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Abstract
The present paper deals with a class of nonlocal problems. Under some suitable
assumptions on the decay rate of the coefficients, we derive the existence of infinitely
many positive solutions to the problem by applying reduction method. Comparing to
the previous work, we encounter some new challenges because of competing
potentials. By doing some delicate estimates for the competing potentials, we
overcome the difficulties and find infinitely many positive solutions.
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1 Introduction and main results
In this paper, we study the fractional Schrödinger problem

(–�)σ u + A(y)u = B(y)up, y ∈R
n, (1.1)

where 0 < σ < 1, n ≥ 2, 1 < p < n+2σ
n–2σ

and A(y), B(y) are two radially symmetric potentials.
Here the fractional Laplacian (–�)σ is defined by

(–�)σ u = Cn,σ P.V .
∫
Rn

u(y) – u(x)
|x – y|n+2σ

dx,

where P.V. stands for the Cauchy principal value and Cn,σ is a normalization constant.
Problem (1.1) has attracted considerable attention in the recent period and part of the

motivation is due to looking for a standing wave ψ = e–ihtu of the evolution equation

i
∂ψ

∂t
+ (–�)σ ψ –

(
A(y) + h

)
ψ = |ψ |p–1ψ , (t, x) ∈R

+ ×R
n, (1.2)

since ψ solves (1.2) if and only if u solves (1.1), where i is the imaginary unit and h ∈ R.
This class of Schrödinger-type equations is of particular interest in fractional quantum
mechanics for the study of particles on stochastic fields modeled by Lévy processes. In
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recent years, there have been many investigations for the related fractional Schrödinger
equation

(–�)σ u + V (y)u = f (y, u), y ∈R
n

with 0 < σ < 1 and V : Rn →R is an external potential function. A complete review of the
available results in this context goes beyond the aim of this paper; we refer the interested
reader to [4, 5, 9, 13–17, 19–22] and the references therein.

Especially, in [19] we studied (1.1) and infinitely many nonradial positive (sign-changing)
solutions were established when A(y) = 1 and B(y) satisfies some radial symmetry assump-
tion by using Lyapunov–Schmidt reduction. In this paper, continuing our study in [19], we
are concerned with the multiplicity of positive solutions for (1.1) in a situation in which
there exist two competing potentials and even (1.1) may not have ground states.

To the best of our knowledge, not much is obtained for the existence of multiple solu-
tions of Eq. (1.1) with competing potentials. So our purpose of this paper is to establish
the existence of infinitely many nonradial positive solutions for (1.1) by constructing so-
lutions with large number of bumps near the infinity under some assumptions for A(y),
B(y) as follows:

(A) there are constants a > 0, m1 > 0, θ1 > 0 such that

A
(|y|) = 1 +

a
|y|m1

+ O
(

1
|y|m1+θ1

)
as |y| → +∞;

(B) there are constants b ∈ R, m2 > 0, θ2 > 0 such that

B
(|y|) = 1 +

b
|y|m2

+ O
(

1
|y|m2+θ2

)
as |y| → +∞.

Our main results in this paper can be stated as follows.

Theorem 1.1 Suppose that n ≥ 2, 1 < p < n+2σ
n–2σ

, n+2σ
n+2σ+1 < min{m1, m2} < n + 2σ and the

conditions (A) and (B) hold. If b < 0 or b > 0 and m1 < m2, then problem (1.1) has infinitely
many nonradial positive solutions.

To achieve our goal, we adopt a novel idea introduced in [23], by using k, the number of
the bumps of the solutions, as the parameter in the construction of solutions for (1.1). In
[23], the authors studied the following equation:

–�u + V (y)u = up, u > 0 in R
n, u ∈ H1(

R
n) (1.3)

and applying the reduction method, they derived the existence of infinitely many solu-
tions to (1.3) by exhibiting bumps at the vertices of the regular k-polygons for sufficiently
large k ∈ N under some suitable conditions on V (y) and p. But, in this paper, since the
competing terms appear, we have to overcome many difficulties in the reduction process
which involves some technical and careful computations. Furthermore, for more results
on the existence of radial ground states, infinitely many bound states or nonradial solu-
tions, higher energy bound states to (1.3), one can refer to [1–3, 6–8, 11, 12, 18] and the
references therein.
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In the end of this part, let us outline the main idea to prove our main results. For any
integer k > 0, we define

yi =
(

r cos
2(i – 1)π

k
, r sin

2(i – 1)π
k

, 0
)

, i = 1, . . . , k,

where 0 is the zero vector in R
n–2, r ∈ [r0k

n+2σ
n+2σ–m , r1k

n+2σ
n+2σ–m ] for some r1 > r0 > 0 with

m := min{m1, m2}. Also we denote by Hσ (Rn) the usual Sobolev space endowed with the
standard norm

‖u‖2
σ =

∫
Rn

(∣∣(–�)
σ
2 u

∣∣2 + u2).

