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Abstract
In this paper, without requiring the complete continuity of integral operators and the
existence of upper–lower solutions, by means of the sum-type mixed monotone
operator fixed point theorem based on the cone Ph, we investigate a kind of
p-Laplacian differential equation Riemann–Stieltjes integral boundary value problem
involving a tempered fractional derivative. Not only the existence and uniqueness of
positive solutions are obtained, but also we can construct successively sequences for
approximating the unique positive solution. As an application of our fundamental
aims, we offer a realistic example to illustrate the effectiveness and practicability of
the main results.
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1 Introduction
In this paper, we devote our study to the kind of p-Laplacian differential equations
Riemann–Stieltjes integral boundary value problems involving tempered fractional deriv-
atives as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

R
0D

α2,λ
t (ϕp(R

0D
α1,λ
t u(t))) = f (t, u(t), u(t)) + g(t, u(t)), t ∈ [0, 1],

u(0) = u′(0) = · · · = u(n–2)(0) = 0,

ϕp(R
0D

α1,λ
t u)(0) = 0,

u(1) = β
∫ 1

0 e–λ(1–t)u(t) dt,
R
0D

γ1,λ
t (ϕp(R

0D
α1,λ
t u))(1) =

∫ η

0 a(t)R
0D

γ2,λ
t [ϕp(R

0D
α1,λ
t u(t))] dA(t),

(1.1)
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where n – 1 < α1 ≤ n, 1 < α2 ≤ 2, 0 < γ2 < γ1 < α2 – 1, β < α1 and λ > 0 is constant, ϕp is a
p-Laplacian operator. R

0D
α1,λ
t are tempered fractional derivatives, which are defined by

R
0D

α1,λ
t u(t) = e–λtR

0 Dα1
t

(
eλtu(t)

)
. (1.2)

Here, R
0 Dα1

t denotes the standard Riemann–Liouville fractional derivative

R
0 Dα1

t u(t) =
dn

dtn

(
0In–α1

t u(t)
)
, (1.3)

where 0Iυ
t for υ > 0 is the fractional integral operator of order υ defined by

0Iυ
t ψ =

1
Γ (υ)

∫ t

0
(t – s)υ–1ψ(s) ds. (1.4)

A is a function of a bounded variation,
∫ η

0 a(t)R
0D

γ2,λ
t [ϕp(R

0D
α1,λ
t u(t))] dA(t) denotes a

Riemann–Stieltjes integral with respect to A. By using the sum-type mixed monotone
fixed theorem based on the cone Ph, we show the existence and uniqueness of positive
solutions for the p-Laplacian differential system (1.1).

In recent years, many theories and experiments have shown that a large number of
abnormal phenomena that occurs in the applied science and engineering can be well
described by fractional calculus. Especially, fractional differential equations have been
proved to be powerful tools in the modeling of various phenomena in various fields of
science and engineering, for example fluid mechanics, physics and heat conduction; see
for instance [1–6]. Meanwhile, it is well known that the p-Laplacian operator is also used
in analyzing biology, physics, mechanics and the related fields of mathematical modeling;
see [7–14]. In [7], for studying the turbulent flow in porous media, Leibenson introduced
the p-Laplacian differential equation as follows:

(
ϕp

(
u′(t)

))′ = f
(
t, u(t), u′(t)

)
, t ∈ (0, 1), (1.5)

where ϕp(s) = |s|p–2s, p > 1. Motivated by Leibenson’s work, Guo et al. [8] studied the exis-
tence of a solution for an ordinary differential equation m-point boundary value problem
with p-Laplacian operator. Lu et al. [9] investigated a fractional differential equation for a
two points boundary value problem involving the p-Laplacian operator as follows:

⎧
⎪⎪⎨

⎪⎪⎩

Dβ
0+(ϕp(Dα

0+u(t))) = f (t, u(t)), 0 ≤ t ≤ 1;

u(0) = u′(0) = u′(1) = 0;

