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1 Introduction
Let £2 be an open bounded subset of R with sufficiently smooth boundary I", we consider

the following Kirchhoff wave equation with nonlinear damping and linear memory:

uy — M| Vull*) Au + a(x)g(u;) — k(0)Au — /00 K (s)Au(t —s)ds
0

+f(u) =h(x), in2 xR, (1)
M|x€F(xr t) =0, u(x, 0) = MO(x)1 Mt(x’ 0) = Ml(x)r (2)
u(x,t) = up(x, t), xe€82,t<0, (3)

where M(s) =1+5s%, m > 1, k(0), k(c0) > 0 and K'(s) < 0 for every s € R*, and the assump-
tions on nonlinear functions f(u), g(u;), a(x) and external force term /(x) will be specified
later.

This kind of wave models goes back to Kirchhoff. In 1883, Kirchhoff [1] firstly introduced

the following equation to describe small vibrations of an elastic stretch string:
uy —M(||Vu*) Au = h,

where M(s) = a + bs. There has been much research on global attractors; Lazo studied the

existence for the IBVP of the Kirchhoff equation with memory term [2]

t
utt—M(||Vu||2)Au+/ gt —t)Aulx,t)dr =0.
0
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Chueshov [3] studied the well-posedness and the global attractors of the Kirchhoff equa-
tion with strong nonlinear damping

uy — o (IVull®) Aue — ¢ (I Vull*) A%u + g(u) = h(x), <6<1.

M|

Next, Chueshov [4] also studied the Kirchhoff equation with strong nonlinear damping
in nature space H = H} (2) N LP*1(£2) x L*(£2) as 6 = 1. For related work on the Kirchhoff
wave equations with strong damping, see [5, 6] and the references therein.

When M(s) = 0, Eq. (1) become the well-known wave equation. Ma and Zhong [7]
showed the existence of global attractors for the hyperbolic equation with memory

Uy + oy — K(0)Au — foo K'(s)Au(t-s)ds +g(u) =f.
0

Recently, Park and Kang [8] studied the existence of global attractors for the semilinear
hyperbolic with nonlinear damping and memory

Uy + a(x)g(uy) + Au — K(0)Au — /00 K'(s)Au(t - s)ds + f (u) = h(x).
0

In [9], Kang and Rivera showed the existence of global attractors for the beam equation

localized nonlinear damping and memory
Uy + a(x)g(u;) + A%u —K(O)(l + ||Vu||2)Au - / K'(s)Au(t - s)ds + f(u) = h.
0

Motivated by [5, 7-9], we will prove the existence of global attractors for Eq. (1).
Following the framework proposed in [7], we shall add a new variable 7 to the system,
which corresponds to the relative displacement history. Let us define
n=n'(x,s) = ulx,t) — ulx, t —s). (4)
By differentiation, we have

ni(x,8) = —n(x, 8) + ug(x, £). (5)
Let pu(s) = —=k’(s), k(oo) = 1, (1) transforms into the following system:

Uy — (1 + ||Vu||’”)Au +a(x)g(u) — /0‘00 w(s)An(x,s)ds + f(u) = h, (6)

Nt =—Ns + U, 7)
with boundary condition

u=0, onI xR, n=0, ondf2 xR x RY, (8)
and initial conditions

u(x, 0) = M()(x), ut(x¢ O) = ul(x)v ﬁt(x: 0) = Or flo(x, S) = nO(x)S)- (9)
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This paper is organized as follows. In Sect. 2, we introduce some preliminaries. In Sect. 3,
we show the existence of a bounded absorbing set in . In Sect. 4, we give the existence
of global attractors of problems (6)—(9).

2 Preliminaries

We first state some assumptions, which will be used in this paper.

Assumption (1) The memory kernel p is required to satisfy the following hypotheses:
(h1) w(s) € CHR)NLY(R), Vs € R*;
(h2) [5° w(s)ds = k(0);
(h3) w(s) =0, u'(s) < 0;
(h4) w'(s) + kypu(s) <0, Vs € R*, for some k; > 0.

h2
h3

Assumption (2) The function a(x) satisfies
a(x) € L*™°(£2), a(x) > ag >0, (10)
where « is a constant.