Moreover, for y = (y′, y′′) ∈ R
2 ×R

n–2, set

Hk =
{

u : u ∈ Hσ
(
R

n), u is even in yj, j = 2, . . . , n,

u
(
r cos θ , r sin θ , y′′) = u

(
r cos

(
θ +

2iπ
k

)
, r sin

(
θ +

2iπ
k

)
, y′′

)}
.

In what follows we will use the unique ground state U of

(–�)σ u + u = up, u > 0, y ∈R
n, (1.4)

to build up the approximate solutions for (1.1). It is well known that in [16, 17], the authors
have established the uniqueness and non-degeneracy of the ground state of (1.4) with

C1

1 + |y|n+2σ
≤ U(y) ≤ C2

1 + |y|n+2σ
, y ∈R

n, (1.5)

and

∣∣∂yj U(y)
∣∣ ≤ C

1 + |y|n+2σ
, j = 1, 2, . . . , n. (1.6)

Now if we define

Wr(y) =
k∑

i=1

Uyi (y),

where Uyi (y) = U(y – yi), then we will prove Theorem 1.1 by verifying the following result.

Theorem 1.2 Under the assumption of Theorem 1.1, there is an integer k0 > 0, such that,
for any integer k ≥ k0, (1.1) has a solution uk of the form

uk = Wrk (y) + ϕrk ,

where ϕrk ∈ Hk , rk ∈ [r0k
n+2σ

n+2σ–m , r1k
n+2σ

n+2σ–m ] for some constants r1 > r0 > 0 and as k → +∞,

∫
Rn

(∣∣(–�)
σ
2 ϕrk

∣∣2 + ϕ2
rk

) → 0.
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This paper is organized as follows. In Sect. 2, we will carry out a reduction procedure
and then study the reduced one dimensional problem to prove Theorem 1.2 in Sect. 3.
Some basic estimates and an energy expansion for the functional are left to the Appendix.

2 The reduction
In the following, we always assume that k ∈N is a large number. Let

Zj =
∂Uyj

∂r
, j = 1, . . . , k,

where yj = (r cos 2(j–1)π
k , r sin 2(j–1)π

k , 0) and

r ∈ Sk :=
[
r0k

n+2σ
n+2σ–m , r1k

n+2σ
n+2σ–m

]
,

where r0 = ( h0(n+2σ )
h1m – α) 1

n+2σ–m , r1 = ( h0(n+2σ )
h1m + α) 1

n+2σ–m , α > 0 is a small constant and h0, h1

will be given in Sect. 3.
Define

Er =
{

v : v ∈ Hk ,
∫
Rn

Up–1
y1 Z1v = 0

}
.

Note that the variational functional corresponding to (1.1) is

I(u) =
1
2

∫
Rn

(∣∣(–�)
σ
2 u

∣∣2 + A(y)u2) –
1

p + 1

∫
Rn

B(y)|u|p+1.

Let

J(ϕ) = I(Wr + ϕ) = I

( k∑
j=1

Uyj + ϕ

)
, ϕ ∈ Er .

We can expand J(ϕ) as follows:

J(ϕ) = J(0) + l(ϕ) +
1
2
〈
L(ϕ),ϕ

〉
+ R(ϕ), ϕ ∈ Er , (2.1)

where

l(ϕ) =
∫
Rn

k∑
j=1

Up
yjϕ +

∫
Rn

(
A

(|y|) – 1
)
Wrϕ –

∫
Rn

B
(|y|)W p

r ϕ,

〈
L(ϕ),ϕ

〉
=

∫
Rn

(∣∣(–�)
σ
2 ϕ

∣∣2 + A
(|y|)ϕ2) – p

∫
Rn

B
(|y|)W p–1

r ϕ2

and

R(ϕ) = –
1

p + 1

∫
Rn

B
(|y|)

(
(Wr + ϕ)p+1 – W p+1

r – (p + 1)W p
r ϕ –

1
2

(p + 1)pW p–1
r ϕ2

)
.

In this part, we shall find a map ϕ(r) from Sk to Er such that ϕ(r) is a critical point of J(ϕ)
under the constraint ϕ(r) ∈ Er . Associated to the quadratic form L(ϕ), we define L to be a
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bounded linear map from Er to Er such that

〈Lϕ, v〉 =
∫
Rn

(
(–�)

σ
2 ϕ(–�)

σ
2 v + A

(|y|)ϕv
)

– p
∫
Rn

B
(|y|)W p–1

r ϕv, v ∈ Er .

Then we have the following lemma, which shows the invertibility of L in Er .

