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Abstract
In this paper, a priori estimate for a linear third pseudoparabolic operator with bound
is established, and applying the above result, the existence and uniqueness theorem
of solutions for a class of nonlinear pseudoparabolic equations is obtained with the
help of the homeomorphism method and the initial value method. Furthermore, an
existence and uniqueness theorem of the semilinear equation is obtained as a
corollary.
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1 Introduction
Consider the initial-boundary value problem

(
ai,j(u + ut)xi

)
xj

+ biuxi – ut + F(x, t, u, uxi ) = f (x, t, u), (x, t) ∈ D, (1)

u|t=0 = 0, x ∈ Ω , (2)

u|∂Ω = 0, (x, t) ∈ ∂Ω × [0, T], (3)

where Ω is a connected bounded subset of n-dimensional space, the boundary of Ω is
piecewise smooth and has nonnegative mean curvature everywhere, D = Ω × [0, T] be-
longs to the Hilbert space W 2,1

2 (D), and ai,j, bi are bounded measurable functions.
Using a continuous method, Sigillito [1] explored the solution for the heat equation.

Elcart and Sigillito [2, 3] had derived an explicit coercivity inequality and discussed the
convergence of the algorithm for a semilinear third order pseudoparabolic equation of
the following type:

�(u + ut) – ut = f (x, t, u), (x, t) ∈ D,

since then, there have been some further studies of other forms of parabolic equations,
most of the results have focused on the discussion of algorithms [4].
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In 2004, Bouziani [5, 6] had derived an explicit coercivity inequality and given a suffi-
cient condition for the existence and uniqueness of a solution to the first order parabolic
equation.

Motivated by the spirit of this work and results by Brown and Lin [7], the explicit coer-
civity inequalities of a linear third pseudoparabolic operator with bound are obtained in
Sect. 3. By using these estimates, we shall utilize the homeomorphism method and the ini-
tial value method to give a new set of sufficient conditions for the existence and uniqueness
of the third order pseudoparabolic equation in this paper, which can be found in Sect. 4.

2 Preliminaries and lemmas
In this section, we will state some lemmas which are useful to our results.

Firstly, we will give sufficient conditions for f to be a global homeomorphism of D
onto Y .

Definition 2.1 ([8]) Let X, Y be Banach spaces, D ⊆ X be open and connected, the con-
tinuous mapping f : D ⊂ X → Y satisfies condition (C) if and only if for any continuous
function r : [0, a) → D ⊆ X such that

f
(
r(t)

)
= q(t), t ∈ [0, a),

where q : [0, 1] → Y is any line in Y , there is a sequence {tn} such that tn → a, n → ∞ and

lim
n→∞ r(tn)

exists and is in D.

In the following for convenience, with no loss of generality, for the function q one may
assume that q(t) = (1 – t)f (x0) + ty, t ∈ [0, 1], for arbitrary x0 ∈ D and y ∈ Y .

Theorem 2.1 (Plasctock [8]) Let f : D ⊂ X → Y be a local homeomorphism.
Then f is a global homeomorphism of D onto Y if and only if f satisfies condition (C).

Secondly, the comparison theorem plays an important role to prove the sufficient con-
dition for the existence of a unique solution of the problem (1).

Let E be an open (t, x)-set in R2 and g ∈ C[E, R]. Consider the scalar differential equation
with an initial condition

⎧
⎨

⎩
u′ = g(t, u),

u(t0) = u0.
(4)

Definition 2.2 ([9]) Let y(t) be a solution of the scalar differential equation (4) on
[t0, t0 + a), then y(t) is said to be a maximal solution of (4) if, for every solution u(t) of
(4) existing on [t0, t0 + a), we have the inequality

u(t) ≤ y(t), t ∈ [t0, t0 + a)

holds.
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Theorem 2.2 (Plasctock [9]) Let g ∈ C[R0, R], where R0 is the rectangle t0 ≤ t ≤ t0 + a,
|u – u0| ≤ b, and |g(t, u)| ≤ M on R0 .Then there exist a maximal solution and a minimal
solution of (4) on [t0, t0 + a], where α = min(a, b \ 2(M + b)).

Theorem 2.3 (Comparison theorem [9]) In the setting of the above, suppose that [t0, t0 +b)
is the largest interval in which the maximal solution y(t) of (4) exists. Let

m ∈ C
[
[t0, t0 + b), R

]
,

(
t, m(t)

) ∈ E for t ∈ [t0, t0 + b), m(t0) ≤ u0,

and for a fixed Dini derivative

Dm(t) ≤ g
(
t, m(t)

)
, t ∈ [t0, t0 + b) \ T ,

then

m(t) ≤ y(t), t ∈ [t0, t0 + b),

where T denotes an almost countable subset of t ∈ [t0, t0 + b).