Dα
0+u(0) = Dα

0+u(1) = 0,

(1.6)

where 2 < α ≤ 3, 1 < β ≤ 2 and ϕp(s) = |s|p–2s. Dα
0+, Dβ

0+ are standard Riemann–Liouville
fractional derivatives. By employing the Guo–Krasnosel’skii fixed-point theorem and
upper–lower solutions method, the existence of positive solutions was obtained.
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In [10], Ren, Li and Zhang studied the existence of maximum and minimum solutions
for the following nonlocal p-Laplacian fractional differential system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–Dβ1
t (ϕp1 (–Dα1

t x1))(t) = f1(x1(t), x2(t)),

–Dβ2
t (ϕp2 (–Dα2

t x2))(t) = f2(x1(t), x2(t)),

x1(0) = 0, Dα1
t x1(0) = Dα1

t x1(1) = 0, x1(1) =
∫ 1

0 x1(t) dA1(t),

x2(0) = 0, Dα2
t x2(0) = Dα2

t x2(1) = 0, x2(1) =
∫ 1

0 x2(t) dA2(t),

(1.7)

where Dαi
t , Dβi

t are the standard Riemann–Liouville derivatives satisfying 1 < αi, βi < 2,
∫ 1

0 xi(t) dAi(t) denotes a Riemann–Stieltjes integral and Ai is a function of bounded varia-
tion, ϕpi is a p-Laplacian operator. By using the monotone iterative technique, some new
results as regards the existence of maximal and minimal solutions were established, and
the estimation of the lower and upper bounds of the maximum and minimum solutions
was also derived.

Recently, in [15], we investigated the conformable differential equation with p-Laplacian
operator as follows:

⎧
⎪⎪⎨

⎪⎪⎩

T0+
α (ϕp(T0+

α u(t))) = f (t, u(t), T0+
α u(t)),

u(i)(0) = 0, [ϕp(T0+
α u)](i)(0) = 0,

[T0+
β u(t)]t=1 = 0, [T0+

β (ϕp(T0+
α u(t)))]t=1 = 0,

(1.8)

where n – 1 ≤ α < n and T0+
α is a new fractional derivative called “the conformable frac-

tional derivative”. By using the Guo–Krasnosel’skii fixed point theorem, some new exis-
tence conclusions of positive solutions were obtained to the boundary value problem (1.8).

In [16], we continued to investigate the existence of multiple positive solutions for high
order Riemann–Liouville fractional differential equation involving the p-Laplacian oper-
ator as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

R
0 Dα

t (ϕp(R
0 Dα

t u(t))) = f (t, u(t), R
0 Dα

t u(t)), 0 ≤ t ≤ 1;

u(i)(0) = 0, [ϕp(R
0 Dα

t u)](i)(0) = 0, i = 0, 1, 2, . . . , n – 2;

[R
0 Dβ

t u(t)]t=1 = 0, 0 < β ≤ α – 1;

[R
0 Dβ

t (ϕp(R
0 Dα

t u(t)))]t=1 = 0;

(1.9)

where n – 1 < α ≤ n, R
0 Dα

t is the standard Riemann–Liouville fractional derivative, ϕp is
the p-Laplacian operator. By means of the Leggett–Williams fixed point theorem and a
functional-type cone expansion-compression fixed point theorem, not only the existence
of two positive solutions was obtained, but also some sufficient conditions for the existence
of at least three positive solutions was established.

In addition, Zhang et al. [17] investigated the eigenvalue problem for a kind of singu-
lar fractional differential equation Riemann–Stieltjes integral boundary value problem in-
volving the p-Laplacian operator as follows:

⎧
⎪⎪⎨

⎪⎪⎩

–Dβ
t (ϕp(Dα

t x(t))) = λf (t, x(t)), 0 ≤ t ≤ 1,

x(0) = 0, Dα
t x(0) = 0,

x(1) =
∫ 1

0 x(s) dA(s),

(1.10)
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where Dβ
t and Dα

t are standard Riemann–Liouville fractional derivatives with 0 < β ≤ 1,
1 < α ≤ 2,

∫ 1
0 x(s) dA(s) is the standard Riemann–Stieltjes integral and A is a function of

the bounded variation. By using the Schauder fixed point theorem and upper and lower
solution methods, some new theorems on existence were obtained.