Lemma 2.1 There is a constant ρ > 0 independent of k, such that, for any r ∈ Sk ,

‖Lϕ‖ ≥ ρ‖ϕ‖σ , ∀ϕ ∈ Er .

Proof Arguing by contradiction, we suppose that there are k → +∞, rk ∈ Sk , and ϕk ∈ Er

such that

‖Lϕk‖ = o(1)‖ϕk‖σ with ‖ϕk‖2
σ = k.

Set

Ωi =
{

y =
(
y′, y′′) ∈R

2 ×R
n–2 :

〈
y′

|y′| ,
(yi)′

|(yi)′|
〉
≥ cos

π

k

}
, i = 1, 2, . . . , k.

By symmetry, we have for v ∈ Er

∫
Ω1

(
(–�)

σ
2 ϕk(–�)

σ
2 v + A

(|y|)ϕkv
)

– p
∫

Ω1

B
(|y|)W p–1

rk
ϕkv

=
1
k
〈Lϕk , v〉 = o

(
1√
k

)
‖v‖σ . (2.2)

In particular,

∫
Ω1

(∣∣(–�)
σ
2 ϕk

∣∣2 + A
(|y|)ϕ2

k
)

– p
∫

Ω1

B
(|y|)W p–1

rk
ϕ2

k = ok(1)

and
∫

Ω1

(∣∣(–�)
σ
2 ϕk

∣∣2 + ϕ2
k
)

= 1.

Let ϕ̃k = ϕ(y + y1). Since for any R > 0, dist(y1, ∂Ω1) = r sin π
k , BR(y1) ⊂ Ω1. Thus

∫
BR(0)

(∣∣(–�)
σ
2 ϕ̃k

∣∣2 + ϕ̃2
k
) ≤ 1.

So, we may assume that there exists ϕ ∈ Hσ (Rn) such that, as k → +∞,

ϕ̃k ⇀ ϕ in Hσ
(
R

n), ϕ̃k → ϕ in L2
loc

(
R

n).

Moreover, ϕ̃k is even in yj, j = 2, . . . , n and

∫
Rn

Up–1 ∂U
∂y1

ϕ̃k = 0.
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We see that ϕ is even in yj, j = 2, . . . , n and

∫
Rn

Up–1 ∂U
∂y1

ϕ = 0. (2.3)

Now, we claim that ϕ solves the following linearized equation in R
n:

(–�)σ ϕ + ϕ – pUp–1ϕ = 0. (2.4)

Indeed, define

Ẽ =
{

v : v ∈ Hσ
(
R

n),
∫
Rn

Up–1 ∂U
∂y1

v = 0
}

.

For any R > 0, let v ∈ C∞
0 (BR(0)) ∩ Ẽ satisfying v is even in yj, j = 2, . . . , n. Then v1(y) =

v(y – y1) ∈ C∞
0 (BR(y1)). We may identify v1(y) as elements in Er by redefining the values

outside Ω1 with the symmetry. By using (2.2) and Lemma A.2, we can find that

∫
Rn

(–�)
σ
2 ϕ(–�)

σ
2 v +

∫
Rn

(
ϕv – pUp–1ϕv

)
= 0. (2.5)

But (2.5) holds for v = ∂U
∂y1

. Hence (2.5) is true for any v ∈ Hσ (Rn) and the claim holds. This
being the nondegenerate result of U , we have ϕ = c ∂U

∂y1
since ϕ is even in yj, j = 2, . . . , n. So

it follows from the orthogonal condition (2.3) that ϕ = 0 and thus

∫
BR(y1)

ϕ2
k = ok(1), ∀R > 0.

Due to Lemma A.2, if k > 0 is large enough, we have, for η satisfying (n+2σ –η)(p–1) > n,

∫
Ω1\B R

2
(y1)

W p–1
rk

ϕ2
k ≤ C

∫
Ω1\B R

2
(y1)

1
(1 + |y – y1|)(n+2σ–η)(p–1) ϕ

2
k = oR(1).

So, taking v = ϕk in (2.2), one has

ok(1) =
∫

Ω1

(∣∣(–�)
σ
2 ϕk

∣∣2 + A
(|y|)ϕ2

k
)

– p
∫

Ω1

B
(|y|)W p–1

rk
ϕ2

k

=
∫

Ω1

(∣∣(–�)
σ
2 ϕk

∣∣2 + A
(|y|)ϕ2

k
)

– p
∫

B R
2

(y1)
B
(|y|)W p–1

rk
ϕ2

k – oR(1)

≥ 1
2

∫
Ω1

(∣∣(–�)
σ
2 ϕk

∣∣2 + A
(|y|)ϕ2

k
)

– ok(1) – oR(1).

