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Abstract
For arbitrary two-point boundary condition, which makes the corresponding linear
uniform problem well-posed, we obtain an existence and uniqueness result for the
boundary value problem of finite beam deflection resting on arbitrary nonlinear
non-uniform elastic foundation. The difference between the desired solution and the
corresponding linear uniform one in L∞ sense is bounded explicitly in terms of given
inputs of the problem. Our results seamlessly unify linear uniform and nonlinear
non-uniform problems and lead to an iteration algorithm for uniformly
approximating the desired deflection.
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1 Introduction
Suppose that a beam with finite length 2l is horizontally put on an elastic foundation. Let
E and I be the Young’s modulus and the mass moment of inertia of the beam respectively,
so that EI is the flexural rigidity of the beam. Throughout this paper, we assume that E,
I , and l are fixed positive constants. From the classical Euler–Bernoulli beam theory [16],
we have the following governing equation, which we denote by NDE(f , w), for the beam’s
vertical upward deflection u(x):

NDE(f , w) : EI · u(4)(x) + f
(
u(x), x

)
= w(x), x ∈ [–l, l].

Here, w(x) is a vertical downward load density on the beam, and –f (u(x), x) is the nonlinear
and non-uniform elastic force density by the elastic foundation, which can depend on both
the location x on the beam and the deflection u(x) at x. Beam deflection is one of the basic
and important problems in structural mechanics and mechanical engineering, and it has
a lot of applications [1, 3, 4, 7–13, 15–18].
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For given f in NDE(f , w), fu(u(x), x) corresponds to the nonlinear and non-uniform
spring constant density of the elastic foundation. Let k be the maximal spring constant
density of f at zero deflection, which is defined by

k = max
–l≤x≤l

fu(0, x), (1.1)

and is assumed to be positive. Then NDE(f , w) is a generalization of the following linear
equation, which we denote by LDE(w):

LDE(w) : EI · u(4)(x) + k · u(x) = w(x), x ∈ [–l, l].

The elastic foundation represented by LDE(w) has the elastic force density –k ·u(x), which
is linear in the sense that it strictly follows Hooke’s law and is uniform in the sense that its
spring constant density k does not depend on the location x on the beam.

Let gl(m, n,R) be the set of m×n matrices with real entries. For three times differentiable
functions on [–l, l], we define the following linear operator B : C3[–l, l] → gl(8, 1,R) by

B[u] =
(

u(–l) u′(–l) u′′(–l) u(3)(–l) u(l) u′(l) u′′(l) u(3)(l)
)T

. (1.2)

Then a two-point boundary condition, which we denote by BC(M, b), can be given with
a 4 × 8 matrix M ∈ gl(4, 8,R) called a boundary matrix, and a 4 × 1 matrix b ∈ gl(4, 1,R)
called a boundary value as follows:

BC(M, b) : M ·B[u] = b.

For example, the boundary condition u(–l) = u–, u′(–l) = u′
–, u(l) = u+, u′(l) = u′

+ corre-
sponds to

M =

⎛

⎜⎜
⎜
⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

⎞

⎟⎟
⎟
⎠

, b =

⎛

⎜⎜
⎜
⎝

u–

u′
–

u+

u′
+

⎞

⎟⎟
⎟
⎠

. (1.3)

The boundary value problem consisting of LDE(w) and BC(M, b) is well-posed if it has a
unique solution.

In this paper, we analyze the nonlinear non-uniform boundary value problem consisting
of NDE(f , w) and BC(M, b) for arbitrary boundary condition BC(M, b) which makes the
corresponding linear uniform problem LDE(w) and BC(M, b) well-posed. We will obtain
an existence and uniqueness result for this problem under physically realistic and presum-
ably minimal assumptions. Specifically, we have three Assumptions (F), (A), and (B) on the
inputs f , w, M, b of our problem. Assumption (F) is on the two-variable function f , which
represents the elastic foundation in NDE(f , w). It essentially ensures that f is modeling a
physically realistic elastic foundation.

Assumption (F) f (u, x) and fu(u, x) are continuous. f (u, x) ·u ≥ 0 and fu(u, x) ≥ 0 for every
u ∈ R and x ∈ [–l, l]. k = max–l≤x≤l fu(0, x) > 0.
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The condition f (u, x) · u ≥ 0 means that the elastic force by the elastic foundation is
restoring. The condition fu(u, x) ≥ 0 means that the nonlinear non-uniform spring con-
stant density fu(u, x) of the elastic foundation is nonnegative, so that the magnitude of the
elastic force increases as the magnitude of the deflection u increases.

There have been various attempts [1, 3, 4, 7–13, 17] to generalize the classical linear
uniform problem LDE(w) to nonlinear or non-uniform settings. For infinitely long beam,
Choi and Jang [7] obtained an existence and uniqueness result for the following infinite
version:

EI · u(4)(x) + f
(
u(x), x

)
= w(x), x ∈ (–∞,∞) (1.4)

of NDE(f , w) with assumptions similar to ours. Since the length of the beam they dealt
with was infinite, it was sufficient for them to consider the boundary condition

lim
x→±∞ u(x) = 0. (1.5)

They showed the existence and the uniqueness of the solution to the boundary value prob-
lem consisting of (1.4) and (1.5) in some regions of C0(R) around the zero function.

Following the framework of [7], we will construct a nonlinear operator Ψ : L∞[–l, l] →
L∞[–l, l], whose fixed points are solutions of our boundary value problem NDE(f , w) and
BC(M, b). We will find out appropriate regions in L∞[–l, l] where Ψ is contractive, so that
the desired nonlinear non-uniform deflection is guaranteed to exist in those regions by a
generalization of Banach fixed point theorem [2]. Our results on finite beam are of more
practical importance than those on infinite beam in [7] which are meaningful only in ideal
situations.

A challenge with the finite beam problem is that there are a lot of possible well-posed
boundary conditions BC(M, b). This is in sharp contrast to the infinite beam problem
in [7], where it was sufficient to consider only one boundary condition (1.5). Note that
Assumption (F), which is also assumed in [7] for x ∈ (–∞,∞), implies that f (0, x) = 0 for
every x. So the zero function is still a solution of the homogeneous boundary value problem
consisting of (1.4) with w = 0 and (1.5). But the solution of the homogeneous boundary
value problem NDE(f , 0) and BC(M, b) is not the zero function in general. So the effect of
the boundary condition BC(M, b) is already nontrivial even without a nontrivial loading w.
In fact, the solution of the linear uniform homogeneous boundary value problem LDE(0)
and BC(M, b) is nonzero unless b = 0.

The boundary value problem LDE(w) and BC(M, b) is well-posed for any fixed w ∈
L∞[–l, l] and b ∈ gl(4, 1,R) if and only if the boundary value problem LDE(0) and BC(M, 0)
is well-posed, in which case we just call the boundary matrix M ∈ gl(4, 8,R) well-posed.
Up to a natural equivalence relation, the set of well-posed boundary matrices in gl(4, 8,R)
is in one-to-one correspondence with a 16-dimensional algebra [6]. Hence, together with
the 4-dimensional space gl(4, 1,R) of boundary values b, the set of different well-posed
boundary conditions BC(M, b) forms a 20-dimensional space!a

Starting from the inputs f , w, M, b of our problem, we will successively derive various
quantities in effective ways. All of these quantities are explicitly computable from given
inputs a priori. See Fig. 4 in Sect. 7 for a map of these derivations. The following are a few
important end results.
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• The intrinsic L2-norm μM.
• The non-uniformity ratio 0 ≤ η ≤ 1.
• The upper bound D on the magnitude of linear uniform deflection.
• The nonlinear operator Ψ : L∞[–l, l] → L∞[–l, l].
• The elastic capacity σ > 0.
• The dual radii 0 ≤ r < R ≤ ∞.
• A nonlinearity function ρ : [0,∞) → [0,∞), which is continuous, strictly increasing,

and ρ(0) = 0. It can be chosen with some freedom.
For uc ∈ L∞[–l, l] and δ ≥ 0, denote B(uc, δ) = {u ∈ L∞[–l, l] | ‖u – uc‖∞ ≤ δ}, which is
the closed ball centered at uc with radius δ in the Banach space L∞[–l, l] with the norm
‖u‖∞ = sup–l≤x≤l |u(x)|. Here, δ = ∞ is allowed, and B(uc,∞) = L∞[–l, l]. For well-posed
M ∈ gl(4, 8,R), we denote the unique solution of the linear uniform boundary value prob-
lem LDE(w) and BC(M, b) by LM[b, w].