Inspired by the above work, in this paper, we investigate the existence and uniqueness
of positive solutions for a p-Laplacian differential equation Riemann–Stieltjes integral
boundary value problem involving a tempered fractional derivative (1.1). To the best of
our knowledge, this kind of integral boundary value problem involving a tempered frac-
tional derivative has seldom been researched up to now. Compared with other references,
the present article has the following characteristics. Firstly, the tempered fractional deriva-
tive R

0D
α,λ
t is more general than the standard fractional derivative R

0 Dα

t . For example, letting
λ = 0, it is easy to see that R

0D
α,λ
t is equivalent to R

0 Dα

t . Secondly, the Riemann–Stieltjes in-
tegral boundary conditions involving a tempered fractional derivative are more general
cases, which cover the common integral boundary conditions as special cases. Thirdly,
compared with the p-Laplacian differential system (1.8) and (1.9), in this paper, the inte-
gral operator need not be completely continuous or compact. Fourthly, in this paper, by
employing the sum-type mixed monotone operators fixed points theorem, our conclu-
sions cannot only guarantee the existence of a unique positive solution, but also construct
successively sequences for approximating the unique positive solution. Finally, it is worth
mentioning that some important properties of two different kernel functions rely on the
parameter λ.

The rest of this paper is organized as follows. In Sect. 2, we briefly introduce some neces-
sary basic definitions and preliminary results which will be used to prove our main results.
In Sect. 3, we study the existence and uniqueness and monotone iteration of a positive so-
lution to the p-Laplacian differential system (1.1) by means of sum-type mixed monotone
fixed points theorems based on the cone Ph. At last, in Sect. 4, we demonstrate the effec-
tiveness and feasibility of the main results by an example.

2 Preliminaries
In the section, we first list some basic notations, concepts in ordered Banach spaces. For
convenience, we refer the reader to [18, 19] for details.

Suppose that (E,‖ · ‖) is a real Banach space which is partially ordered by a cone P ⊂ E,
that is, x ≤ y if and only if y – x ∈ P. If x ≤ y and x �= y, then we denote x < y or y > x. By θ we
denote the zero element of E. A nonempty closed convex set P ⊂ E is a cone if it satisfies:
(i) x ∈ P, λ ≥ 0 ⇒ λx ∈ P; (ii) x ∈ P, –x ∈ P ⇒ x = θ .

Definition 2.1 ([18]) P is called normal if there exists M > 0 such that, for all x, y ∈ E,
θ ≤ x ≤ y implies ‖x‖ ≤ ‖y‖; in this case M is the infimum of such a constant, it is called
the normality constant of P.

In addition, for a given h > θ , we denote by Ph the set Ph = {x ∈ E | x ∼ h}, in which
∼ is an equivalence relation, i.e., x ∼ y means that there exist λ > 0 and μ > 0 such that
λx ≥ y ≥ μx for all x, y ∈ E.

Definition 2.2 ([20]) An operator A : P × P → P is said to be a mixed monotone operator
if A(x, y) is increasing in x and decreasing in y, i.e., ui, vi(i = 1, 2) ∈ P, u1 < u2, v1 > v2 imply
A(u1, v1) ≤ A(u2, v2). An element x ∈ P is called a fixed point of A if A(x, x) = x.
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Definition 2.3 ([9]) Let p > 1, the p-Laplacian operator is given by

ϕp(x) = |x|p–2x and ϕ–1
p = ϕq,

1
p

+
1
q

= 1.

Definition 2.4 ([21]) A : P → P is said to be sub-homogeneous if it satisfies

A(tx) ≥ tAx, ∀t ∈ (0, 1), x ∈ P.

Lemma 2.1 ([16]) Let h(t) ∈ C[0, 1] ∩ L1[0, 1], α > 0, then

0Iα
t

R
0 Dα

t h(t) = h(t) + c1tα–1 + c2tα–2 + · · · + cntα–n,

where ci ∈ R, i = 1, 2, 3, . . . , n (n = [α] + 1).

