∣
〈
I ′

0(vn), zn
〉
–

〈
I ′(vn), zn

〉∣
∣ → 0, ∀n ∈N, (5.12)

as n → ∞. Since ‖zn‖0 = ‖z‖0 for all n ∈N, by (5.11) and (5.12) we conclude that

〈
I ′

0(vn), zn
〉 → 0

as n → ∞. This limit, (5.11), and (5.5) show that u is a critical point of I0, as claimed. �

Step 3.

Claim I0(u) ≤ c.

To show this fact, we apply the definition of {un} to get

I(vn) –
1
2
〈
I ′(vn), vn

〉
=

1
2

∫

R3
V0(x)

[
f 2(un) – f (un)f ′(un)un

]
dx

+
1
2

∫

R3

(
V (x) – V0(x)

)[
f 2(vn) – f (vn)f ′(vn)vn

]
dx

+
1
4

∫

R3
K(x)φf (vn)f 2(vn) dx –

1
2

∫

R3
K(x)φf (vn)f (vn)f ′(vn)vn dx

+
∫

R3

1
2

g
(
x, f (vn)

)
f ′(vn)vn – G

(
x, f (vn)

)
dx. (5.13)

Now, taking a subsequence if necessary, by property (8) of Lemma 3.1 and Fatou’s lemma
we obtain

lim
n→∞ inf

1
2

∫

R3
V0(x)

[
f 2(un) – f (un)f ′(un)un

]
dx

≥ 1
2

∫

R3
V0(x)

[
f 2(u) – f (u)f ′(u)u

]
dx. (5.14)

We observe that as vn ⇀ 0 weakly in H1(R3), by Lemma 4.4 with h = V – V0 and
Lemma 3.1(6) we get

lim
n→∞ inf

1
2

∫

R3

(
V (x) – V0(x)

)[
f 2(vn) – f (vn)f ′(vn)vn

]
dx = 0. (5.15)

We also claim that

lim
n→∞ inf

[
1
4

∫

R3
K(x)φf (vn)f 2(vn) dx –

1
2

∫

R3
K(x)φf (vn)f (vn)f ′(vn)vn dx

]

≥ 1
4

∫

R3
K0(x)φ̃f (u)f 2(u) dx –

1
2

∫

R3
K0(x)φ̃f (u)f (u)f ′(u)u dx (5.16)
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and

lim
n→∞

∫

R3

(
1
2

g
(
x, f (vn)

)
f ′(vn)vn – G

(
x, f (vn)

)
)

dx

≥
∫

R3

(
1
2

g0
(
x, f (u)

)
f ′(u)u – G0

(
x, f (u)

)
)

dx. (5.17)

Assuming that the claims are true, we use (5.1), (5.13)–(5.17), and the fact that u is a critical
point of I0 to get

c ≥ 1
2

∫

R3
V0(x)

[
f 2(u) – f (u)f ′(u)u

]
dx +

1
4

∫

R3
K0(x)φ̃f (u)f 2(u) dx

–
1
2

∫

R3
K0(x)φ̃f (u)f (u)f ′(u)u dx

+
∫

R3

(
1
2

g0
(
x, f (u)

)
f ′(u)u – G0

(
x, f (u)

)
)

dx

= I0(u) –
1
2
〈
I ′

0(u), u
〉

= I0(u), (5.18)

that is, I0(u) ≤ c.
Step 4. We will verify that maxt≥0I0(tu) = I0(u). Define the function η(t) := I0(tu) for t ≥ 0.

Since u is a critical point of I0, it follows that u > 0 (see the argument further). Hence by
Fubini’s theorem we may write

η′(t) = t
{∫

R3
|∇u|2 dx –

∫

R3

[
g0(x, f (t|u|))f ′(t|u|)

t|u|

–
V0(x)f (t|u|)f ′(t|u|)

t|u| –
K0(x)φ̃f (t|u|)f (t|u|)f ′(t|u|)

t|u|
]

u2 dx
}

.

Note that, for fixed x ∈R
3, the function ξ : (0, +∞ →R) defined by

ξ (s) =
g0(x, f (s))f ′(s)

s
–

V0(x)f (s)f ′(s)
s

–
K0(x)φ̃f (s)f (s)f ′(s)

s

is increasing. Indeed, this is a direct consequence of (G4)(iii) and Corollary 3.1(2) applied
to

ξ (s) =
g0(x, f (s))

f 7(s)
f 3(s)f ′(s)

s
f 4(s) + V0(x)

(

–
f (s)f ′(s)

s

)

+ K0(x)φ̃f (s)

(

–
f (s)f ′(s)

s

)

.

Now we observe that η′(1) = 0 since u is a critical point of I0. Moreover, we have that
η′(t) > 0 for 0 < t < 1 and η′(t) < 0 for t > 1. Therefore

I0(u) = η(1) = max
t≥0

η(t) = max
t≥0

I0(tu).