This shows a contradiction and our proof is finished. �

Next, we discuss the terms R(ϕ) and l(ϕ) in (2.1). We have

Lemma 2.2 There is a constant C > 0 independent of k, such that

∥∥R′(ϕ)
∥∥ ≤ C‖ϕ‖min{p,2}

σ
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and

∥∥R′′(ϕ)
∥∥ ≤ C‖ϕ‖min{p–1,1}

σ

for ϕ ∈ Er and ‖ϕ‖σ < 1.

Proof It is clear that, for v1, v2 ∈ Er ,

〈
R′(ϕ), v1

〉
= –

∫
Rn

B
(|y|)((Wr + ϕ)p – W p

r – pW p–1
r ϕ

)
v1

and

〈
R′′(ϕ)v1, v2

〉
= –p

∫
Rn

B
(|y|)((Wr + ϕ)p–1 – W p–1

r
)
v1v2.

First, if p ≥ 2, it follows from Lemma A.2 that Wr is bounded and then

∣∣〈R′(ϕ), v1
〉∣∣ ≤ C

∫
Rn

(
W p–2

r |ϕ|2|v1| + |ϕ|p|v1|
)

≤ C
(∫

Rn
|ϕ| 2(p+1)

p

) p
p+1

(∫
Rn

|v1|p+1
) 1

p+1

+ C
(∫

Rn
|ϕ|p+1

) p
p+1

(∫
Rn

|v1|p+1
) 1

p+1

≤ C
(‖ϕ‖2

σ + ‖ϕ‖p
σ

)‖v1‖σ

and

∣∣〈R′′(ϕ)v1, v2
〉∣∣ ≤ C

∫
Rn

(
W p–2

r |ϕ| + |ϕ|p–1)|v1||v2|

≤ C
(∫

Rn
|ϕ|3

) 1
3
(∫

Rn
|v1|3

) 1
3
(∫

Rn
|v2|3

) 1
3

+ C
(∫

Rn
|ϕ|p+1

) p–1
p+1

(∫
Rn

|v1|p+1
) 1

p+1
(∫

Rn
|v2|p+1

) 1
p+1

≤ C
(‖ϕ‖σ + ‖ϕ‖p–1

σ

)‖v1‖σ‖v2‖σ .

As a result, if p ≥ 2, we have

∥∥R′(ϕ)
∥∥ ≤ C‖ϕ‖2

σ

and

∥∥R′′(ϕ)
∥∥ ≤ C‖ϕ‖σ .

With the same argument, if 1 < p < 2, we find

∣∣〈R′(ϕ), v1
〉∣∣ ≤ C

∫
Rn

|ϕ|p|v1| ≤ C‖ϕ‖p
σ ‖v1‖σ
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and

∣∣〈R′′(ϕ)v1, v2)
〉∣∣ ≤ C

∫
Rn

|ϕ|p–1|v1||v2| ≤ C‖ϕ‖p–1
σ ‖v1‖σ ‖v2‖σ ,

which completes this proof. �

Lemma 2.3 For any ϕ ∈ Er , r ∈ Sk , there is a constant C > 0 and a small ε > 0, independent
of k, such that

∥∥l(ϕ)
∥∥ ≤ C

k 1
2

r m
2 +ε

‖ϕ‖σ ,

where m = min{m1, m2}.

Proof Recall that

∣∣l(ϕ)
∣∣ =

∣∣∣∣∣
∫
Rn

k∑
j=1

Up
yjϕ +

∫
Rn

(
A

(|y|) – 1
)
Wrϕ –

∫
Rn

B
(|y|)W p

r ϕ

∣∣∣∣∣

≤
∫
Rn

∣∣∣∣∣
( k∑

j=1

Uyj

)p

–
k∑

j=1

Up
yj

∣∣∣∣∣|ϕ| +
∫
Rn

∣∣(A
(|y|) – 1

)
Wrϕ

∣∣

+
∫
Rn

∣∣(B
(|y|) – 1

)
W p

r ϕ
∣∣. (2.6)

We are in a position to discuss the terms in (2.6). Using condition (A), similar to (A.2), we
compute that

∫
Rn

∣∣(A
(|y|) – 1

)
Wrϕ

∣∣ ≤
(∫

Rn

(
A

(|y|) – 1
)2W 2

r

) 1
2
(∫

Rn
ϕ2

) 1
2

≤ C
(

k 1
2

rm1
+

k 1
2

r m
2 +ε

)
‖ϕ‖σ

≤ C
k 1

2

r m
2 +ε

‖ϕ‖σ . (2.7)

With the same argument, having m > n+2σ
n+2σ+1 , we have

∫
Rn

∣∣(B
(|y|) – 1

)
W p

r ϕ
∣∣ ≤ k

(∫
Rn

∣∣B(|y|) – 1
∣∣ p+1

p Up+1
y1

) p
p+1

(∫
Rn

ϕp+1
) 1

p+1

≤ Ck
(

1

r
m2(p+1)

p

∫
B r

2
(y1)