Lemma 2.2 ([16])
(1) If u ∈ L1(0, 1), α > β > 0, then

0Iα
t 0Iβ

t u(t) = 0Iα+β
t u(t), R

0 Dβ

t 0Iα
t u(t) =0 Iα–β

t u(t), R
0 Dβ

t 0Iβ
t u(t) = u(t).

(2) If ρ > 0, μ > 0, then

R
0 Dρ

t tμ–1 =
Γ (μ)

Γ (μ – ρ)
tμ–ρ–1.

Lemma 2.3 Let g(t) ∈ C[0, 1], then the unique solution of the linear problem

⎧
⎪⎪⎨

⎪⎪⎩

R
0D

α1,λ
t u(t) + g(t) = 0, n – 1 < α ≤ n;

u(0) = u′(0) = · · · = u(n–2)(0) = 0;

u(1) = β
∫ 1

0 e–λ(1–t)u(t) dt, β < α1;

(2.1)

is given by

u(t) =
∫ 1

0
H(t, s)g(s) ds, (2.2)

where we have the Green function

H(t, s) =

⎧
⎨

⎩

α1(1–s)α1–1(α1–β+βs)eλstα1–1–α1(α1–β)eλs(t–s)α1–1

(α1–β)Γ (α1+1) e–λt , 0 ≤ s ≤ t ≤ 1;
α1(1–s)α1–1(α1–β+βs)eλs

(α1–β)Γ (α1+1) e–λttα1–1, 0 ≤ t ≤ s ≤ 1.
(2.3)

Proof For the system (2.1), by using Lemma 2.1, we get

eλtu(t) = –
∫ t

0

(t – s)α1–1

Γ (α1)
eλsg(s) ds + c1tα1–1 + c2tα1–2 + · · · + cntα1–n.

Furthermore, the boundary conditions u(0) = u′(0) = · · · = u(n–2)(0) = 0 imply that cn =
cn–1 = cn–2 = · · · = c3 = c2 = 0. Thus, we have

eλtu(t) = –
∫ t

0

(t – s)α1–1

Γ (α1)
eλsg(s) ds + c1tα1–1. (2.4)
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Integrating both sides of Eq. (2.4) from 0 to 1, we see that

∫ 1

0
eλtu(t) dt = –

∫ 1

0

(∫ t

0

(t – s)α1–1

Γ (α1)
eλsg(s) ds

)

dt + c1

∫ 1

0
tα1–1 dt

= –
∫ 1

0

eλs

Γ (α1)
g(s) ds

∫ 1

s
(t – s)α1–1 dt +

c1

α1

=
c1

α1
–

∫ 1

0

(1 – s)α1

Γ (α1 + 1)
eλsg(s) ds. (2.5)

Letting t = 1 in (2.4), we obtain

eλu(1) = –
∫ 1

0

(1 – s)α1–1

Γ (α1)
eλsg(s) ds + c1. (2.6)

Combining the integral boundary value condition u(1) = β
∫ 1

0 e–λ(1–t)u(t) dt, (2.6) and (2.5),
we can clearly see that

c1 =
∫ 1

0

α2
1(1 – s)α1–1 – α1β(1 – s)α1

(α1 – β)Γ (α1 + 1)
eλsg(s) ds. (2.7)

Finally, by simply substituting (2.7) into (2.4),

u(t) =
∫ 1

0

[α2
1(1 – s)α1–1 – α1β(1 – s)α1 ]tα1–1

(α1 – β)Γ (α1 + 1)
e–λteλsg(s) ds

–
∫ t

0

α1(α1 – β)(t – s)α1–1

(α1 – β)Γ (α1 + 1)
e–λteλsg(s) ds

=
∫ 1

0
H(t, s)g(s),

where the Green function H(t, s) is defined as (2.3). �

Lemma 2.4 If g̃ ∈ C[0, 1] is given, then the p-Laplacian tempered fractional differential
equation integral boundary value problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