3 The coercivity inequality
Let W0(D) denote the Hilbert space with the norm

(‖u‖2,1
)2 =

∫

D

(
u2 + |∇u|2 +

∣∣D2u
∣∣2 + u2

t
)

dx dt,

here |D2u|2 represents the sum of the squares of all the second derivatives with respect to
space variables. In this section we derive a coercivity inequality,

∣∣‖u‖∣∣ ≤ const‖Lu‖,

for the pseudoparabolic operator defined by

Lu =
(
aij(u + ut)xi

)
xj

+ biuxi – au – ut . (5)

The norm |‖ · ‖| on W0 is defined by

[(‖u‖2,1
)2 +

∫ T

0

∥
∥ut

∥
∥2

2 dt
] 1

2
,

where ‖ · ‖2 is the norm on W 2
2 (Ω), ‖ · ‖ is the norm on L2(D), a : W0(D) → L2(D) is

continuous and a bounded function on t, x1, . . . , xn, u.
We assume that aij is a symmetric matrix of measurable functions satisfying the inequal-

ity

τ 2|ξ | ≤ ai,jξiξj
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for some positive constant τ , all n-dimensional vectors ξ and all x in D. We also assume
that the functions aij are sufficiently regular to ensure the validity of the identity

∫

Ω

u(aijuxj )xi dx = –
∫

Ω

aijuxj uxi dx

for u in W 2
2 (Ω). From (5), we have

–uLu = –u
(
ai,j(u + ut)xi

)
xj

– biuxi u + au2 + utu

= (ai,j)xj (u + ut)xi u + ai,j(u + ut)xi (u + ut)xj – biuxi u + au2 + utu.

Using the inequality

2bc ≤ εb2 + ε–1c2, (6)

and the inequality

τ 2|ξ | ≤ ai,jξiξj

for ε > 0, α > 0 , the inequality

∫

D
(Lu)2 dx dt ≥ 2ετ 2(1 – α)

∫

D
|∇u|2 dx dt du

+
(

a0 –
ε

2
–

S2

4τ 2α

)
2ε

∫

D
u2 dx dt (7)

is valid for u in W0.
The next two lemmas are obtained from (5) by evident choices of ε and α. In order to

facilitate statements to be made below, we define S = sup |bi – (ai,j)xj |, a0 = infD a(x, t).

Lemma 3.1 The inequality

∫

D
(Lu)2 dx dt ≥

(
a0 –

S2

4τ 2

)2 ∫

D
u2 dx dt (8)

is valid for u in W0.

Lemma 3.2 The inequality

∫

D
(Lu)2 dx dt ≥ (

2τ
√

a0(1 – S)
)2

∫

D
|∇u|2 dx dt (9)

is valid for u in W0.

We define

Pu = ai,juxj uxi , Qu = (ai,juxi )xj , a1 = sup |bi|, M = max
i

∑

j

a2
i,j,
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and from [2] we have the inequality

τ 2

2

∫

D

∑∣∣D2u
∣∣2 dx dt ≤

∫

D
P2u dx dt +

n4B2

2τ 2

∫

D
|∇u|2 dx dt.

From Pu = Qu – (ai,j)xj uxi , u ∈ W0, we have

∫

D
P2u dx dt ≤ 2

∫

D
Q2u dx dt + 2

∫

D

(
(ai,j)xj uxi

)2 dx dt

≤ 2
∫

D
Q2u dx dt + 2M

∫

D
|∇u|2 dx dt,

so

τ 2

2

∫

D

∣∣D2u
∣∣2 dx dt ≤ 2

∫

D
Q2u dx dt +

(
n4B2

2τ 2 + 2M
)∫

D
|∇u|2 dx dt

≤ 2
∫

D
Q2(u + ut) dx dt

+
(

n4B2

2τ 2 + 2M
)∫

D
|∇u|2 dx dt.

Remark 3.1 Results analogous in the present situation are in Lemma 3.3.

Lemma 3.3 The inequality

τ 2

2

∫

D

∣
∣D2u

∣
∣2 dx dt ≤ 2

∫

D
Q2(u + ut) dx dt

+
(

n4B2

2τ 2 + 2M
)∫

D
|∇u|2 dx dt (10)

is valid for u in W0.