Up+1
y1 +

∫
Rn\B r

2
(y1)

Up+1
y1

) p
p+1 ‖ϕ‖σ

≤ C
k 1

2

r m
2 +ε

‖ϕ‖σ . (2.8)
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Finally, taking η = n + 2σ in Lemma A.2, one has

∫
Rn

∣∣∣∣∣
( k∑

j=1

Uyj

)p

–
k∑

j=1

Up
yj

∣∣∣∣∣|ϕ| ≤
(∫

Rn

∣∣∣∣∣
( k∑

j=1

Uyj

)p

–
k∑

j=1

Up
yj

∣∣∣∣∣
2) 1

2 (∫
Rn

ϕ2
) 1

2

≤ Ck
1
2

(∫
Ω1

U2(p–1)
y1

( k∑
j=2

Uyj

)2) 1
2

‖ϕ‖σ

≤ Ck
1
2

(∫
Ω1

k2η

r2η
U2(p–1)

y1

) 1
2 ‖ϕ‖σ

≤ C
k 1

2

r m
2 +ε

‖ϕ‖σ . (2.9)

Inserting (2.7)–(2.9) into (2.6), the conclusion follows. �

Proposition 2.4 There is an integer k0 > 0, such that, for each k ≥ k0, there is a C1 map
from Sk to Hk : r �→ ϕ = ϕ(r), r = |y1|, satisfying ϕ(r) ∈ Er , and

J ′(ϕ(r)
)|Er = 0.

Moreover, there exists a small constant ε > 0, such that, for some C > 0, independent of k,

∥∥ϕ(r)
∥∥

σ
≤ C

k 1
2

r m
2 +ε

. (2.10)

Proof We will use the contraction theorem to prove it. It follows from Lemma 2.3 that l(ϕ)
is a bounded linear map in Er . So applying the Reisz representation theorem there exists
an lk ∈ Er such that

l(ϕ) = 〈lk ,ϕ〉.

Thus, finding a critical point for J(ϕ) is equivalent to solving

lk + Lϕ + R′(ϕ) = 0. (2.11)

By Lemma 2.1, L is invertible and then (2.11) can be rewritten as

ϕ = T(ϕ) := –L–1(lk + R′(ϕ)
)
.

Set

Dk :=
{
ϕ ∈ Er : ‖ϕ‖σ ≤ C

k 1
2

r m
2 +ε

}
,

where ε > 0 is defined in Lemma 2.3.
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From Lemmas 2.2 and 2.3, we have, for ϕ ∈ Er ,

∥∥T(ϕ)
∥∥

σ
≤ C

(‖lk‖ +
∥∥R′(ϕ)

∥∥)

≤ C‖lk‖ + C‖ϕ‖min{p,2}
σ ≤ C

k 1
2

r m
2 +ε

.

On the other hand, for any ϕ1,ϕ2 ∈ Dk , we can deduce that

∥∥T(ϕ1) – T(ϕ2)
∥∥

σ
≤ C

∥∥R′(ϕ1) – R′(ϕ2)
∥∥

≤ C
(‖ϕ1‖min{p–1,1}

σ + ‖ϕ2‖min{p–1,1}
σ

)‖ϕ1 – ϕ2‖σ

≤ 1
2
‖ϕ1 – ϕ2‖σ .

Therefore, T maps Dk to Dk and is a contraction map. From the contraction map theo-
rem, there exists ϕ such that ϕ = T(ϕ) and

‖ϕ‖σ ≤ C
k 1

2

r m
2 +ε

. �

3 Proof of the main result
Now we are ready to prove our Theorem 1.2. Let ϕr := ϕ(r) be the map obtained in Propo-
sition 2.4. Define

F(r) = I(Wr + ϕr), ∀r ∈ Sk .

With the same argument in [10], we can check that, if r is a critical point of F(r), then
Wr + ϕr is a solution of (1.1).

Proof of Theorem 1.2 It follows from Propositions 2.4 and A.3 that

F(r) = I(Wr) + O
(‖l‖‖ϕr‖σ + ‖ϕr‖2

σ

)

= k
(

d +
ad1

rm1
–

bd2

rm2
–

q0kn+2σ

rn+2σ
+ O

(
1

rm+ε

))
.

In the following, we only prove the case b > 0 and m1 < m2 since the case that b < 0 can
be checked in similar way. If b > 0 and m1 < m2, then

F(r) = k
(

d +
h1

rm – h0

(
k
r

)n+2σ

+ O
(

1
rm+ε

))

for some h0, h1 > 0.
We next consider the following maximization problem:

max
r∈Sk

F(r). (3.1)
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Suppose that (3.1) is achieved by some rk in Sk and then we can prove that rk is an interior
point in Sk by analyzing the following problem:

g(r) :=
h1

rm – h0

(
k
r

)n+2σ

.