R
0D

α2,λ
t (ϕp(R

0D
α1,λ
t u(t))) = g̃(t), t ∈ [0, 1],

u(0) = u′(0) = · · · = u(n–2)(0) = 0,

ϕp(R
0D

α1,λ
t u)(0) = 0,

u(1) = β
∫ 1

0 e–λ(1–t)u(t) dt,
R
0D

γ1,λ
t (ϕp(R

0D
α1,λ
t u))(1) =

∫ η

0 a(s)R
0D

γ2,λ
t [ϕp(R

0D
α1,λ
t u(s))] dA(s),

(2.8)

has a unique integral formal solution

u(t) =
∫ 1

0
H(t, s)ϕq

(∫ 1

0
G(s, τ )̃g(τ ) dτ

)

ds, (2.9)

where H(t, s) is given as (2.3), G(t, s) is a Green function and

G(t, s) = G1(t, s) +
tα2–1e–λt

�Γ (α2 – γ2)

∫ η

0
a(t)G2(t, s) dA(t), (2.10)
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in which

G1(t, s) =
eλ(s–t)

Γ (α2)

⎧
⎨

⎩

(1 – s)α2–γ1–1tα2–1 – (t – s)α2–1, 0 ≤ s ≤ t ≤ 1,

(1 – s)α2–γ1–1tα2–1, 0 ≤ t ≤ s ≤ 1,

G2(t, s) =
eλ(s–t)

Γ (α)

⎧
⎨

⎩

(1 – s)α2–γ1–1tα2–γ2–1 – (t – s)α2–γ2–1, 0 ≤ s ≤ t ≤ 1,

(1 – s)α2–γ1–1tα2–γ2–1, 0 ≤ t ≤ s ≤ 1,

and

� =
e–λ

Γ (α2 – γ1)
–

δ

Γ (α2 – γ2)
, δ =

∫ η

0
e–λssα2–γ2–1a(s) dA(s).

Proof From Lemma 2.1, integrating both sides of the first equation of (2.8), we obtain

eλtϕp
(R

0D
α1,λ
t u(t)

)
= 0Iα2

t
(
eλt̃g(t)

)
+ d1tα2–1 + d2tα2–2

=
∫ t

0

(t – s)α1–1

Γ (α)
eλs̃g(s) ds + d1tα2–1 + d2tα2–2.

Since ϕp(R
0D

α1,λ
t u(0)) = 0, we see that d2 = 0, that is,

ϕp
(R

0D
α1,λ
t u(t)

)
= e–λt

0Iα2
t

(
eλt̃g(t)

)
+ d1e–λttα2–1. (2.11)

Furthermore, applying the tempered fractional derivative operators R
0D

γi ,λ
t (i = 1, 2) on both

sides of Eq. (2.11), we have

R
0D

γi ,λ
t

(
ϕp

(R
0D

α1,λ
t u(t)

))

= R
0D

γi ,λ
t

(
e–λt

0Iα2
t

(
eλt̃g(t)

))
+ d1

R
0D

γi ,λ
t

(
e–λttα2–1)

= e–λt
0Iα2–γi

t
(
eλt̃g(t)

)
+ d1e–λtR

0 Dγi
t
(
tα2–1)

=
∫ t

0

(t – s)α2–γi–1eλ(s–t)

Γ (α2 – γi)
g̃(s) ds + d1

Γ (α2)
Γ (α2 – γi)

e–λttα2–1–γi . (2.12)

From (2.12), we have

⎧
⎨

⎩

R
0D

γ1,λ
t [ϕp(R

0D
α1,λ
t u)](1) =

∫ 1
0

(1–s)α2–γ1–1eλ(s–1)

Γ (α2–γ1) g̃(s) ds + d1
Γ (α2)e–λ

Γ (α2–γ1) ,
R
0D

γ2,λ
t [ϕp(R

0D
α1,λ
t u)](t) =

∫ t
0

(t–s)α2–γ2–1eλ(s–t)

Γ (α2–γ2) g̃(s) ds + d1
Γ (α2)e–λt

Γ (α2–γ2) tα2–1–γ2 .
(2.13)

Substituting (2.13) into the integral boundary value condition R
0D

γ1,λ
t (ϕp(R

0D
α1,λ
t u))(1) =

∫ η

0 a(s)R
0D

γ2,λ
t [ϕp(R

0D
α1,λ
t u(s))] dA(s), we obtain

d1 =
–1

Γ (α2)�

{∫ 1

0

(1 – s)α2–γ1–1eλ(s–1)