Assumption (3) The function f € C!(R) satisfies

If' ()| < Ci(1+1s?), (11)
lsl‘iinw inf@ > -1, (12)

where 0 < p<o00,ifn<2,and0<p < ﬁ if m < 2. A is the constant in the Poincére type
inequality || Vul|> > Aq|lu|?.

Assumption (4) The damping function g € C*(R) satisfies

g(0)=0, g is strictly increasing, and liminfg'(s) > 0, (13)

|s|]—o00

g(s)] < Ca(1+s19), (14)
withl <g<ooifn<2,and1<g< Z—j ifn>2.

In order to consider the relative displacement 1 as a new variable, we introduce the
weighted L2-space

M =L%(R*; Hy) = {E ‘R — Hé(.Q)‘/O ,u(s)”VS(s)”zds < oo},
which is a Hilbert space endowed with inner product and norm

(O = /0 u(s)</9 vs<s>vc<s)dx)ds and €[5 = /o () VE2ds,

respectively.
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Our analysis is given on the phase space
H = Hy(2) x L*(2) x M,
which is equipped with the norm
|G, v, ’7)”; = IVal® + 1IvI% + Il

In order to obtain the global attractors of the problems (6)—(9), we need the following
theorem of existence, uniqueness of solution and continuous dependence on the initial
data.

Theorem 2.1 ([9]) Let assumptions (1)—(4) hold, if zo = (uo, vo, no) € H, then there exists
a unique solution z = (u,u;, n) of (6)—(9) such that

z€ C([O, T],’H) forall T > 0.

Next,we recall the simple compactness criterion stated in [9, 10].

Definition 2.1 ([9, 10]) Let X be a Banach space and B be a bounded subset of X, we call
a function @(-,-) which defined on X x X, is a contractive on B x B if for any sequence
{xn}52; C B, there is a subsequence {x,, }2°, C {x,}52, such that

lim lim @7 (x,,,%,,) = 0. (15)

k— 00 l—00

Denote all such contractive functions on B x B by C(B).

Theorem 2.2 ([9, 10]) Let {s(t)};=0 be a semigroup on a Banach space (X, || - ||) and has a
bounded absorbing set By. Moreover, assume that for any ¢ > 0 there exist T = T (By, €) and
@(-,-) € C(B) such that

”S(T)x - S(T)yH <e+Pr(x,y) forallx,ye By,

where @1 depends on T. Then {s(£)}>0 is asymptotically compact in X, i.e., for any bounded
sequence {y,}° C X and {t,} with t, — 00, {S(t,)y,.}00, is compact in X.

Lemma 2.1 ([11]) Let g(-) satisfy condition (13). Then for any § > 0 there exists c(5) > 0,
such that

lu-vi?<68+ C((S)(g(u) —g(v))(u -v), forallu,veR. (16)

3 Absorbing setin H
In this section, we prove the existence of the bounded absorbing set in . We use C; to
denote several positive constants.

Lemma 3.1 Under assumptions (1)—(4), the semigroup {S(£)};>0 corresponding to problems
(6)—(9) has a bounded absorbing set in H.
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Proof we take the scalar product in L? of system (6) with u; and (7) with 5, respectively,
we have

df1, ., 1._ . 1 1
— | =llwell” + = | Vul|” + Vu|™? + = |Inl? +/
( loacl™ + SNVl + ——— (I Vu] 5 Il

5 ; (F () — hu) dx)

+ (0, m5) p + (@) (e, ue) = 0, (17)

where F(u) = [ f(s)ds. As in [7]

1 [ d
(nmi= 5 /0 p6) 5[V s

o0 k
:_%fo 1 )| Vn(s)| ds = Elllnlli/r a9

We set

1 1 1
E(t) = =llul* + = | Vul)?
(&)= Sluell ™+ SAVull™+ —

1
\V/ m+2 | — 2 / E _ :
+2|| ull +2||77||M+ 9( () — hu) dx

Then from (17) and (18) we obtain

d k

GEO+ e+ [ (atigluu) ds <o, 19)
t 2 o

From (10), (13) we obtain

E(t) <E(0), t=0. (20)