Assumption (A) μM · η < 1.

Assumption (B) ‖LM[b, w]‖∞ < D.

Theorem 1 Suppose that the boundary value problem LDE(w) and BC(M, b) is well-
posed, and f , w ∈ L∞[–l, l], M ∈ gl(4, 8,R), b ∈ gl(4, 1,R) satisfy Assumptions (F), (A), (B).
Then the following (a), (b), (c) hold:

(a) There exists a unique solution L̃M[b, w, f ] of the boundary value problem NDE(f , w)
and BC(M, b) in B(LM[b, w], R).

(b) For every u0 ∈ B(LM[b, w], R), the sequence {un}∞n=0 of functions defined by
un = Ψ [un–1], n = 1, 2, 3, . . . , converges uniformly to L̃M[b, w, f ], and
L̃M[b, w, f ] ∈ B(LM[b, w], r).

(c) 0 ≤ r < R ≤ R + ‖LM[b, w]‖∞ ≤ ρ–1(σk). r and R are increasing and decreasing with
respect to ‖LM[b, w]‖∞ respectively, and lim‖LM[b,w]‖∞→0 r = 0,
lim‖LM[b,w]‖∞→0 R = ρ–1(σk).

Theorem 1 will be proved in Sect. 6. It is important to note that the statements in The-
orem 1 are not local ones such as “there exists something in some sufficiently small neigh-
borhood”. The constants r, R, ρ–1(σk) are explicitly computable from the inputs, as will be
demonstrated by examples.

See Fig. 1 for an illustration of Theorem 1. By Theorem 1(c), we always have
B(LM[b, w], r) ⊂ B(LM[b, w], R) ⊂ B(0,ρ–1(σk)). We justifiably call the region B(0,ρ–1(σk))
the deflection horizon since all the deflections appearing in our analysis cannot escape
from it. The deflection horizon conforms to, and is an explicit quantification of, the phys-
ical observation that the equations LDE(w) and NDE(f , w) are designed for small deflec-
tions originally.

The dual radii r < R is an improved feature compared to [7]. L̃M[b, w, f ] is guaranteed
to exist in the smaller region B(LM[b, w], r), so that the smaller radius r provides a shaper
bound on the location of L̃M[b, w, f ] relative to LM[b, w]. The uniqueness of L̃M[b, w, f ]
is guaranteed up to the larger region B(LM[b, w], R), where the iteration process with Ψ

is also guaranteed to converge to L̃M[b, w, f ]. As the linear uniform deflection LM[b, w]
gets smaller, B(LM[b, w], r) gets smaller and B(LM[b, w], R) gets larger. In the extreme case
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Figure 1 Illustration for Theorem 1. The nonlinear non-uniform deflection L̃M[b,w, f ] exists uniquely in
B(LM[b,w], r), depicted as the darker-shaded ball. The uniqueness of L̃M[b,w, f ] is guaranteed up to the larger
region B(LM[b,w],R), depicted as the ball including the lighter-shaded region. Iteration process with Ψ

starting from any u0 in B(LM[b,w],R) converges uniformly to L̃M[b,w, f ]. The deflection horizon B(0,ρ–1(σ k)),
depicted as the outermost ball, always contains B(LM[b,w],R) and all the deflections in our analysis

when LM[b, w] vanishes, r = 0 so that L̃M[b, w, f ] = LM[b, w] = 0, and R = ρ–1(σk) so that
B(LM[b, w], R) becomes the entire deflection horizon.

Theorem 1 does not exclude the possibility that R = ∞, in which case we have the
global uniqueness of L̃M[b, w, f ] in L∞[–l, l]. This does happen when the nonlinearity of
given elastic foundation is below a certain level. Especially for the linear uniform case
when f (u, x) = k · u, we can choose a nonlinearity function ρ which makes R = ∞. Since
LM[b, w] is a solution of the boundary value problem NDE(f , w) and BC(M, b) in this case,
Theorem 1(a) implies that L̃M[b, w, f ] = LM[b, w] is the unique solution of the boundary
value problem NDE(f , w) and BC(M, b) in the whole L∞[–l, l]. Moreover, Assumptions (A)
and (B) will be shown to be satisfied for every w, M, b in this case. Note that Assumption (F)
is automatically satisfied by f (u, x) = k ·u. Thus Theorem 1 reproduces the well-known ex-
istence and uniqueness result for the linear uniform boundary value problem LDE(w) and
BC(M, b) with no restriction on the inputs at all. This shows that Theorem 1 seamlessly
covers the whole range of problems from linear uniform ones to nonlinear non-uniform
ones.

Theorem 1(b) naturally leads to a numerical algorithm to approximate the nonlinear
non-uniform deflection through iterations with the operator Ψ , which is also explicitly
constructible from the inputs. The fact that our results are given in terms of the L∞-norm
guarantees the approximation to be uniform.

The rest of the paper is organized as follows. In Sect. 2, quantities such as non-
uniformity ratio η, nonlinearity function ρ , functional operatorN , which measure nonlin-
earity and non-uniformity of given elastic foundation, are derived from the two-variable
function f in NDE(f , w). In Sect. 3, the effects of arbitrary well-posed boundary condition
BC(M, b) are encoded in the linear integral operator KM and the linear homogeneous
deflection HM[b], which arise naturally from the linear uniform problem LDE(w) and
BC(M, b). Here, Assumption (A) is explained in detail, and the elastic capacity σ is de-
fined. The nonlinear operator Ψ is defined and analyzed in Sect. 4. In Sect. 5, Assump-
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tion (B) is explained in detail, and the radii r and R are derived explicitly from the inputs.
The explicitness of these derivations is illustrated with concrete examples. In particular, it
is shown that Theorem 1 can reproduce the classical existence and uniqueness result for
the linear uniform problem. Theorem 1 is proved in Sect. 6, and some discussions on our
results are given in Sect. 7.

2 Nonlinear non-uniform elastic foundation
For the rest of the paper, the function f in NDE(f , w) is supposed to satisfy Assumption (F)
in Sect. 1.

Definition 2.1 Given f , the non-uniformity ratio η at zero deflection is defined by

η = 1 –
min–l≤x≤l fu(0, x)
max–l≤x≤l fu(0, x)

= 1 –
min–l≤x≤l fu(0, x)

k
.

η is dimensionless and has the range 0 ≤ η ≤ 1. An elastic foundation which is uniform at
zero deflection corresponds to the extreme case of η = 0. Non-uniformity of given elastic
foundation increases as η increases.b

The quantity fu(u, x) – k amounts to the deviation of the spring constant density fu(u, x)
from the corresponding linear uniform density k. So ρ̂ , defined by

ρ̂(t) = max
|τ |≤t,|x|≤l

∣
∣fu(τ , x) – k

∣
∣, t ≥ 0, (2.1)

measures the nonlinearity in the spring constant density of given elastic foundation in
terms of the magnitude t of deflection. Note that ρ̂ becomes the zero function in the linear
uniform case f (u, x) = k · u. It is clear from its definition (2.1) that ρ̂ is nondecreasing. By
Definition 2.1, (1.1), and (2.1), we have ρ̂(0) = max|x|≤l |fu(0, x) – k| = max|x|≤l{k – fu(0, x)} =
k – min|x|≤l fu(0, x) = ηk.

Definition 2.2 Given f , a strictly increasing continuous function ρ : [0,∞) → [0,∞) is
called a nonlinearity function if ρ(0) = 0, and ρ̂(t) ≤ ηk + ρ(t) for t ≥ 0, where ρ̂ is defined
by (2.1).

For a given f , there are infinitely many possibilities for choosing a nonlinearity func-
tion ρ . For a nonlinearity function ρ , denote

sρ = sup
t≥0

ρ(t). (2.2)

sρ = ∞, when limt→∞ ρ(t) = ∞. Since ρ is strictly increasing, we have sρ > 0, and ρ al-
ways has the well-defined strictly increasing continuous inverse ρ–1 : [0, sρ) → [0,∞) with
ρ–1(0) = 0 and lims→sρ– ρ–1(s) = ∞. In case sρ < ∞, we extend the domain of ρ–1 to [0,∞)
by defining

ρ–1(s) = ∞, if s ∈ [sρ ,∞). (2.3)

A nonlinearity function ρ and its inverse ρ–1 are used to convert between the deflection
variable t and the spring constant density variable s in Sect. 5.
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Since f (u, x) = k · u + {f (u, x) – k · u}, the quantity f (u, x) – k · u corresponds to the non-
linear non-uniform part of the elastic force density f (u, x). Thus the following functional
operator N embodies all the nonlinear non-uniform features of given elastic foundation.