Γ (α2 – γ1)
g̃(s) ds

–
∫ η

0
a(t) dA(t)

∫ t

0

(t – s)α2–γ2–1eλ(s–t)

Γ (α2 – γ2)
g̃(s) ds

}

. (2.14)
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Substituting (2.14) into (2.11), we get

ϕp
(R

0D
α1,λ
t u(t)

)

= e–λt
∫ t

0

(t – s)α2–1eλs

Γ (α2)
g̃(s) ds –

e–λttα2–1

Γ (α2)�

{∫ 1

0

(1 – s)α2–γ1–1e–λ

Γ (α2 – γ1)
eλs̃g(s) ds

–
∫ η

0
a(t) dA(t)

∫ t

0

(t – s)α2–γ2–1eλ(s–t)

Γ (α2 – γ2)
g̃(s) ds

}

=
∫ t

0

(t – s)α2–1eλ(s–t)

Γ (α2)
g̃(s) ds –

e–λttα2–1

Γ (α2)

∫ 1

0
(1 – s)α2–γ1–1eλs̃g(s) ds

–
e–λttα2–1δ

Γ (α2)Γ (α2 – γ2)�

∫ 1

0
(1 – s)α2–γ1–1eλs̃g(s) ds

+
e–λttα2–1

Γ (α2)Γ (α2 – γ2)�

∫ η

0
a(t) dA(t)

∫ t

0
(t – s)α2–γ2–1eλ(s–t)̃g(s) ds

=
∫ t

0

(t – s)α2–1e–λteλs

Γ (α2)
g̃(s) ds –

∫ 1

0

(1 – s)α2–γ1–1tα2–1eλ(s–t)

Γ (α2)
g̃(s) ds

–
tα2–1e–λt

Γ (α2 – γ2)�

∫ η

0
a(t) dA(t)

∫ 1

0

(1 – s)α2–γ1–1tα2–γ2–1eλ(s–t)

Γ (α2)
g̃(s) ds

+
tα2–1e–λt

Γ (α2)Γ (α2 – γ2)�

∫ η

0
a(t) dA(t)

∫ t

0

(t – s)α2–γ2–1eλ(s–t)

Γ (α2)
g̃(s) ds

= –
∫ 1

0
G1(t, s)̃g(s) ds –

tα2–1e–λt

Γ (α2 – γ2)�

∫ 1

0
g̃(s) ds

∫ η

0
G2(t, s)a(t) dA(t)

= –
∫ 1

0
G(t, s)̃g(s) ds.

By employing the p-Laplacian operator ϕq on both sides of the above equation, we have

R
0D

α1,λ
t u(t) + ϕq

(∫ 1

0
G(t, s)̃g(s) ds

)

= 0. (2.15)

Setting g(t) :� ϕq(
∫ 1

0 G(t, s)̃g(s) ds), thus, the p-Laplacian tempered fractional differential
system (2.8) is equivalent to the integral boundary value problems as follows:

⎧
⎪⎪⎨

⎪⎪⎩

R
0D

α1,λ
t u(t) + g(t) = 0, n – 1 < α1 ≤ n;

u(0) = u′(0) = · · · = u(n–2)(0) = 0;

u(1) = β
∫ 1

0 e–λ(1–t)u(t) dt, β < α1.

(2.16)

By means of Lemma 2.3, we see that the integral boundary value problem (2.16) has a
unique integral solution

u(t) =
∫ 1

0
H(t, s)g(s) ds

=
∫ 1

0
H(t, s)ϕq

(∫ 1

0
G(s, τ )̃g(τ ) dτ

)

ds,
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where the Green function G(t, s) and H(t, s) are given by (2.10) and (2.3), respectively. This
constitutes the complete proof. �

Lemma 2.5 For ∀(s, t) ∈ [0, 1] × [0, 1], the Green function H(t, s) given by (2.3) has the
following properties:

(A1) H(t, s) is continuous and H(t, s) ≥ 0;
(A2) m1(s)e–λttα1–1 ≤ H(t, s) ≤ M1(s)e–λttα1–1, where

M1(s) =
α1(1 – s)α1–1(α1 – β + βs)eλs

(α1 – β)Γ (α1 + 1)
, m1(s) =

α1βs(1 – s)α1–1eλs

(α1 – β)Γ (α1 + 1)
.