By the direct computation, we find g(r) admits a maximum point

rk =
(

h0(n + 2σ )
h1m

) 1
n+2σ–m

k
n+2σ

n+2σ–m .

Now we claim that rk is an interior point of Sk . In fact, it is easy to see that

g(rk) =
h

n+2σ
n+2σ–m
1

h
m

n+2σ–m
0

1
( n+2σ

m ) n+2σ
n+2σ–m

(
n + 2σ

m
– 1

)
k– (n+2σ )m

n+2σ–m .

On the other hand,

g
(
r0k

n+2σ
n+2σ–m

)
=

h
n+2σ

n+2σ–m
1

h
m

n+2σ–m
0

1
( n+2σ

m – αh1
h0

) n+2σ
n+2σ–m

(
n + 2σ

m
–

αh1

h0
– 1

)
k– (n+2σ )m

n+2σ–m

and

g
(
r1k

n+2σ
n+2σ–m

)
=

h
n+2σ

n+2σ–m
1

h
m

n+2σ–m
0

1
( n+2σ

m + αh1
h0

) n+2σ
n+2σ–m

(
n + 2σ

m
+

αh1

h0
– 1

)
k– (n+2σ )m

n+2σ–m .

Since the function f (t) = ( 1
t ) n+2σ

n+2σ–m (t – 1) attains its maximum at t0 = n+2σ
m when t ∈

[ n+2σ
m – αh1

h0
, n+2σ

m + αh1
h0

], we have g(r0k
n+2σ

n+2σ–m ) < g(rk) and g(r1k
n+2σ

n+2σ–m ) < g(rk). Thus, rk is an
interior point of Sk and rk is a critical point of F(r). As a result,

uk = Wrk + ϕrk

is a solution of (1.1). �

Appendix: Energy expansion
In this section, we will give some basic estimates and the energy expansion for the approx-
imate solutions. Recall that

yi =
(

r cos
2(i – 1)π

k
, r sin

2(i – 1)π
k

, 0
)

, i = 1, . . . , k,

Ωi =
{

y =
(
y′, y′′) ∈R

2 ×R
n–2 :

〈
y′

|y′| ,
(yi)′

|(yi)′|
〉
≥ cos

π

k

}
, i = 1, 2, . . . , k,

and

I(u) =
1
2

∫
Rn

(∣∣(–�)
σ
2 u

∣∣2 + A(y)u2) –
1

p + 1

∫
Rn

B(y)|u|p+1.
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Now we introduce the following lemmas which have been proved in [24] and [19], respec-
tively.

Lemma A.1 For any constant 0 < μ ≤ min{α,β}, there is a constant C > 0, such that

1
(1 + |y – yi|)α

1
(1 + |y – yj|)β ≤ C

|yi – yj|μ
(

1
(1 + |y – yi|)α+β–μ

+
1

(1 + |y – yj|)α+β–μ

)
.

Lemma A.2 For any y ∈ Ω1 and η ∈ (0, n + 2σ ], there is a constant C > 0, such that

k∑
i=2

Uyi ≤ C
(1 + |y – y1|)n+2σ–η

kη

|y1|η ≤ C
kη

|y1|η .

Proposition A.3 There is a small constant ε > 0, such that

I(Wr) = k

(
d –

1
2

k∑
j=2

q′
0

|y1 – yj|n+2σ
+

ad1

rm1
–

bd2

rm2

+ O
(

1
rm1+θ1

)
+ O

(
1

rm2+θ2

)
+ O

(
k
r

)n+2σ+ε
)

= k
(

d +
ad1

rm1
–

bd2

rm2
–

q0kn+2σ

rn+2σ
+ O

(
1

rm1+θ1

)
+ O

(
1

rm2+θ2

)
+ O

(
k
r

)n+2σ+ε)
,

where d = ( 1
2 – 1

p+1 )
∫
Rn Up+1, d1 = 1

2
∫
Rn U2, d2 = 1

p+1
∫
Rn Up+1 and q0 = 1

2 q′
0 with q0, q′

0 are
some positive constants.