Definition 2.3 Given f , define N : L∞[–l, l] → L∞[–l, l] by

N [u](x) = f
(
u(x), x

)
– k · u(x), x ∈ [–l, l], u ∈ L∞[–l, l].

As a consequence of Assumption (F), f (0, x) = 0 for x ∈ [–l, l]. It follows that N [0](x) =
f (0, x) – k · 0 = 0 for x ∈ [–l, l], hence we have

N [0] = 0. (2.4)

Lemma 2.1 Suppose that ρ is a nonlinearity function. Then ‖N [u] – N [v]‖∞ ≤
{ηk + ρ(max {‖u‖∞,‖v‖∞})} · ‖u – v‖∞ for u, v ∈ L∞[–l, l].

Proof Define N : R× [–l, l] →R by N(u, x) = f (u, x) – k · u, so that

N [u](x) = N
(
u(x), x

)
, x ∈ [–l, l], u ∈ L∞[–l, l] (2.5)

by Definition 2.3. Suppose u, v ∈ L∞[–l, l]. By the mean value theorem, we have

N
(
u(x), x

)
– N
(
v(x), x

)
= Nu(τ , x) · {u(x) – v(x)

}
, x ∈ [–l, l]

for some τ between u(x) and v(x), and hence for some τ such that

|τ | ≤ max
{∣∣u(x)

∣∣,
∣∣v(x)

∣∣}≤ max
{‖u‖∞,‖v‖∞

}
.

So, for every x ∈ [–l, l], we have

∣
∣N
(
u(x), x

)
– N
(
v(x), x

)∣∣≤
{

max
|τ |≤max{‖u‖∞ ,‖v‖∞}

∣
∣Nu(τ , x)

∣
∣
}

· ∣∣u(x) – v(x)
∣
∣,

hence by (2.1) and (2.5),

∥∥N [u] – N [v]
∥∥∞ = sup

|x|≤l

∣∣N
(
u(x), x

)
– N
(
v(x), x

)∣∣

≤ sup
|x|≤l

{
max

|τ |≤max {‖u‖∞ ,‖v‖∞}
∣
∣Nu(τ , x)

∣
∣
}

· sup
|x|≤l

∣
∣u(x) – v(x)

∣
∣

≤
{

max
|τ |≤max {‖u‖∞ ,‖v‖∞},|x|≤l

∣∣Nu(τ , x)
∣∣
}

· ‖u – v‖∞

= ρ̂
(
max

{‖u‖∞,‖v‖∞
}) · ‖u – v‖∞,

since Nu(u, x) = fu(u, x) – k. Thus the result follows from Definition 2.2. �

Example 2.1 Suppose l ≥ π , and let

f (u, x) = (1 + ε cos x)
(

k0

1 + ε
· u + au3

)
, 0 ≤ ε < 1, k0 > 0, a > 0,
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which satisfies Assumption (F) in Sect. 1. Since

fu(u, x) = (1 + ε cos x)
(

k0

1 + ε
+ 3au2

)
, (2.6)

the maximal spring constant density k at zero deflection in (1.1) is

k = max
|x|≤l

fu(0, x) = max
|x|≤l

1 + ε cos x
1 + ε

· k0 = k0. (2.7)

Since l ≥ π , we have

min
|x|≤l

fu(0, x) = min
|x|≤l

1 + ε cos x
1 + ε

· k0 =
1 – ε

1 + ε
· k0,

hence the non-uniformity ratio η at zero deflection in Definition 2.1 is

η = 1 –
1–ε
1+ε

· k0

k0
=

2ε

1 + ε
. (2.8)

By (2.6) and (2.7),

fu(u, x) – k = –
ε(1 – cos x)

1 + ε
· k + 3a(1 + ε cos x)u2,

hence by (2.1) and (2.8),

ρ̂(t) ≤ max
|x|≤l

∣
∣∣∣
ε(1 – cos x)

1 + ε
· k
∣
∣∣∣ + max

|τ |≤t,|x|≤l

∣∣3a(1 + ε cos x)τ 2∣∣

≤ ηk + 3a(1 + ε) · t2.

So by Definition 2.2, we can take ρ(t) = At2 for t ≥ 0, where we put A = 3a(1 + ε). With
this ρ , we have sρ = ∞, and its inverse ρ–1 : [0,∞) → [0,∞) is given by

ρ–1(s) =
√

s/A, s ≥ 0. (2.9)

Example 2.2 Let f (u, x) = k · u, so that the elastic foundation is linear and uniform. As-
sumption (F) is clearly satisfied by f , and the non-uniformity ratio η at zero deflection is 0.
Since fu(u, x) – k = k – k = 0, we have ρ̂(t) = 0 for t ≥ 0 by (2.1), hence by Definition 2.2,
we can take any strictly increasing continuous ρ : [0,∞) → [0,∞) such that ρ(0) = 0. The
following choice of ρ will turn out to be useful.

ρ(t) = σk
(

1 –
1√

1 + ct

)
, t ≥ 0.

Here, the constant σ > 0 is the elastic capacity defined in Definition 3.2, and c > 0 is the
constant for converting deflection t to dimensionless ct. With this ρ , we have sρ = σk < ∞,
hence by (2.3), ρ–1 : [0,∞) → [0,∞) is given by

ρ–1(s) =

{
1
c {( σk

σk–s )2 – 1}, if 0 ≤ s < σk,
∞, if s ≥ σk.

(2.10)
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3 Boundary conditions and Assumption (A)
A boundary matrix M ∈ gl(4, 8,R) is called well-posed if the linear uniform boundary value
problem LDE(0) and BC(M, 0) has the unique solution 0. For the rest of the paper, we al-
ways assume that a boundary matrix M is well-posed without mentioning. For any fixed
loading density w ∈ L∞[–l, l] and boundary value b ∈ gl(4, 1,R), the boundary value prob-
lem LDE(w) and BC(M, b) has a unique solution if and only if M is well-posed. Hence the
following is well defined.

Definition 3.1 Let w ∈ L∞[–l, l] and b ∈ gl(4, 1,R). The unique solution of the boundary
value problem LDE(w) and BC(M, 0) is denoted by KM[w]. The unique solution of the
boundary value problem LDE(0) and BC(M, b) is denoted by HM[b]. The unique solution
of the boundary value problem LDE(w) and BC(M, b) is denoted by LM[b, w].

Note that KM[w] and HM[b] correspond to a particular solution and a homogeneous
solution of LDE(w) respectively. It is immediate from the elementary theory of linear or-
dinary differential equations that

LM[b, w] = HM[b] + KM[w], b ∈ gl(4, 1,R), w ∈ L∞[–l, l]. (3.1)

It is well known [14] that, for each well-posed boundary matrix M, KM[w] has the inte-
gral form

KM[w](x) =
∫ l

–l
GM(x, ξ )w(ξ ) dξ , x ∈ [–l, l], (3.2)

where GM(x, ξ ) is the Green’s function corresponding to M. The integral operator KM is
a bounded linear operator on the Banach space L∞[–l, l]. See [6] for explicit construction
of the Green’s function GM(x, ξ ) from arbitrary well-posed M.

Two well-posed boundary matrices M, N are called equivalent if KM = KN. For example,
it follows immediately from Definition 3.1 that the well-posed boundary matrix

N =

⎛

⎜
⎜⎜
⎝

1 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0
0 0 0 0 3 0 0 0
0 0 0 0 0 4 0 0

⎞

⎟
⎟⎟
⎠

is equivalent to M in (1.3). It is shown in [6] that the space of equivalence classes of
well-posed boundary matrices with respect to this relation, and hence the space of dif-
ferent integral operators KM, is in canonical one-to-one correspondence with the algebra
gl(4,R) = gl(4, 4,R) whose dimension is 16.

We denote μM = k · ‖KM‖∞, where ‖KM‖∞ = sup0 �=u∈L∞[–l,l]
‖KM[u]‖∞

‖u‖∞ is the L∞-norm of
KM. The dimensionless quantity μM is called the intrinsic L∞-norm of KM. μM turns out
to be an important quantity through which the boundary matrix M affects our problem.