From Qu = Pu + (ai,j)xj uxi , we also have

∫

D
Q2(u + ut) dx dt ≤

∫

D
(Lu)2 dx dt +

(
1
4

+
S
2

+ a1

)∫

D
u2 dx dt

+
S
2

∫

D
|∇u|2 dx dt. (11)

The inequalities (10) and (11) imply that

τ 2

2

∫

D

∣∣D2u
∣∣2 dx dt ≤

∫

D
(Lu)2 dx dt +

(
1
4

+
S
2

+ a1

)

∫

D
u2 dx dt +

(
S
2

+
n4B2

2τ 2 + 2M
)∫

D
|∇u|2 dx dt. (12)

Denote

L0u =
(
ai,j(u + ut)xi

)
xj

+ biuxi – au,
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and by further application of the arithmetic–geometric mean inequality to

–
∫

D
uut dx dt = –

∫

D
uLu dx dt +

∫

D
uL0u dx dt,

we obtain

∫

D
u2

t dx dt ≤
∫

D
(Lu)2 dx dt – 4

(
a0 +

1
2

+
S

4τ 2

)∫

D
u2 dx dt. (13)

Combining (8), (9), (12) and (13), we have Lemma 3.4.

Lemma 3.4 If a0 – S2

4τ2 > 0, the inequality

∣
∣‖u‖∣∣ ≤ C‖Lu‖

is valid for u in W0, where

C2 =
2 + τ 2

τ 2 +
τ 2 + S + 4M
4τ 4a0(1 – S)

+
B2n4

4τ 6a0(1 – S)
+

8τ 2(1 + 4a1) – 16τ 4(4a0 + 1)
(4a0τ 2 – S2)2 .

4 The coercivity inequality
Denote

Mu =
(
ai,j(u + ut)xi

)
xj

+ biuxi – ut ,

then M is a linear operator from W0(D) to L2(D). Now let us turn our attention to the
following operator equation:

Au = Mu – fu.

For all u,φ ∈ W0(D), we have

A′φ = Mφ – fu
(
x, u(x)

)
φ.

If infΩ fu > S2

4τ2 , then zero is not an eigenvalue of Mφ– fu(x, u(x))φ, so for every u ∈ W0(D),
the operator A′(u) = M – fuI is invertible and A is a local homeomorphism from W0(D)
onto L2(D), where I denotes the identical operator. Furthermore, an upper bound for
|‖[A′(x)]–1‖| is provided by Lemma 3.4 if the coefficient a(x) is identified with fu(x, u),
it implies that

∣∣∥∥[
A′(x)

]–1h
∥∥∣∣ ≤

(
α sup

‖x‖≤s

∣∣fu
(
x, u(x)

)∣∣ + β
)
‖h‖

for positive constant α, β .
Denote

λ(s) = α sup
‖x‖≤s

∣
∣fu

(
x, u(x)

)∣∣ + β ,
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then

∣
∣
∥
∥[

A′(x)
]–1h

∥
∥
∣
∣ =

∣
∣
∥
∥(M – fu)–1h

∥
∥
∣
∣ ≤ λ

(‖u‖)‖h‖, u ∈ W0(D). (14)

We may express the first line of (1) in the form

Pu = Mu – fu + Fu = 0

for u,φ ∈ W0(D), we have

P′(u)(φ) = Mφ – fuφ + Fuφ.

We can state and prove our main theorem.

Theorem 4.1 In the setting above, for Eqs. (1), (2) and (3) there exists a unique solution if
the following conditions hold:

(1) infΩ fu > S2

4τ2 ;
(2) for each μ ∈ R, the maximum solution y of the initial value problem

⎧
⎨

⎩
y′(t) = μδ(y(t)), t ∈ [0, a),

y(0) = 0,
(15)

is defined on [0, a] and there exists a sequence tn → a as n → ∞ such that
limn→∞ y(tn) = y is finite;

(3) F is continuously differentiable and

∣
∣∣∣
∂Fi

∂xj
(w)

∣
∣∣∣,

∣
∣∣∣
∂Fi

∂yj
(w)

∣
∣∣∣ ≤ c

nδ(‖w‖)
, c < 1, w ∈ Rn. (16)

Proof Firstly, we prove [M – fu(u) + Fu(u)]–1 ≤ δ(‖u‖). For u, v ∈ D, it is obvious that F is
continuously Frechet differentiable with

[
F ′(u)v

]
(t) = –

(
∂Fi

∂xj
u(t)

)
v(t) –

(
∂Fi

∂yj
u(t)

)
v′(t).

It follows from the above assumption and (16) that

∥∥F ′(u)v
∥∥ ≤ n

c
nλ(‖u‖)

(‖v‖ +
∥∥v′∥∥) ≤ c

λ(‖u‖)
(∣∣‖v‖∣∣). (17)

Now

Mu – fu + Fu =
(
I + Fu[M – fu]–1)(M – fu).