Consequently, by (5.17), (G4)(i), and the definition of c we have

c ≤ max
t≥0

I(tu) ≤ max
t≥0

I0(tu) = I0(u) ≤ c.
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This implies that there exists γ ∈ Γ such that (2.3) holds. In view of Theorem 2.2, we
possess a critical point v on level c. From c ≥ σ > 0 = I(0) we have that v is a nonzero
critical point of I . This concludes the proof of Theorem 1.1, except for claims (5.16) and
(5.17).

Step 5. We will now show that v > 0 in R
3. Since v ≥ 0 in R

3 is a weak solution of the
equation

–�v = w, x ∈ R
3,

where

w =: f ′(v(x)
)[

g
(
x, f

(
v(x)

))
– V (x)f

(
v(x)

)
– K(x)φf (v(x))f

(
v(x)

)]
,

by conditions (V ), (K), (G1), and (G2) we have

|w| ≤ f ′(v)
[
δ
∣
∣f (v)

∣
∣ + Cδ

∣
∣f (v)

∣
∣q1–1] ≤ Cδ + C̃δ

∣
∣f (v)

∣
∣

q1–1
2 ,

thanks to Lemma 3.1(2), (7), and (10). Let p0 = 12
q1–1 > 1. Since v ∈ L6(R3), it follows that w ∈

Lp0 (BR) with arbitrary R > 0. By elliptic regularity theory, v ∈ W 2,p0 (BR), Using a standard
bootstrap argument, we may conclude that v ∈ W 2,p0 (BR) for every p0 ≥ 2. Hence v ∈ C1,α

loc
for some α ∈ (0, 1). Now suppose by contradiction that there is x0 ∈R

3 such that v(x0) = 0.
Equation (3.4) can be rewritten as

–�v + c(x)v = V (x)f ′(v)
(
v – f (v)

)
+ K(x)φf (v)f ′(v)

(
v – f (v)

)
+ g

(
x, f (v)

)
f ′(v) ≥ 0,

where c(x) = V (x)f ′(v) + K(x)φf (v)f ′(v) > 0 for x ∈ R
3 is a continuous function. We also

note that from Lemma 3.1(3) we have v – f (v) ≥ 0. Hence, applying the strong maximum
principle for weak solutions (see [22]), we obtain that v ≡ 0, which contradicts the fact
that v �≡ 0.

Step 6. Finally, we conclude the proof of Theorem 1.1 by showing that (5.16) and (5.17)
hold. Similarly to the proof of Lemma 4.4(3), we have

∫

R3
K(x)φf (vn)f (vn)f ′(vn)vn dx →

∫

R3
K0(x)φ̃f (vn)f (vn)f ′(vn)vn dx

and

∫

R3
K(x)φf (vn)f 2(vn) dx →

∫

R3
K0(x)φ̃f (vn)f 2(vn) dx

strongly in L1(R3) as n → ∞. Consequently, by the periodicity of K0,

lim
n→∞ inf

1
4

∫

R3
K(x)φf (vn)f 2(vn) dx –

1
2

∫

R3
K(x)φf (vn)f (vn)f ′(vn)vn dx

= lim
n→∞ inf

1
4

∫

R3
K0(x)φ̃f (un)f 2(un) dx –

1
2

∫

R3
K0(x)φ̃f (un)f (un)f ′(un)un dx. (5.19)
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Moreover, by Lemma 3.1(6), for s ≥ 0, we have

1
2

K0(x)φ̃f (s)f 2(s) – K0(x)φ̃f (s)f (s)f ′(s)s

=
1
2
[
K0(x)φ̃f (s)f 2(s) – K(x)φf (s)f 2(s)

]
+

1
2

K(x)φf (s)f 2(s) – K(x)φf (s)f (s)f ′(s)s

+ K(x)φf (s)f (s)f ′(s)s – K0(x)φ̃f (s)f (s)f ′(s)s

≥ –
1
2

K(x)φf (s)f 2(s) +
[
K(x)φf (s)f (s)f ′(s)s – K0(x)φ̃f (s)f (s)f ′(s)s

]

≥ –
1
2

K(x)φss2 +
[
K(x)φf (s)f 2(s) – K0(x)φ̃f (s)f 2(s)

]

≥ –
1
2

K(x)φss2 –
[
K0(x)φ̃ss2 – K(x)φss2].

Claim
∫

R3 K(x)φun u2
n dx → ∫

R3 K(x)φuu2 dx.

Proof By the result in [7], if un ⇀ u in H1(R3), then we have u2
n ⇀ u2 in L3(R3) and φun ⇀

φu in D1,2(R3), so that φun ⇀ φu in L6(R3). Therefore
∫

R3
K(x)φun u2

n dx – K(x)φuu2 dx =
∫

R3
K(x)φun

(
u2

n – u2)dx

+
∫

R3
K(x)(φun – φu)u2 dx.