For the rest of the paper, Assumption (A) μM ·η < 1 in Sect. 1 is supposed to be satisfied.
Assumption (A) sets a mutual limit on the non-uniformity of the elastic foundation and the
intrinsic L∞-norm ofKM. Given an elastic foundation f , the possible boundary matrices M
are restricted by the condition μM < 1/η. The restriction gets looser as η becomes smaller.
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In the extreme case when η = 0, there is no restriction on M. On the other hand, given a
well-posed boundary matrix M, the non-uniformity ratio η is restricted by η < 1/μM. This
restriction gets looser as μM becomes smaller. A critical phenomenon happens when μM

is less than 1, in which case there is no restriction on η since 0 ≤ η ≤ 1.
We call KM contractive if μM < 1. The above observation shows that contractiveness of

the operator KM for given boundary matrix M is critical in our problem. There are cases
that are contractive [5] and cases that are not [6].c

Definition 3.2 Given f and M, the constant σ , called the elastic capacity, is defined by
σ = 1

μM
– η.

By Assumption (A) and the fact that μM �= 0 for every well-posed M, we always have 0 <
σ < ∞. σ is dimensionless, hence the quantity σk corresponds to spring constant density.
Since μM = 1/(η + σ ) by Definition 3.2, we have

∥
∥KM[u]

∥
∥∞ ≤ 1

ηk + σk
· ‖u‖∞, u ∈ L∞[–l, l]. (3.3)

Being a part of LM[b, w] as shown in (3.1), HM[b] is another mean by which the bound-
ary condition BC(M, b) affects our problem. So it is important to note that the linear op-
erator HM : gl(4, 1,R) → L∞[–l, l] has the following explicit representation in terms of M.

Lemma 3.1 Let M ∈ gl(4, 8,R) be well-posed, and let {y1, y2, y3, y4} be a fundamental set of
solutions of LDE(0). Then HM[b] = yT {M–W(–l) + M+W(l)}–1b for b ∈ gl(4, 1,R), where
y = (y1 y2 y3 y4)T , W = (y y′ y′′ y′′′)T , and M–, M+ are the 4 × 4 minors of M such that
M = (M– M+).

Proof Since HM[b] satisfies LDE(0) by Definition 3.1, we have

HM[b] =
4∑

j=1

cjyj = yT c (3.4)

for some c = (c1 c2 c3 c4)T ∈ gl(4, 1,R). By (1.2) and (3.4),

B
[
HM[b]

]
= B
[ 4∑

j=1

cjyj

]

=
4∑

j=1

cjB[yj] =
(
B[y1] B[y2] B[y3] B[y4]

)
c

=
(

y(–l) y′(–l) y′′(–l) y′′′(–l) y(l) y′(l) y′′(l) y′′′(l)
)T

c

=

(
W(–l)
W(l)

)

c,

hence

b = M ·
(

W(–l)
W(l)

)

c =
(

M– M+
)
(

W(–l)
W(l)

)

c

=
{

M–W(–l) + M+W(l)
}

c,
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since HM[b] satisfies BC(M, b): M ·B[HM[b]] = b by Definition 3.1. Thus c = {M–W(–l) +
M+W(l)}–1b, hence the lemma follows by (3.4). �

Since the entries of y in Lemma 3.1 are linearly independent, HM[b] = 0 if and only if
b = 0. Since the integral operator KM is injective for every well-posed M [6], KM[w] =
0 if and only if w = 0. By elementary theory of linear ordinary differential equations,
LM[b, w] = 0 if and only if HM[b] = 0 and KM[w] = 0. It follows that LM[b, w] = 0 if and
only if b = 0 and w = 0. Thus the linear uniform deflection LM[b, w] already becomes non-
trivial unless both the boundary value b and the loading density w are trivial, which is in
contrast to the infinite beam situation in [7].

Since the space gl(4, 1,R) of boundary values b is 4-dimensional, the set of different
boundary conditions BC(M, b) forms a 20-dimensional space, combined with the 16-
dimensionally different well-posed boundary matrices M.

4 The operator Ψ

Definition 4.1 Given f , w, M, b, define Ψ : L∞[–l, l] → L∞[–l, l] by Ψ [u] = HM[b] +
KM[w – N [u]].

Note that the definition of Ψ involves all the inputs f , w, M, b sinceN is determined by f .
By Definition 2.3, (3.1), (3.2), and Lemma 3.1, Ψ has the following explicit form, where y,
W, M–, M+ are defined as in Lemma 3.1:

Ψ [u](x) = y(x)T{M–W(–l) + M+W(l)
}–1b

+
∫ l

–l
GM(x, ξ )

{
w(ξ ) – f

(
u(ξ ), ξ

)
+ k · u(ξ )

}
dξ , x ∈ [–l, l], u ∈ L∞[–l, l].

Lemma 4.1 shows that the solutions of the nonlinear non-uniform boundary value prob-
lem NDE(f , w) and BC(M, b) are exactly the fixed points of Ψ .

Lemma 4.1 Let u ∈ L∞[–l, l]. Then Ψ [u] = u if and only if u is a solution of the boundary
value problem NDE(f , w) and BC(M, b).

Proof Let α = 4√k/EI . Then LDE(w) is equivalent to u(4) = –α4u + α4

k · w. So, by Defini-
tion 3.1, we have

HM[b](4) = –α4 ·HM[b], b ∈ gl(4, 1,R), (4.1)

KM[w](4) = –α4 ·KM[w] +
α4

k
· w, w ∈ L∞[–l, l], (4.2)

M ·B[HM[b]
]

= b, b ∈ gl(4, 1,R), (4.3)

M ·B[KM[w]
]

= 0, w ∈ L∞[–l, l]. (4.4)

NDE(f , w) is equivalent to u(4) = α4

k {w – f (u, x)}, and hence by Definition 2.3 is equivalent
to

u(4) = –α4 · u +
α4

k
· {w – N [u]

}
. (4.5)
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By Definition 4.1 and (4.1), (4.2), (4.3), (4.4), we have

Ψ [u](4) = HM[b](4) + KM
[
w – N [u]

](4)

= –α4 ·HM[b] +
[

–α4 ·KM
[
w – N [u]

]
+

α4

k
{

w – N [u]
}
]

= –α4 · Ψ [u] +
α4

k
{

w – N [u]
}

, u ∈ L∞[–l, l], (4.6)

M ·B[Ψ [u]
]

= M ·B[HM[b]
]

+ M ·B[KM
[
w – N [u]

]]
= b + 0

= b, u ∈ L∞[–l, l]. (4.7)

Suppose Ψ [u] = u. Then, by (4.6),

u(4) = Ψ [u](4) = –α4 · Ψ [u] +
α4

k
{

w – N [u]
}

= –α4 · u +
α4

k
{

w – N [u]
}

,

hence u satisfies (4.5), which is equivalent to NDE(f , w). By (4.7), M ·B[u] = M ·B[Ψ [u]] =
b, hence u satisfies BC(M, b). Thus u is a solution of the boundary value problem
NDE(f , w) and BC(M, b).

Conversely, suppose that u is a solution of the boundary value problem NDE(f , w) and
BC(M, b). Since NDE(f , w) is equivalent to (4.5), we have u(4) = –α4u+ α4

k {w–N [u]}, hence
by (4.6) and (4.7),

{
Ψ [u] – u

}(4) = Ψ [u](4) – u(4)

=
[

–α4 · Ψ [u] +
α4

k
{

w – N [u]
}
]

–
[

–α4u +
α4

k
{

w – N [u]
}
]

= –α4 · {Ψ [u] – u
}

,

and M · B[Ψ [u] – u] = M · B[Ψ [u]] – M · B[u] = b – b = 0. It follows that Ψ [u] – u is the
unique solution of the boundary value problem LDE(0) and BC(M, 0), which is the zero
function. Thus Ψ [u] = u, and the proof is complete. �

In general, the nonlinear operator Ψ need not be contractive on the whole L∞[–l, l]. So
it is crucial to find regions in L∞[–l, l] where Ψ becomes contractive. The following result
will be useful for that purpose.

Lemma 4.2
(a) For u, v ∈ L∞[–l, l],

∥∥Ψ [u] – Ψ [v]
∥∥∞ ≤ ηk + ρ(‖u – v‖∞ + ‖v‖∞)

ηk + σk
· ‖u – v‖∞.