Let Q : W0(D) → W0(D) be defined by

Q = F ′(u)[M – fu]–1,
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by (14) and (16), we have

‖Qh‖ ≤ c
λ(‖w‖)

λ
(‖w‖)‖h‖ = c‖h‖, h ∈ W0(D).

So I + Q is invertible with

∥
∥(I + Q)–1∥∥ ≤ 1

1 – c
.

Hence, M – fu(u) + Fu(u) : D → W0(D) is invertible with

[
M – fu(u) + Fu(u)

]–1 =
[
M – fu(u)

]–1(I + Q)–1,

and so

[
M – fu(u) + Fu(u)

]–1 ≤ λ(‖u‖)
1 – c

.

Denote δ(‖u‖) = λ(‖u‖)
1–c , then

[
M – fu(u) + Fu(u)

]–1 ≤ δ
(‖u‖).

It implies that P is invertible at every u ∈ W0(D), hence, P is a local homeomorphism of
W0(D).

Secondly, in view of Theorem 2.1, we need only show that P has the property (C) for any
continuous function q : [0, 1] → L2(D). For a given y ∈ L2(D) and an arbitrary x0 ∈ W0(D),
let

q(t) = (1 – t)y + tP(x0),

suppose that there exists a continuous function r : [0, a) → D ⊆ W0(D) such that

P
(
r(t)

)
= q(t), t ∈ [0, a), for 0 < a ≤ 1. (18)

Now we need to prove that there exists a real sequence {tn} such that tn → a, n → ∞ and

lim
n→∞ r(tn) = r

exists and is in W0(D).
It is clear that r is differentiable in this case. We have from (18)

⎧
⎨

⎩
r′(t) = –P′(r(t))–1(P(x0) – P(r(t))), t ∈ [0, a),

r(0) = x0.
(19)

Denote by D‖r(t)‖ the Dini derivative of ‖r(t)‖ and set μ = P(r(t)) – P(x0), and we have

D
∥∥r(t)

∥∥ ≤ ∥∥r′(t)
∥∥ =

∥∥P′(r(t)
)–1∥∥∥∥P(x) – P(x0)

∥∥ ≤ μδ
(∥∥r(t)

∥∥)
.
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By the assumption (2), we know the maximum solution y(t) of (15) is defined on [0, a) and
there exists a sequence tn → a as n → ∞ such that

lim
n→∞ y(tn) = y

is finite. It follows that y(t) is continuous on [0, a] and there is a constant K such that
|y(t)| ≤ K , t ∈ [0, a]. By the comparison theorem, Theorem 2.3, we have

∥
∥r(t)

∥
∥ ≤ ∣

∣y(t)
∣
∣ ≤ K , t ∈ [0, a].

For t1, t2 ∈ [0, a), we have

∥
∥r(t1) – r(t2)

∥
∥ ≤

∫ t2

t1

∥
∥r′(s)

∥
∥ds ≤ μ

∫ t2

t1

δ
(∥∥r(s)

∥
∥)

ds

≤ μ

∫ t2

t1

δ
(∥∥y(s)

∥
∥)

ds ≤ μδ(K)|t1 – t2|.

So {r(tn)} is a Cauchy sequence and consequently for the real sequence tn → a as n → ∞,

lim
n→∞ r(tn) = r

exists. This proves that r ∈ W0(D) and P satisfies the condition (C). The theorem is
proved. �

5 Related results
Using a similar technique to the one of the theorem, we can prove the following conclusion
as regards the initial-boundary problem for pseudoparabolic equations.

Corollary 5.1 Let the condition (1) and the condition (2) hold and
(3) F be continuously differentiable and

∣
∣∣
∣
∂Fi

∂xj
(w)

∣
∣∣
∣,

∣
∣∣
∣
∂Fi

∂yj
(w)

∣
∣∣
∣ ≤ c

nW
, c < 1, w ∈ Rn,

where W is constant. Then Eq. (1) has a unique solution.

Corollary 5.2 Let the condition (1) and the condition (2) hold. Assume that f is continuous
and has continuous partial derivatives with respect to u through the third order. Then the
semilinear equation

(
ai,j(u + ut)xi

)
xj

+ biuxi – ut = f (x, t, u), (x, t) ∈ D,

u|t=0 = 0, x ∈ Ω ,

u|∂Ω = 0, (x, t) ∈ ∂Ω × [0, T]

has a unique solution.
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Especially when ai,j = 1, bi = 0, we get the equation in [3]:

�(u + ut) – ut = f (x, t, u), (x, t) ∈ D,

and the conclusion of [3] but with a different method.
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