By the hypothesis (12) we know that there are A > 1; > 0 and C such that
Ao Ao
(f (), u) > ) llz]|* — Co mes(£2), F(u)dx > 2 lz]|* — Co mes(£2). (21)
2
Using the Young inequality, we have

1
—/ hudx > —¢||u||* — —||h||%
o 4e

A

we choose proper X and ¢ small enough so that % —og &> %, and we have

1 1 1
E(0) > E(t) > Enutnz + [ Vul| 2 + gnww + 5||n||2M — C1(mes(£2) + [|1]1?)

m+2
> —C;(mes(£2) + || 1)), (22)

combining (19) with (22), we have

/ t / (a(x)g(u,)u;) dx < E(0) - E(t) < E(0) + Cy (mes(£2) + [|h]1*), Ve=0. (23)
0 J2

Page 5 of 14
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Taking the scalar product in L? of (6) with v = u; + gu, we obtain

d (1 1 1
— | SVl + S 1IVul® +
2 2 m

1 g2
Vul™? + Znllk, = —lull® + e[| Vul?
7 +2|| I 2IIYIIIM 2|| I |V

+ / (F(u) — hu) dx) +e||Vul™? + %IInH%M + 8(f(u), u)
2
+ (a(x)g(ut) —&uy, ut) + e(a(x)g(ut), u) —e(h,u) < e, u) pm- (24)

Let

1 1 1
F(t) = =|Iv* + = || Vul* +
(&)= SIVI™ + S Vull™ + —

1 g2
2 2 2
+2IIVMIIer +§||7)||M—5||M|| +/Q(F(u)—hu)dx,

k
G(t) = el Vull® + || Vul"** + 51 Inll5 + & (f (), ) — £(h, 1) — &(n, ) g
+ (a(x)g(ut) — &y, ut) + 8(a(x)g(ut), u),
)

d
—F©)+G(H) <0, (25)

Similarly, using (21), the Poincare inequality and the Young inequality, choosing proper A

2
and & small enough so that 2 — £- — 2 _¢> %,

Rl rialw we have

1 1 1
F@®) > =|v|* + =||Vul® +
()_2II I 8|| [ p

1
+2||Vu||’”+2+illnllivl—c(meS(QHIIhIIZ)- (26)

It is obvious that (10) and (13) imply that there are ¢ > 0 and C > 0 such that

(a(x)g(us) ur) = 2e|uy||* - C, mes(R2),

(27)
(a(0)g(ue) — eu,uy) > elluel|* = C(e) mes(£2).
Due to the Young inequality we have
ky k(0)5*
elnu)m = = llell - vl (28)
Using (13) and (14) yields
g+l 1
g 7 =1g)]7|g(s)] = C(1+Is1)|g(s)],
)
67 <c 1
7 <(C, <1,
lgls)l 7 = Isl < (29)

+1
26T <2Cg(s)s, Is| = 1,

where C is a constant which is independent of's.
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Then from (29), using the Holder inequality, the Young inequality and the Sobolev em-
bedding H}(£2) < LI*1(£2), we obtain

/ ax)g(u)udx
2

5/ !a(x)g(ut)u|dx+/ |a(x)g(ut)u|dx
2(|lug|<1) 2(|ue|>1)
5/ C|a(x)u|dx

2(lug|<1)

+1 %
([ awlew®ax) ([ awhura)
2(|ue|>1) 2(|lug|>1)

< f Cla(x)u|dx
2(|lug|<1)
9

+1 +
+ 2C</ a(x)g(u)u; dx) ! (/ a(x)|u|t dx) !
2(|ug|>1) 2(|lug|>1)

c 2
< — dx
1y Jo

1

+1

Q

—
)

a(x)
@

q-1

+ Cyallul’ + C, ( / a()g(uu; dx) el 2y + mllull?,,
2(|lug|=1)