(b) Let uc ∈ L∞[–l, l] and 0 ≤ δ < ∞. Then, for u, v ∈ B(uc, δ),

∥
∥Ψ [u] – Ψ [v]

∥
∥∞ ≤ ηk + ρ(δ + ‖uc‖∞)

ηk + σk
· ‖u – v‖∞.
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Proof Let u, v ∈ L∞[–l, l]. By Definition 4.1, we have

Ψ [u] – Ψ [v] =
{
HM[b] + KM

[
w – N [u]

]}
–
{
HM[b] + KM

[
w – N [v]

]}

= –KM
[
N [u]

]
+ KM

[
N [v]

]
= –KM

[
N [u] – N [v]

]
,

since KM is linear. So, by (3.3) and Lemma 2.1, we have

∥
∥Ψ [u] – Ψ [v]

∥
∥∞ =

∥
∥KM

[
N [u] – N [v]

]∥∥∞ ≤ ‖N [u] – N [v]‖∞
ηk + σk

≤ ηk + ρ(max{‖u‖∞,‖v‖∞})
ηk + σk

· ‖u – v‖∞. (4.8)

Since ‖u‖∞ = ‖(u – v) + v‖∞ ≤ ‖u – v‖∞ + ‖v‖∞, we have max{‖u‖∞,‖v‖∞} ≤ ‖u – v‖∞ +
‖v‖∞. Thus (a) follows from (4.8) since ρ is increasing.

Suppose u, v ∈ B(uc, δ). Since ‖u – uc‖∞ ≤ δ, we have ‖u‖∞ = ‖(u – uc) + uc‖∞ ≤
‖u – uc‖∞ + ‖uc‖∞ ≤ δ + ‖uc‖∞. Likewise, ‖v‖∞ ≤ δ + ‖uc‖∞, and hence we have
max{‖u‖∞,‖v‖∞} ≤ δ + ‖uc‖∞. Thus (b) follows from (4.8) since ρ is increasing. �

5 Assumption (B) and the dual radii r < R
Let ρ be a nonlinearity function in Definition 2.2, and let sρ > 0 be defined by (2.2). Denote

s = min{σk, sρ} > 0 (5.1)

so that [0, s) = [0,σk) ∩ [0, sρ), where σ is the elastic capacity in Definition 3.2. Define the
function ϕ : [0, s) → [0,∞) by

ϕ(s) = (σk – s) · ρ–1(s). (5.2)

ϕ is continuous, ϕ(0) = 0, and ϕ(s) > 0 for 0 < s < s since ρ–1 is continuous, ρ–1(0) = 0, and
ρ–1(s) > 0 for 0 < s < sρ . For each ŝ ∈ [0, sρ), define the function ϕŝ : [0, s) → [0,∞) by

ϕŝ(s) = (σk – s + ηk + ŝ) · ρ–1(ŝ). (5.3)

Here, the variables s and ŝ represent spring constant densities. So ϕ(s) and ϕŝ(s) represent
elastic force densities since ρ–1(s) and ρ–1(ŝ) represent deflections. See Figs. 2 and 3 for
graphs of ϕ(s) and ϕŝ(s) in Examples 5.1 and 5.2.

For each ŝ ∈ [0, sρ), the graph of ϕŝ is a line segment with the slope –ρ–1(ŝ), and ϕŝ(0) =
(σk + ηk + ŝ) ·ρ–1(ŝ) ≥ 0, lims→s– ϕŝ(s) = (σk – s + ηk + ŝ) ·ρ–1(ŝ) ≥ 0. For any fixed s ∈ [0, s),
ϕŝ(s) is strictly increasing with respect to ŝ, and ϕ0(s) = 0. It follows that the quantity ŝmax,
defined by

ŝmax = sup
{

ŝ ∈ [0, sρ) | {s ∈ [0, s) | ϕ(s) ≥ ϕŝ(s)
} �= ∅}, (5.4)

is positive, and the set {s ∈ [0, s) | ϕ(s) ≥ ϕŝ(s)} is nonempty for every ŝ ∈ [0, ŝmax).

Definition 5.1 Given M, f , and ρ , denote D = ρ–1(ŝmax).
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Note that D does not involve the inputs w, b in its definition. 0 < D ≤ ρ–1(sρ) since
0 < ŝmax ≤ sρ . By (2.3), D = ∞, when ŝmax = sρ . For the rest of the paper, Assumption (B)
‖LM[b, w]‖∞ < D in Sect. 1 is supposed to be satisfied. Assumption (B), which involves
all the inputs f , w, M, b, sets an upper bound on the magnitude of the linear uniform
deflectionLM[b, w]. It would not be needed at all when D = ∞ or, equivalently, when ŝmax =
sρ , as in Example 5.2. Denote

ŝ0 = ρ
(∥∥LM[b, w]

∥∥∞
)
, (5.5)

which is equivalent to ‖LM[b, w]‖∞ = ρ–1(ŝ0). Then Assumption (B) is equivalent to 0 ≤
ŝ0 < ŝmax by Definition 5.1, hence the set {s ∈ [0, s) | ϕ(s) ≥ ϕŝ0 (s)} is nonempty. Denoting

smin = min
{

s ∈ [0, s) | ϕ(s) ≥ ϕŝ0 (s)
}

, (5.6)

smax = sup
{

s ∈ [0, s) | ϕ(s) ≥ ϕŝ0 (s)
}

, (5.7)

we have

0 ≤ smin < smax ≤ s. (5.8)

Note that, as ŝ0 gets smaller, the set {s ∈ [0, s) | ϕ(s) ≥ ϕŝ0 (s)} becomes larger until it be-
comes the whole [0, s) when ŝ0 = 0. It follows that smin and smax are increasing and de-
creasing with respect to ŝ0 respectively, and

lim
ŝ0→0+

smin = 0, lim
ŝ0→0+

smax = s. (5.9)

Suppose that s ∈ [0, s) satisfies ϕ(s) ≥ ϕŝ0 (s). Then, by (5.2) and (5.3), we have

(σk – s) · ρ–1(s) = ϕ(s) ≥ ϕŝ0 (s) = (σk – s + ηk + ŝ0) · ρ–1(ŝ0)

= (σk – s) · ρ–1(ŝ0) + (ηk + ŝ0) · ρ–1(ŝ0).

Thus we have

(ηk + ŝ0) · ρ–1(ŝ0) ≤ (σk – s)
{
ρ–1(s) – ρ–1(ŝ0)

}
if ϕ(s) ≥ ϕŝ0 (s), (5.10)

(ηk + ŝ0) · ρ–1(ŝ0) = (σk – s)
{
ρ–1(s) – ρ–1(ŝ0)

}
if ϕ(s) = ϕŝ0 (s). (5.11)

Definition 5.2 Given f , w, M, b, and ρ , denote

r = ρ–1(smin) – ρ–1(ŝ0), R = ρ–1(smax) – ρ–1(ŝ0).

Note that the quantities represented by r and R are deflections. By (2.3), R = ∞, when
smax = sρ .

Lemma 5.1 r and R are increasing and decreasing with respect to ŝ0 = ρ(‖LM[b, w]‖∞)
respectively. 0 ≤ r < R ≤ R + ρ–1(ŝ0) ≤ ρ–1(σk), and limŝ0→0+ r = 0, limŝ0→0+ R = ρ–1(σk).
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Proof By (5.1) and (5.8), smin < s ≤ σk. Since ϕ and ϕŝ0 are continuous, we have ϕ(smin) =
ϕŝ0 (smin) by (5.6). Hence, by (5.11) and Definition 5.2, we have

r =
ηk + ŝ0

σk – smin
· ρ–1(ŝ0).