Since
∫

R3

(
K(x)φun

) 3
2 dx ≤ |K | 3

2
2 |φun |

3
2
6 < +∞,

so that K(x)φun ∈ L 3
2 (R3), we have

∫

R3 K(x)φun (u2
n – u2) dx → 0. Similarly,

∫

R3

(
K(x)u2) 6

5 dx ≤ |K |
6
5
2 |u|

12
5

6 < +∞,

so that K(x)u2 ∈ L
6
5 (R3), and thus

∫

R3 K(x)(φun – φu)u2 dx → 0. �

We obtain
∫

R3 K0(x)φ̃un u2
n dx → ∫

R3 K0(x)φ̃uu2 dx in the same way. Thus by Fatou’s
lemma we have

lim
n→∞ inf

∫

R3

[
1
4

K0(x)φ̃f (un)f 2(un) –
1
2

K0(x)φ̃f (un)f (un)f ′(un)un

+
1
2

K(x)φun u2
n + K0(x)φ̃un u2

n – K(x)φun u2
n

]

dx

≥
∫

R3

[
1
4

K0(x)φ̃f (u)f 2(u) –
1
2

K0(x)φ̃f (u)f (u)f ′(u)u

+
1
2

K(x)φuu2 + K0(x)φ̃uu2 – K(x)φuu2
]

dx. (5.20)

Relations (5.19) and (5.20) conclude the verification of (5.16). The proof of (5.17) can be
found in [34]. The proof of Theorem 1.1 is completed. �
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Proof of Theorem 1.2 We argue as in the initial steps of the proof of Theorem 1.1. Since g0

satisfies (G1), (G2), and (G), applying Corollary 4.1, we can find a sequence {vn} ⊂ H1(R3)
such that

I0(vn) → c ≥ σ > 0,
∥
∥I ′

0(vn)
∥
∥
(
1 + ‖vn‖

) → 0 as n → ∞, (5.21)

where c is given by Theorem 2.1. Because of Lemma 4.2, we may suppose, without loss of
generality, that vn ⇀ v weakly in H1(R3). From this and (3.6) we have that v is a critical
point of I0, that is, I ′

0(v) = 0. To finish the proof of the theorem, it suffices to assume that
v = 0.

By Lemma 4.3 there exist a sequence (yn) ⊂R
3 and r,η > 0 such that |yn| → ∞ as n → ∞

and

lim
n→∞ sup

∫

Br(yn)
|vn|2 dx ≥ η > 0, ∀n ∈N. (5.22)

Without loss of generality we may assume that (yn) ⊂ Z. Defining un(x) = vn(x + yn), n ∈N,
we have that ‖un‖0 = ‖vn‖0 for all n ∈N. Consequently, taking a subsequence if necessary,
there exists u ∈ H1(R3) such that un ⇀ u weakly in H1(R3), un → u strongly in L2

loc(R3),
and un(x) → u(x) almost everywhere onR

3. We claim that u is a critical point of I0. Indeed,
given w ∈ H1(R3), from (V ), (K), (G1), and (G2) we get

〈
I ′

0(un), w
〉 → 〈

I ′
0(u), w

〉
as n → ∞. (5.23)

On the other hand, considering wn(x) = w(x – yn) for all n ∈N, in view of the periodicities
of V0, K0, and g0, we get

〈
I ′

0(un), w
〉 → 〈

I ′
0(vn), wn

〉
, n ∈ N.

Consequently, from (5.21) and the fact that ‖wn‖0 = ‖w‖0 for all n ∈N we conclude that

〈
I ′

0(un), w
〉 → 0 as n → ∞.

This limit, together with (5.23), shows that u is a critical point of I0. The claim is proved.
Furthermore, (5.22) implies that u �= 0. Theorem 1.2 is proved. �
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32. Mingqi, X., Rădulescu, V.D., Zhang, B.L.: A critical fractional Choquard–Kirchhoff problem with magnetic field.
Commun. Contemp. Math. 21, Article ID 185004 (2019)

33. Shen, L.J.: Ground state solutions for a class of generalized quasilinear Schrödinger–Poisson systems. Bound. Value
Probl. 2018, Article ID 44 (2018)

34. Silva, E.A.B., Vieira, G.F.: Quasilinear asymptotically periodic Schrödinger equations with subcritical growth. Nonlinear
Anal. 72, 2935–2949 (2010)

35. Tang, X.: Non-Nehari manifold method for asymptotically periodic Schrödinger equations. Sci. China Math. 58,
715–728 (2015)

36. Tang, X., Lin, X.Y., Yu, J.S.: Existence of a bound state solution for quasilinear Schrödinger equations. J. Dyn. Differ. Equ.
31, 369–383 (2019)

37. Willem, M.: Minimax Theorems. Birkhäuser, Boston (1996)
38. Xiang, M., Wang, F.: Fractional Schrödinger–Poisson–Kirchhoff type systems involving critical nonlinearities. Nonlinear

Anal. 164, 1–26 (2017)
39. Xiang, M., Zhang, B.L., Yang, D.: Multiplicity results for variable-order fractional Laplacian equations with variable

growth. Nonlinear Anal. 178, 190–204 (2019)
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