C g-1
= mes($2) + Cyagllul® + CC, | Vull K / a(®)g(us)u dx + y Cs||[Vul®>,  (30)
14 Q

where ag = sup,., a(x), and y is a constant. From (21), (27), (28), (30) we have

ky
G() = ellue))® + el Vaul ™2 + ZIIUIIZM

1 k(0)e? A
8(5_ A —C)IVu|?- sCya3+Z Il

-1
—eC||Vul T / a(x)g(u)u, dx — C,(mes($2) + [|1]|?),
2
we choose ¢ and C small enough so that % - % -C> }L, we get

£ k
G(t) > Z(”utHZ + 1 Vul?) + lelﬂllﬁ\,(

) /Q a(x)g(u)u, dx — C, (mes(.Q) + ||h||2), (31)

where Cg(g) is a constant which depends on ¢, y, C and E(0), C, is a constant depending
ong, Csand C.
We have

2 2 2 2 2 2
Noee ™+ IVall™ + 1 lliag = ot + 8 = Sull” + [ Vaell” + [l
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2 282 2 2
<207+ ( S+ 1) IVal® + il
1

< Co(IvI + IVull® + Imll3), (32)

where Cy = max{2,1 + %}.
Integrating (25), combining with (23), (26), (31), yields

luell> + 11Vull® + 115y, — 4C(mes(£2) + [|4]1%)
—4CoF(0) - 4Cy Cr(0)(E(0) + C(mes(£2) + || 1%

== [ Galu@l + a0 + @)

—4C,C, (mes(£2) + [|h]1%)) ds, (33)

/ 2
where 8’ = min{3, k1 }. Therefore, for any p > w there exists £, such that

et + [ Vaulto) | + [n0(0) |3, < - (34)
Set
By = {(u0,v0,m0) € H | | Vusoll® + Ivoll* + Imoll5g < £}

then we see By is a bounded absorbing set. Define

B, = U S(¢)Bo,

t>0

so B; is also a bounded absorbing set. 0

4 Existence of the global attractor in H
4.1 A priori estimate
Firstly, we use the prior estimates to obtain the asymptotic compactness following the
standard energy method. In this section, C; are positive constants.

Let (&, uy, ) and (v, v, £) be two solution to systems (6)—(9), and (u, u;, n) and (v, v, §) €
By, o(t) = u(t) —v(t), ¢ =n—§&. Then w(¢), ¢ satisty

oo
wy — |Vul" Au + || VY| Av - Aw —/ w(s)Az(s)ds
0

+a(x)g(u1e) — a(x)gua) + f (u1) - f(u2) = 0, (35)

Gt =—C+ o (36)
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firstly, taking the scalar product in L2 of (35) with @ and integrating over [0, T], we get

T T
2, B 2
/0 ||Va)(s)|| ds-/ga)t(O)a)(O)dx /;2wt(T)a)(T)dx+/0 Hwt(s)” ds
T ) T
_ / [Vu(s)]” | Veols) | ds - / (¢ ) ds
0 0
T
—/ /(||Vu(s)||m— [vv(s)|™) Vu(s) Va(s) dx ds
0o Je
T
—/ ‘/.a(x)(g(ut(s)) —g(vt(s)))a)(s)dxds
0o Je
T
—/ /(f(u(s)) —f(v(s)))w(s)dxds. (37)
0o Je

Using the Young inequality and (43), we obtain

k(0)

1
(f:w)ME—EHVCUHZ—T”C”%\m (38)

Secondly, taking the scalar product in L? of (35), (36) with w; and integrating over [0, T],

we get

(310 s 1901+ Z1cIR, ) + [ (19 - 19v1) v, ds
+@alu [ (= 0)ards+ [ a)(gl) -g)rds =0, (39)
2 2
Let

1 1 1
E,(t) = Enwtn? + Enwnz + 5||¢||2M.