It follows that r is increasing with respect to ŝ0 since smin is increasing with respect to ŝ0.
Since smax is decreasing with respect to ŝ0, R is decreasing with respect to ŝ0 by Defini-
tion 5.2. Since limŝ0→0+ ρ–1(ŝ0) = ρ–1(0) = 0, we have

lim
ŝ0→0+

r = lim
ŝ0→0+

ρ–1(smin) – lim
ŝ0→0+

ρ–1(ŝ0) = ρ–1(0) – 0 = 0,

lim
ŝ0→0+

R = lim
ŝ0→0+

ρ–1(smax) – lim
ŝ0→0+

ρ–1(ŝ0) = ρ–1(s) – 0 = ρ–1(s)
(5.12)

by (5.9) and Definition 5.2. If σk < sρ , then s = σk by (5.1). If σk ≥ sρ , then s = sρ by (5.1),
and hence ρ–1(s) = ∞ = ρ–1(σk) by (2.3). So, by (5.12), we have limŝ0→0+ R = ρ–1(σk). Thus
0 ≤ r and R ≤ ρ–1(σk). The inequalities r < R and R + ρ–1(ŝ0) ≤ ρ–1(σk) follow from (5.1),
(5.8), and Definition 5.2. �

Example 5.1 Let f and ρ be given as in Example 2.1. Since sρ = ∞, we have s = σk
by (5.1). By (2.9), (5.2), and (5.3), ρ–1(σk) =

√
σk/A and ϕ(s) = (σk – s)

√
s/A, ϕŝ(s) =

(σk – s + ηk + ŝ)
√

ŝ/A. See Fig. 2. The system of equations ϕ(s) = ϕŝ(s) and ϕ′(s) = ϕ′
ŝ(s)

in s and ŝ has the unique solution s = s∗ and ŝ = ŝmax, where 0 < s∗ < σk, 0 < ŝmax <
sρ = ∞. By (2.9) and Definition 5.1, we have D =

√
ŝmax/A < ∞. For each ŝ0 ∈ (0, ŝmax),

the equation ϕ(s) = ϕŝ0 (s) has exactly two solutions in (0,σk) which are smin < smax and
{s ∈ [0, s) | ϕ(s) ≥ ϕŝ0 (s)} = [smin, smax]. When ŝ0 = 0, we have smin = 0, smax = σk, and
{s ∈ [0, s) | ϕ(s) ≥ ϕŝ0 (s)} = [0,σk). smin and smax are strictly increasing and strictly decreas-
ing with respect to ŝ0 respectively. By (2.9) and Definition 5.2, r =

√
smin/A –

√
ŝ0/A and

R =
√

smax/A –
√

ŝ0/A, which are strictly increasing and strictly decreasing with respect to
ŝ0 respectively. When ŝ0 = ρ(‖LM[b, w]‖∞) = 0, we have r = 0 and R =

√
σk/A = ρ–1(σk).

Example 5.2 shows that Theorem 1 reproduces the well-known existence and unique-
ness result for the linear uniform problem LDE(w) and BC(M, b).

Example 5.2 Let f and ρ be given as in Example 2.2. Since sρ = σk, we have s = σk by (5.1).
Since η = 0, Assumption (A) imposes no restriction on μM, and

ϕ(s) = (σk – s) · 1
c

{(
σk

σk – s

)2

– 1
}

, (5.13)

Figure 2 Graphs of ϕ(s) and ϕŝ(s) for ŝ = ŝmax , ŝ0 in
Example 5.1. s = σ k and lims→s– ϕ(s) = 0 since
σ k < sρ =∞. The interval between smin and smax ,
depicted as a thick line segment in the s-axis,
represents the set {s ∈ [0, s) | ϕ(s) ≥ ϕŝ0

(s)}. The
values of ŝmax , s∗ are determined by
ϕ(s∗) = ϕŝmax (s∗) and ϕ′(s∗) = ϕ′

ŝmax
(s∗)
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Figure 3 Graphs of ϕ(s) and ϕŝ0
(s) in Example 5.2.

s = σ k since sρ = σ k. Since lims→s– ϕ(s) =∞, we
have ŝmax = sρ = σ k and smax = s = σ k for every
ŝ0 ∈ [0, ŝmax). The interval between smin and
smax = σ k, depicted as a thick line segment in the
s-axis, represents the set {s ∈ [0, s) | ϕ(s) ≥ ϕŝ0

(s)}

ϕŝ(s) = (σk – s + ŝ) · 1
c

{(
σk

σk – ŝ

)2

– 1
}

(5.14)

by (2.10), (5.2), and (5.3). See Fig. 3. Since lims→s– ϕ(s) = lims→σk– ϕ(s) = ∞, we have
ŝmax = sρ = σk by (5.4). So, by (2.10) and Definition 5.1, we have D = ρ–1(σk) = ∞.
Thus Assumption (B) imposes no restriction on ‖LM[b, w]‖∞. Since lims→s– ϕ(s) = ∞,
we have smax = s = σk by (5.7), and hence by (2.10) and Definition 5.2, R = ∞ for every
ŝ0 ∈ [0, ŝmax) = [0,σk). Thus, by Theorem 1, L̃M[b, w, f ], which coincides with LM[b, w] in
this case, is unique in the whole L∞[–l, l]. Moreover, there are no restrictions on the inputs
w, M, b since Assumption (F) is also satisfied by f (u, x) = k · u.

Given ŝ0 = ρ(‖LM[b, w]‖∞) in [0, ŝmax) = [0,σk), smin is the unique solution of the equa-
tion ϕ(s) = ϕŝ0 (s), which, by (5.13) and (5.14), is equivalent to

(σk)2

σk – s
=
(

σk
σk – ŝ0

)2

(σk – s) + ŝ0

{(
σk

σk – ŝ0

)2

– 1
}

=
1

(σk – ŝ0)2

{
(σk)2 · (σk – s) + ŝ2

0(2σk – ŝ0)
}

,

and hence to (σk)2 · (σk – s)2 + ŝ2
0(2σk – ŝ0) · (σk – s) – (σk)2(σk – ŝ0)2 = 0. So we have

σk – smin =
–ŝ2

0(2σk – ŝ0) +
√

{ŝ2
0(2σk – ŝ0)}2 + 4(σk)4(σk – ŝ0)2

2(σk)2

=
2(σk)2(σk – ŝ0)2

ŝ2
0(2σk – ŝ0) +

√
{ŝ2

0(2σk – ŝ0)}2 + 4(σk)4(σk – ŝ0)2
, (5.15)

hence

smin = σk –
2(σk)2(σk – ŝ0)2

ŝ2
0(2σk – ŝ0) +

√
{ŝ2

0(2σk – ŝ0)}2 + 4(σk)4(σk – ŝ0)2
.

By (2.10), (5.15), and Definition 5.2,

r = ρ–1(smin) – ρ–1(ŝ0)

=
1
c

{(
σk

σk – smin

)2

– 1
}

–
1
c

{(
σk

σk – ŝ0

)2

– 1
}

=
1
c

[ {ŝ2
0(2σk – ŝ0) +

√
{ŝ2

0(2σk – ŝ0)}2 + 4(σk)4(σk – ŝ0)2}2

4(σk)2(σk – ŝ0)4 –
(

σk
σk – ŝ0

)2]
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=
{ŝ2

0(2σk – ŝ0)}2 + ŝ2
0(2σk – ŝ0)

√
{ŝ2

0(2σk – ŝ0)}2 + 4(σk)4(σk – ŝ0)2

2c(σk)2(σk – ŝ0)4 ,

hence we have

lim
‖LM[b,w]‖∞→0

r = lim
ŝ0→0+

r = 0, lim
‖LM[b,w]‖∞→∞

r = lim
ŝ0→σk–

r = ∞ = R.

6 Proof of Theorem 1
By (2.4), (3.1), and Definition 4.1, we have

Ψ [0] = HM[b] + KM
[
w – N [0]

]
= LM[b, w]. (6.1)

Note that, if ϕ(s) ≥ ϕŝ0 (s), then smin ≤ s < s ≤ sρ by (5.1) and (5.6), hence ρ–1(s) – ρ–1(ŝ0) ≥
ρ–1(smin) – ρ–1(ŝ0) = r ≥ 0 by Definition 5.2 and Lemma 5.1, and ρ–1(s) – ρ–1(ŝ0) < ∞ since
s < sρ .

Lemma 6.1 Suppose that s ∈ [0, s) satisfies ϕ(s) ≥ ϕŝ0 (s), and let δ = ρ–1(s) – ρ–1(ŝ0). Then
the following (a) and (b) hold:

(a) Ψ [u] ∈ B(LM[b, w], δ) for u ∈ B(LM[b, w], δ).
(b) ‖Ψ [u] – Ψ [v]‖∞ ≤ ηk+s

ηk+σk · ‖u – v‖∞ for u, v ∈ B(LM[b, w], δ).

Proof By (6.1), we have

Ψ [u] – LM[b, w] = Ψ [u] – Ψ [0]

=
{
Ψ [u] – Ψ

[
LM[b, w]

]}
+
{
Ψ
[
LM[b, w]

]
– Ψ [0]

}
, u ∈ L∞[–l, l].