Proof Using the symmetry and Lemma A.1, we have

∫
Rn

(∣∣(–�)
σ
2 Wr

∣∣2 + W 2
r
)

=
k∑

i=1

k∑
j=1

∫
Rn

Up
yj Uyi

= k

(∫
Rn

Up+1
y1 +

k∑
j=2

∫
Rn

Up
y1 Uyj

)

= k
∫
Rn

Up+1 + k
k∑

j=2

∫
Rn

Up
y1 Uyj (A.1)

and

k∑
j=2

∫
Rn

Up
y1 Uyj

= C
∫
Rn

(
1

1 + |y – y1|n+2σ

)p k∑
j=2

1
1 + |y – yj|n+2σ

≤ C
k∑

j=2

1
|y1 – yj|n+2σ

(∫
Rn

1
(1 + |y – y1|)(n+2σ )p +

∫
Rn

1
(1 + |y – yj|)(n+2σ )p

)

=
k∑

j=2

q′
0

|y1 – yj|n+2σ
.
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On the other hand, we see that

∫
Rn

(
A

(|y|) – 1
)
W 2

r = k
∫

Ω1

(
A

(|y|) – 1
)(

Uy1 +
k∑

j=2

Uyj

)2

= k

(∫
Ω1

(
A

(|y|) – 1
)
U2

y1 + 2
k∑

j=2

∫
Ω1

(
A

(|y|) – 1
)
Uy1 Uyj

+
∫

Ω1

(
A

(|y|) – 1
)( k∑

j=2

Uyj

)2)
.

First, we have

∫
Ω1

(
A

(|y|) – 1
)
U2

y1

=
∫

B |y1–y2|
2

(y1)

(
a

rm1
+ O

(
1

rm1+θ1

))
U2

y1 +
∫

Ω1\B |y1–y2|
2

(y1)

(
A

(|y|) – 1
)
U2

y1

=
(

a
rm1

+ O
(

1
rm1+θ1

))(∫
Rn

U2 +
∫
Rn\B |y1–y2|

2
(y1)

U2
y1

)
+ O

(
k
r

)n+2σ+ε

=
a

rm1

∫
Rn

U2 + O
(

1
rm1+θ1

)
+ O

(
k
r

)n+2σ+ε

.

Second, using Lemma A.1,

k∑
j=2

∫
Ω1

(
A

(|y|) – 1
)
Uy1 Uyj

=
k∑

j=2

∫
B |y1–y2|

2
(y1)

(
a

rm1
+ O

(
1

rm1+θ1

))
Uy1 Uyj +

k∑
j=2

∫
Ω1\B |y1–y2|

2
(y1)

Uy1 Uyj

≤ a
rm1

k∑
j=2

C
|y1 – yj|n+2σ

∫
B |y1–y2|

2
(y1)

1
(1 + |y – y1|)n+2σ

+ O
(

1
rm1+θ1

)

+
k∑

j=2

C
|y1 – yj|n+2σ

∫
Ω1\B |y1–y2|

2
(y1)

1
(1 + |y – y1|)n+2σ

≤ C
rm1+θ1

+
k∑

j=2

C
|y1 – yj|n+2σ

(
k
r

)τ ∫
Ω1\B |y1–y2|

2
(y1)

1
(1 + |y – y1|)n+2σ–τ

= C
(

k
r

)n+2σ+ε

+
C

rm1+θ1
,

where τ > 0 satisfies n + 2σ – τ > n and we used the fact that |y – yj| ≥ |y – y1| for y ∈ Ω1.
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But, by Lemma A.2, we find

k∑
j=2

∫
Ω1

(
A

(|y|) – 1
)( k∑

j=2

Uyj

)2

≤ C
∫

B |y1–y2|
2

(y1)

(
a

rm1
+ O

(
1

rm1+θ1

))(
k
r

)n+2σ 1
(1 + |y – y1|)n+2σ

+ C
∫

Ω1\B |y1–y2|
2

(y1)

(
k
r

)n+2σ 1
(1 + |y – y1|)n+2σ

= C
(

k
r

)n+2σ+ε

+
C

rm1+θ1
.

As a result,

∫
Rn

(
A

(|y|) – 1
)
W 2

r = k
(

a
rm1

∫
Rn

U2 + O
((

k
r

)n+2σ+ε

+
1

rm1+θ1

))
(A.2)

and then

∫
Rn

(∣∣(–�)
σ
2 Wr

∣∣2 + A
(|y|)W 2

r
)

= k

(∫
Rn

Up+1 +
k∑

j=2

q′
0

|y1 – yj|n+2σ
+

a
rm1

∫
Rn

U2

+ O
((

k
r

)n+2σ+ε

+
1

rm1+θ1

))
. (A.3)

Now, from the symmetry, we also find

∫
Rn

B
(|y|)W p+1

r = k
∫

Ω1

B
(|y|)Up+1

y1 + k(p + 1)
∫

Ω1

B
(|y|)

k∑
j=2

Up
y1 Uyj

+ k

⎧⎨
⎩

O(
∫
Ω1

U
p+1

2
y1 (

∑k
j=2 Uyj )

p+1
2 ), if 1 < p < 2,

O(
∫
Ω1

Up–1
y1 (

∑k
j=2 Uyj )2), if p ≥ 2.