Integrating (39) over (s, T'] and combining with (38), where s € [0, T], we have

kT T
E(0)+ / I3, + / /Q () (g (1) - g (vu(0) ou(z) e
1 m
o2 [ Ivun von| e
1 m
SE‘"(S)JrE/QHV”(S)H |Verls)| dx
m ' 2 m-1
) / /Q”Vw(f)ﬂ | Vao) | Vauy(z) dxc
T
_/ /(’{Vu(-[)|}m_ ”VV(I)Hm)Vv(t)Va)t(-,;)dxdr
N 2

T
_/ /Q(f(”(f)) —f(v(7)))w(r) dxdr. (40)

Page 9 of 14
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Integrating (40) over [0, T] with respect to s, we get
T 1 T m )
TE, () < / Eo(s)ds+~ / / 1Vu(s)|” | Veols) | dx
0 2Jo Je

T T
g /0 / /;2va(t)Hz”V“(t)”m_IVIflt(T)dxdrds
T T
- / f /(||Vu(r)||m—”VV(T)||m)VV(T)th(t)dxdrds
///(f”(f) Sf((D))wi(t) dxdr ds.

Due to (10), (40), and Lemma 2.1, we obtain, for any § > 0,

[l e [ oo as
0 M 0 !
T
< CzEw(O)—szo /Q(f(u(r)) —f(v(1)))we(r) dxdt

+8Tmes(9)—2/ ||Vu(T)||m||Vw(T)||2dx
2 Ja
T
-c2/ /(||Vu(r)||m—||Vv(r)“m)Vv(r)th(r)dxdr
—C2/ /(f (u(r)) - f(V(7)))wr(7) dxdt
s / / Vo) | Vo) | Vs (z) e,

where C, is a constant which depends on §, oy and ;.
Thus, from (37), (38) and (42) we have

GG

T
f E,()dt < C38T mes(R2) + C,C3E,,(0) - / | V()| | Vo (T) ||* dx
0

C2C3

3 [ 19" |voo)|as
—C2C3/ /(||Vu(r)||m—HVv(t)||m)Vv(r)Va)t(r)dxdr

—C2C3/ /(f 1:) V(‘C) a)t(r)dxdr

WIC2 C3
+
2

/o [ 190l |vuto | Vi) ds e
"’/th(o)w(o)dx—‘/.;)a)t(T)w(T)dx

T
/ [ Vi) [Veols)|* ds

T
B, /0 /Q (V)] = [ V()| V() Vaols) de s

(41)

(42)

Page 10 of 14
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T
—/ ‘/.a(x)(g(ut(s)) —g(vt(s)))a)(s)dxds
/ /(f u(s v(s )) (s) dx ds, (43)

where C3 = max{3, 3 kO +1} From (23) and the existence of the absorbing set, we get

/ / (¢(ur))uy dxds < C,, (44)

/ / gv))vedxds < Cp, (45)

where C, is a constant which depends on mes(£2), ||/4||? and the size of By. By a similar
method to that of (30) and (43), (44), we have

T
a(x)g(ut(s))a)(s) dxds
2

;T
< CW/ / |a(x)a)|dxds
0 J2(lull<1)
2C)q+1 (/ / alow)g(u)u; dxds)
2(Jug|>1)
Ll
</ / a(x) |a)|q+1dxds>
2(|ur|>1)

<Cq+1/ /a(x lw|dxds + C, Ti1 (46)

4
+1

similarly

1

<Cq+1/ /zz(x)lw|dxds+C T (47)

| alvg (ve(s))w(s) dxds
combining (41), (43), (46), (47), we have

TE,(T) < Cp + ®1(25,25), (48)
where

Cp = Cs8 T mes(£2) + CyCsE, (0) + / w:(0)e(0) dx — / w(T)a(T) dx + 2C, TT
2 2

+ Cz C3 CZ C3
2

/ V()" | Veol0) > dx - / IVl VoD s, (49)
2 2

Page 11 of 14
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T
457(2(1),2(2)) = —CgCg/O /Q(”Vu(t)”m - || Vv(t)”m)Vv(t)th(r)dxdr