(6.2)

Suppose u ∈ B(LM[b, w], δ). Then ‖u –LM[b, w]‖∞ ≤ δ, hence by Lemma 4.2(a), (5.5), and
(6.2),

∥∥Ψ [u] – LM[b, w]
∥∥∞

≤ ∥∥Ψ [u] – Ψ
[
LM[b, w]

]∥∥∞ +
∥∥Ψ
[
LM[b, w]

]
– Ψ [0]

∥∥∞

≤ ηk + ρ(‖u – LM[b, w]‖∞ + ‖LM[b, w]‖∞)
ηk + σk

· ∥∥u – LM[b, w]
∥∥∞

+
ηk + ρ(‖LM[b, w]‖∞)

ηk + σk
· ∥∥LM[b, w]

∥
∥∞

≤ ηk + ρ(δ + ρ–1(ŝ0))
ηk + σk

· δ +
ηk + ŝ0

ηk + σk
· ρ–1(ŝ0).

So we have

∥
∥Ψ [u] – LM[b, w]

∥
∥∞ ≤ ηk + s

ηk + σk
· δ +

ηk + ŝ0

ηk + σk
· ρ–1(ŝ0) (6.3)

since

ρ
(
δ + ρ–1(ŝ0)

)
= ρ
(
ρ–1(s)

)
= s. (6.4)
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Since ϕ(s) ≥ ϕŝ0 (s), we have (ηk + ŝ0) · ρ–1(ŝ0) ≤ (σk – s){ρ–1(s) – ρ–1(ŝ0)} = (σk – s) · δ by
(5.10). So, by (6.3), we have

∥
∥Ψ [u] – LM[b, w]

∥
∥∞ ≤ ηk + s

ηk + σk
· δ +

σk – s
ηk + σk

· δ = δ.

Thus Ψ [u] ∈ B(LM[b, w], δ), which shows (a).
Suppose u, v ∈ B(LM[b, w], δ). Then, by Lemma 4.2(b), (5.5), and (6.4), we have

∥∥Ψ [u] – Ψ [v]
∥∥∞ ≤ ηk + ρ(δ + ‖LM[b, w]‖∞)

ηk + σk
· ‖u – v‖∞

≤ ηk + ρ(δ + ρ–1(ŝ0))
ηk + σk

· ‖u – v‖∞ =
ηk + s

ηk + σk
· ‖u – v‖∞.

This shows (b), and the proof is complete. �

Proposition 1 (Banach fixed point theorem [2]) Let X be a complete metric space with the
metric d(·, ·). Suppose that the map Φ : X → X satisfies d(Φ[u],Φ[v]) ≤ L · d(u, v) for every
u, v ∈ X for some constant 0 ≤ L < 1. Then Φ has a unique fixed point in X. For any u0 ∈ X,
the sequence {un}∞n=0, defined by un = Φ[un–1], n = 1, 2, 3, . . . , converges to the unique fixed
point of Φ with respect to d.

With the metric ‖ · – · ‖∞, B(uc, δ) for any uc ∈ L∞[–l, l] and 0 ≤ δ ≤ ∞ is a complete
metric space since it is closed in the complete metric space L∞[–l, l]. Thus Lemma 6.1
indicates that Theorem 1 would follow by applying Proposition 1 to the nested spaces
B(LM[b, w], r) ⊂ B(LM[b, w], R) with the map Ψ . However, there are exceptional cases
which do not fit into this picture. When smax = s so that smax is not in the domain [0, s)
of ϕ and ϕŝ0 , then Lemma 6.1 cannot be applied to s = smax. Consequently, Proposition 1
cannot be applied directly to B(LM[b, w], R) in these cases. To deal with these exceptional
situations, we devise Lemma 6.2, which is a generalization of Proposition 1.

Lemma 6.2 Let uc ∈ L∞[–l, l], 0 ≤ r′ < R′ ≤ ∞, and let Φ : L∞[–l, l] → L∞[–l, l] be con-
tinuous. Suppose that there exists a strictly increasing sequence r′ = δ0 < δ1 < δ2 < · · · ↗ R′

such that the following (a) and (b) are satisfied for each i = 0, 1, 2, . . .
(a) Φ[u] ⊂ B(uc, δi) for u ∈ B(uc, δi).
(b) There exists 0 ≤ Li < 1 such that ‖Φ[u] – Φ[v]‖∞ ≤ Li · ‖u – v‖∞ for u, v ∈ B(uc, δi).

Then there exists a unique fixed point u∗ of Φ in B(uc, R′). For any u0 ∈ B(uc, R′), the se-
quence {un}∞n=0, defined by un = Φ[un–1], n = 1, 2, 3, . . . , converges uniformly to u∗, and
u∗ ∈ B(uc, r′).

Proof By Proposition 1, there exists a unique fixed point u∗ of Φ in B(uc, r′) = B(uc, δ0).
Suppose that there exists another fixed point u∗∗ of Φ in the open ball B(uc, R′) =
{u ∈ L∞[–l, l] | ‖u – uc‖∞ < R′}. Since δi ↗ R′ as i → ∞, we have

B
(
uc, R′) =

∞⋃

i=0

B(uc, δi), (6.5)

hence u∗∗ ∈ B(uc, δi1 ) for some i1. Then, by Proposition 1, u∗∗ is the unique fixed point
of Φ in B(uc, δi1 ). It follows that u∗∗ = u∗ since B(uc, r′) ⊂ B(uc, δi1 ). Thus u∗ is the unique
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fixed point of Φ in the open ball B(uc, R′). Suppose u0 ∈ B(uc, R′), so that u0 ∈ B(uc, δi2 ) for
some i2 by (6.5). Then, by Proposition 1, the sequence {un}∞n=1 defined by un = Φ[un–1],
n = 1, 2, 3, . . . , converges to u∗. Thus it is sufficient to assume that R′ < ∞ since B(uc, R′) =
L∞[–l, l] = B(uc, R′) if R′ = ∞.

Suppose R′ < ∞. By (6.5) and condition (a) for each i,

Φ
[
B
(
uc, R′)] = Φ

[ ∞⋃

i=0

B(uc, δi)

]

=
∞⋃

i=0

Φ
[
B(uc, δi)

]⊂
∞⋃

i=0

B(uc, δi) = B
(
uc, R′).

So, by the continuity of Φ , we have

Φ
[
B
(
uc, R′)]⊂ B

(
uc, R′). (6.6)

Since 0 ≤ Li < 1 for i = 0, 1, 2, . . . , we have

∥∥Φ[u] – Φ[v]
∥∥∞ ≤ ‖u – v‖∞, u, v ∈ B

(
uc, R′) (6.7)

by (6.5), condition (b) for each i, and the continuity of Φ . Suppose that there exists another
fixed point u∗∗ of Φ in the closed ball B(uc, R′). Since u∗, u∗∗ are fixed points of Φ , we have
Φ[u∗] = u∗ and Φ[u∗∗] = u∗∗, hence

‖u∗ – u∗∗‖∞ =
∥∥Φ[u∗] – Φ[u∗∗]

∥∥∞

=
∥
∥Φ[u∗] – Φ

[
(u∗ + u∗∗)/2

]
+ Φ
[
(u∗ + u∗∗)/2

]
– Φ[u∗∗]

∥
∥∞

≤ ∥∥Φ[u∗] – Φ
[
(u∗ + u∗∗)/2

]∥∥∞ +
∥∥Φ
[
(u∗ + u∗∗)/2

]
– Φ[u∗∗]

∥∥∞. (6.8)

Note that (u∗ + u∗∗)/2 is always contained in the open ball B(uc, R′). So, by (6.5),
(u∗ + u∗∗)/2 ∈ B(uc, δi3 ) for some i3, hence we have

∥∥Φ[u∗] – Φ
[
(u∗ + u∗∗)/2

]∥∥∞ ≤ Li3 · ∥∥u∗ – (u∗ + u∗∗)/2
∥∥∞

<
1
2
‖u∗ – u∗∗‖∞ (6.9)

since u∗ ∈ B(uc, r′) ⊂ B(uc, δi3 ) and 0 ≤ Li3 < 1. By (6.7),

∥∥Φ
[
(u∗ + u∗∗)/2

]
– Φ[u∗∗]

∥∥∞ ≤ ∥∥(u∗ + u∗∗)/2 – u∗∗
∥∥∞ =

1
2
‖u∗ – u∗∗‖∞ (6.10)

since (u∗ + u∗∗)/2, u∗∗ ∈ B(uc, R′). It follows from (6.8), (6.9), and (6.10) that ‖u∗ – u∗∗‖∞ <
‖u∗ – u∗∗‖∞, which is a contradiction. Thus we conclude that u∗ is the unique fixed point
of Φ in the closed ball B(uc, R′).