(A.4)

Observe that |y – yj| ≥ |y – y1| and |y – yj| ≥ 1
2 |yj – y1| if y ∈ Ω1. So we have

∫
Ω1

U
p+1

2
y1

( k∑
j=2

Uyj

) p+1
2

≤ C
∫

Ω1

1

(1 + |y – y1|) (n+2σ )(p+1)
2

( k∑
j=2

1
|yj – y1|n+2σ–κ

) p+1
2 1

(1 + |y – y1|) p+1
2 κ

= C

( k∑
j=2

1
|yj – y1|n+2σ–κ

) p+1
2 ∫

Ω1

1

(1 + |y – y1|) (n+2σ )(p+1)
2 +κ

≤ C

( k∑
j=2

1
|yj – y1|n+2σ–κ

) p+1
2

≤ C
(

k
r

)n+2σ+ε
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and similarly

∫
Ω1

Up–1
y1

( k∑
j=2

Uyj

)2

≤ C
(

k
r

)n+2σ+ε

with κ > 0 satisfying min{ p+1
2 (n + 2σ – κ), 2(n + 2σ – κ)} > n + 2σ .

Note that

∫
Ω1

B
(|y|)

k∑
j=2

Up
y1 Uyj =

∫
Ω1

Up
y1

k∑
j=2

Uyj +
∫

Ω1

(
B
(|y|) – 1

)
Up

y1

k∑
j=2

Uyj . (A.5)

By Lemma A.1, we can deduce that

∫
Ω1

Up
y1

k∑
j=2

Uyj

=
∫
Rn

Up
y1

k∑
j=2

Uyj –
∫
Rn\Ω1

Up
y1

k∑
j=2

Uyj

≤
∫
Rn

Up
y1

k∑
j=2

Uyj + C
(

k
r

)τ k∑
j=2

∫
Rn\Ω1

1
(1 + |y – y1|)p(n+2σ )–τ

1
(1 + |y – yj|)n+2σ

=
∫
Rn

Up
y1

k∑
j=2

Uyj +
(

k
r

)τ k∑
j=2

1
|yj – y1|n+2σ

∫
Rn\Ω1

(
1

(1 + |y – y1|)p(n+2σ )–τ

+
1

(1 + |y – yj|)p(n+2σ )–τ

)

=
k∑

j=2

q′
0

|y1 – yj|n+2σ
+ O

((
k
r

)n+2σ+ε)
,

since y ∈R
n \ Ω1, |y – y1| ≥ c r

k for some c > 0 and we could choose p(n + 2σ ) – τ ≥ n + 2σ .
Furthermore,

∫
Ω1

∣∣B(|y|) – 1
∣∣Up

y1

k∑
j=2

Uyj

=
∫
Rn

∣∣B(|y|) – 1
∣∣Up

y1

k∑
j=2

Uyj –
∫
Rn\Ω1

∣∣B(|y|) – 1
∣∣Up

y1

k∑
j=2

Uyj

=
∫

B r
2

(x1)

∣∣B(|y|) – 1
∣∣Up

y1

k∑
j=2

Uyj +
∫
Rn\B r

2
(x1)

Up
y1

k∑
j=2

Uyj + O
((

k
r

)n+2σ+ε)

≤
(

C
rm2

+ O
(

1
rm2+θ2

))∫
Rn

Up
y1

k∑
j=2

Uyj + O
((

k
r

)n+2σ+ε)

= O
((

k
r

)n+2σ+ε

+
1

rm2+θ2

)
.
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Finally,

∫
Ω1

B
(|y|)Up+1

y1

=
∫
Rn

B
(|y|)Up+1

y1 –
∫
Rn\B 2πr

k
(y1)

B
(|y|)Up+1

y1 +
∫

Ω1\B 2πr
k

(y1)
B
(|y|)Up+1

y1

=
∫

B r
2

(y1)
B
(|y|)Up+1

y1 +
∫
Rn\B r

2
(y1)

B
(|y|)Up+1

y1 + O
((

k
r

)n+2σ+ε)

=
∫

B r
2

(y1)

(
1 +

b
rm2

+ O
(

1
rm2+θ2

))
Up+1

y1 + O
((

k
r

)n+2σ+ε)

=
(

1 +
b

rm2
+ O

(
1

rm2+θ2

))∫
Rn

Up+1 + O
((

k
r

)n+2σ+ε)
.

Thus, we have proved

∫
Rn

B
(|y|)W p+1

r = k

((
1 +

b
rm2

)∫
Rn

Up+1 +
k∑

j=2

(p + 1)q′
0

|y1 – yj|n+2σ

+ O
((

k
r

)n+2σ+ε

+
1

rm2+θ2

))
,

which, combining with (A.3), completes our proof. �
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