T
—C2C3/0 /Q(f(u(r)) —f(v(r)))a)t(r)dxdt

CCs (T o
s / f Vo) |2 [V) | Vire(r) dxde
0 2

+

T i N
- [O fg (|Vu@|" - [Vvs)| ™) Vis) Veols) dxds

T T i
_/ /(f(u(s)) ‘f(v(s)))w(s)dxds—f [Vuls) " [Vols) | ds

0 2 0

A 1 [T " ,
+2C1 /0 /;za(x){a)(s)|dxds+§/(; /Q”Vu(s)“ | Vaors)|* dxds

T T

[ 9@ vat)] ™ St dedeas

T T
_/0 / ‘/Q(“VM(T)””I—”VV(T)”m)VV(‘[)th(T)dxd.[ds

T pT
_/o / _/;z(f(u(‘[))_f(V(T)))wt(T)dXd‘L'dS. (50)

Then we have
1
E(T)< —+ ?QDT(Z(I),Z%). (51)

4.2 Asymptotic compactness
In this subsection, following the argument in [9, 10], we will prove the asymptotic com-
pactness of the semigroup {S(¢)};>0 in H, which is given in the following theorem.

Theorem 4.1 Under assumptions (1)—(4), the semigroup {S(t)}:>0 to systems (6)—(9) is
asymptotically compact in ‘H.

Proof since the semigroup {S(¢)}:>0 has a bounded absorbing set, for every fixed ¢ > 0, we

can choose that § < , and then let 7' become so large that

&
2C3 mes(£2)
—<e. (52)

Hence, thanks to Theorem 2.2, we only need to verify that the function @1(z},z3) defined
in (50) belongs to C(B;) for each fixed T. and we claim that

15®)z5 - S(t)z5 ”’H <e+®r(z),25), Vzo,25 €B. (53)
Here (u(t), u:(t),n) = S(£)z} and (v(2), v,(2),€) = S(¢)z} are the solutions of (6)—(9) with re-
spect to initial 2}, 22 € By. Then, since C(B;) is a bounded positively invariant set in H, it

follows that (u,, uy,, ") is uniformly bounded in H. We have

uy — u  weakly star in L*(0, T; H)(2)), (54)
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uy, — u, weakly star in L(0, T;L*(R2)). (55)
Then, by the compact embedding H}(§2) < L¥(2), we have

u, — u strongly in L? (0, T; LZ(Q)), (56)

u, — u  strongly in L*(0, T; L(£2)), (57)

where k < %, therefore from (56) we have

T
lim lim /0 /Q(f(ul(t)) —f(uk(t)))(ult(t) —uk[(t)) dxdr =0, (58)

I—00 k—00

T
lim lim /0 /Q(f(ul(t)) —f (7)) (ws(7) — i (7)) dxd = 0, (59)

I—00 k—00

then from (57) and (10), we obtain

l—00 k—00

T
lim lim / / a(x)|u1(s) - uk(s)| dxds=0. (60)
0o Je

Finally, we follow a similar argument to the ones given in [9, 10]. We have

T
Jim_tim / / | Vi) = Vur(0) | * V(1) Vi, () dxde = 0, (61)
T
Jim lim / / (|Veu@)|” = | Ve @) |*) Vata (2) (Vs = Varg) dixde = 0, (62)
—00k—00 Jq Q
T 2 2
Jim lim / |V (0)||”|| V() = Ve () || dt = 0, (63)
—00k—>00 Jq
T 2
fim lim / |as(8) = wic(0) || dt = 0, (64)
—00k—>00 Jq
T 2
fim lim / |Vui(t) = Vi (0) | dt = 0. (65)
—00k—>00 Jq

Finally, combining (58)-(65) we get ®@(-,-) € C(By). O

4.3 Existence of global attractor
Theorem 4.2 Under assumptions (1)—(4), then problems (6)—(9) have a global attractor
in H, which is invariant and compact.

Proof Lemma 3.1 and Theorem 4.1 imply the existence of the global attractor. O
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