Let u0 ∈ B(uc, R′), and let the sequence {un}∞n=0 be defined by un = Φ[un–1], n = 1, 2, 3, . . .
By (6.6), un ∈ B(uc, R′) for n = 0, 1, 2, . . . Suppose that un is in the sphere S(uc, R′) = {u ∈
L∞[–l, l] | ‖u – uc‖∞ = R′} for every n = 0, 1, 2, . . . Then there exist u∗∗ in S(uc, R′) and a
subsequence {unk }∞k=0 of {un}∞n=0 converging to u∗∗ since S(uc, R′) is compact. It follows
that u∗∗ is a fixed point of Φ , which is a contradiction. So there exists n0 such that un0

is in the open ball B(uc, R′), and un0 ∈ B(uc, δi4 ) for some i4 by (6.5). Thus {un}∞n=n0 , hence
{un}∞n=0 converges uniformly to u∗ by Proposition 1. �
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Proof of Theorem 1. (c) immediately follows from Lemma 5.1. By Lemma 4.1, the desired
solution L̃M[b, w, f ] is a fixed point of Ψ . So, for (a) and (b), it is sufficient to show that the
conditions in Lemma 6.2 are satisfied with uc = LM[b, w], r′ = r, R′ = R, and Φ = Ψ .

By Lemma 5.1, we have 0 ≤ r′ < R′ ≤ ∞. Note that the continuity of Φ follows from
Lemma 4.2. By (5.6) and (5.7), there exists a strictly increasing sequence smin = s0 < s1 <
s2 < · · · ↗ smax in [0, s) such that ϕ(si) ≥ ϕŝ0 (si) for i = 0, 1, 2, . . . Take δi = ρ–1(si) – ρ–1(ŝ0)
for i = 0, 1, 2, . . . Since ρ–1 is strictly increasing, the sequence {δi}∞i=0 is strictly increasing,
hence by Definition 5.2 we have r′ = δ0 < δ1 < δ2 < · · · ↗ R′. Take Li = ηk+si

ηk+σk for i = 0, 1, 2, . . .
Since smax ≤ s ≤ σk by (5.1) and (5.7) and si < smax for i = 0, 1, 2, . . . , we have 0 ≤ Li < 1 for
i = 0, 1, 2, . . . Thus, by Lemma 6.1, the conditions in Lemma 6.2 are satisfied, and the proof
is complete. �

7 Discussions
From the inputs f , w, M, b of our nonlinear non-uniform boundary value problem
NDE(f , w) and BC(M, b), we derived various quantities, including r, R, and ρ–1(σk) in
Theorem 1. All of these quantities are explicitly computable, as was demonstrated by ex-
amples. Fig. 4 will be helpful in navigating through the various dependencies between
them.

7.1 Effects of boundary conditions
As we mentioned in Sect. 1, the boundary conditions usually dealt with in the literature for
the finite beam problem, are strikingly few in number. At each end of the beam, the two-
point boundary conditions typically considered correspond to one of the types such as
‘free’, ‘clamped’, or ‘hinged’. Fig. 4 in particular shows the effects of all the 20-dimensionally
different boundary conditions BC(M, b) we are dealing with in this paper. Note that the
diversity of boundary conditions is encoded in KM and HM[b]. The constants E, I , l in
LDE(w) also contribute to the determination ofKM andHM[b], which is deliberately omit-
ted for the sake of simplicity.

Figure 4 A map of dependencies between the quantities in this paper. A relation a → bmeans that a is one
of the factors which determine b. For example, ŝ0 is determined by LM[b,w] and ρ through (5.5) and is a
factor determining smin and smax through (5.6) and (5.7). It is also a factor determining r and R through
Definition 5.2. The dashed arrow from f to ρ means that ρ is determined by f with some freedom. All the
quantities here are explicitly computable from the inputs f , w, M, b. The springs represent Assumptions (F),
(A), (B) and the quantities involved with them. Here, the effects of the flexural rigidity EI and the length 2l of
the beam, which are assumed to be fixed positive constants, are omitted
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The integral operator KM, the set of which amounts to 16-dimensional space, is a ma-
jor mean by which the boundary matrix M affects our problem. Together with the other
inputs, KM is used to construct the nonlinear operator Ψ . Its intrinsic L∞-norm μM

should satisfy Assumption (A) and determines the elastic capacity σ together with the
non-uniformity ratio η of the elastic foundation. In particular, the contractiveness of KM

is critical in Assumption (A).
The boundary matrix M also determines the linear operator HM, which in turn deter-

mines the linear uniform deflection LM[b, w] together with the boundary value b and the
loading density w. LM[b, w] should satisfy Assumption (B) and determines the dual radii
r and R.

7.2 Assumptions (F), (A), (B)
Assumption (F) can be considered as a minimal restriction on f in order to model physi-
cally realistic elastic foundations.

It is intuitively natural to imagine that too much of (i) or (ii) below would break the neat
behavior, such as Theorem 1, of the resulting deflection.

(i) Nonlinearity and non-uniformity of given elastic foundation.
(ii) Loading density w and boundary value b.

After all, the linear uniform equation LDE(w) and its nonlinear non-uniform generaliza-
tion NDE(f , w) themselves would become physically unrealistic for too much of (i) or (ii).
The introduction of Assumptions (A) and (B) is natural in this regard since these assump-
tions keep (i) and (ii) small enough to guarantee Theorem 1. What is important to note
is that Assumptions (A), (B) provide explicit bounds which tell how small is enough. They
also tell exactly which should be small among the various quantities that can be derived
from the inputs f , w, M, b.

In fact, there are situations where Assumptions (A), (B) are not needed at all. Assump-
tion (A) would not be needed for the following cases:

• The non-uniformity ratio η is 0. Note from Definition 2.1 that η = 0 does not
necessarily imply that the given elastic foundation is uniform.

• The integral operator KM is contractive, i.e., the intrinsic L∞-norm μM of KM is less
than 1.

Assumption (B) would not be needed for the following cases:
• The constant D = ρ–1(ŝmax) in Definition 5.1 becomes ∞ or, equivalently, ŝmax = sρ .
• The linear uniform deflection LM[b, w] is 0 or, equivalently, b = 0 and w = 0.

7.3 Nonlinearity function ρ

The nonlinearity function ρ is the only object which can be chosen with some freedom. As
the nonlinearity of given elastic foundation is small, we can take smaller ρ , which would
result in better bounds in general. Suppose that the nonlinearity of given elastic foundation
is small enough so that we can choose ρ such that lims→s– ϕ(s) = ∞, which is possible only
if s = sρ ≤ σk by the definition (5.2) of ϕ. Then we have ŝmax = sρ by (5.4) and smax = s = sρ by
(5.7), hence D = ∞ by Definition 5.1 and R = ∞ by Definition 5.2. Thus we have the global
uniqueness of L̃M[b, w, f ] in L∞[–l, l] by Theorem 1(a), while Assumption (B) imposes
no restriction on LM[b, w]. In this case, the deflection horizon B(0,ρ–1(σk)) becomes the
whole L∞[–l, l] since ρ–1(σk) = ∞ by (2.3).
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7.4 Iteration algorithm with Ψ

Theorem 1(b) leads to an algorithm for uniformly approximating the nonlinear non-
uniform deflection L̃M[b, w, f ] with iterations by the operator Ψ . The linear uniform de-
flection LM[b, w] would be an obvious choice for the initial guess u0.d Let u0 = LM[b, w].
Then, by Lemma 6.1(a) with s = smin, we have un ∈ B(LM[b, w], r) for n = 0, 1, 2, . . . since
r = ρ–1(smin)–ρ–1(ŝ0) by Definition 5.2. Since L̃M[b, w, f ] ∈ B(LM[b, w], r) by Theorem 1(b)
and Ψ [L̃M[b, w, f ]] = L̃M[b, w, f ] by Lemma 4.1, we have the following approximation
speed by Lemma 6.1(b):

∥∥un – L̃M[b, w, f ]
∥∥∞ =

∥∥Ψ [un–1] – Ψ
[
L̃M[b, w, f ]

]∥∥∞

≤ ηk + smin

ηk + σk
· ∥∥un–1 – L̃M[b, w, f ]

∥
∥∞, n = 1, 2, 3, . . .
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