Proof Evidently, H(t, s) is continuous and H(t, s) ≤ M1(s)e–λttα1–1 holds. So, we only need
to prove the inequality H(t, s) ≥ m1(s)e–λttα1–1 and H(t, s) ≥ 0.

If 0 ≤ s ≤ t ≤ 1, then we have 0 ≤ t – s ≤ t – ts = t(1 – s), and thus (t – s)α1–1 ≤ tα1–1(1 –
s)α1–1. Hence, we get

H(t, s) =
[α2

1(1 – s)α1–1 – α1β(1 – s)α1 ]tα1–1 – α1(α1 – β)(t – s)α1–1

(α1 – β)Γ (α1 + 1)
e–λteλs

≥ [α2
1(1 – s)α1–1 – α1β(1 – s)α1 ]tα1–1 – α1(α1 – β)tα1–1(1 – s)α1–1

(α1 – β)Γ (α1 + 1)
e–λteλs

=
α1βs(1 – s)α1–1eλs

(α1 – β)Γ (α1 + 1)
e–λ1ttα1–1 ≥ 0.

If 0 ≤ s ≤ t ≤ 1, clearly, we can see that

H(t, s) =
[α2

1(1 – s)α1–1 – α1β(1 – s)α1 ]tα1–1

(α1 – β)Γ (α1 + 1)
e–λteλs

≥ [α2
1(1 – s)α1–1 – α1β(1 – s)α1 ]tα1–1 – α1(α1 – β)tα1–1(1 – s)α1–1

(α1 – β)Γ (α1 + 1)
e–λteλs

≥ α1βs(1 – s)α1–1eλs

(α1 – β)Γ (α1 + 1)
e–λttα1–1 ≥ 0.

Hence, the proof is complete. �

Lemma 2.6 Suppose that

(H) e–λΓ (α2 – γ2) > Γ (α2 – γ1)
∫ η

0
e–λssα2–γ2–1a(s) dA(s),

then, for all (t, s) ∈ [0, 1] × [0, 1], the Green function G(t, s) is continuous and satisfies:
(B1) G1(t, s) ≥ 0, G2(t, s) ≥ 0, and G(t, s) ≥ 0;
(B2) eλs[(1–s)α2–γ1–1–(1–s)α2–1]

Γ (α2) e–λttα2–1 ≤ G1(t, s) ≤ eλs(1–s)α2–γ1–1

Γ (α2) e–λttα2–1;

(B3) eλs[(1–s)α2–γ1–1–(1–s)α2–γ2–1]
Γ (α2) e–λttα2–γ2–1 ≤ G2(t, s) ≤ eλs(1–s)α2–γ1–1

Γ (α2) e–λttα2–γ2–1;
(B4) m2(s)e–λttα2–1 ≤ G(t, s) ≤ M2(s)e–λttα2–1, where

⎧
⎨

⎩

M2(s) = [ 1
Γ (α2) + δ

�Γ (α2)Γ (α2–γ2) ]eλs(1 – s)α2–γ1–1,

m2(s) = eλs[(1–s)α2–γ1–1–(1–s)α2–1]
Γ (α2) + δeλs[(1–s)α2–γ1–1–(1–s)α2–γ2–1]

�Γ (α2)Γ (α2–γ2) .
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Proof Firstly, for (t, s) ∈ [0, 1] × [0, 1], it is evident that G(t, s) and Gi(t, s)(i = 1, 2) are con-
tinuous.

Secondly, for (B2) and (B3), it is easy to see that the right sides of the inequalities hold, so
we only need to prove the left sides of the inequalities. If 0 ≤ s ≤ t ≤ 1, we have 0 ≤ t – s ≤
t – ts = (1 – s)t, and thus (t – s)α2–1 ≤ (1 – s)α2–1tα2–1. Hence, we have

G1(t, s) =
eλ(s–t)

Γ (α2)
[
tα2–1(1 – s)α2–γ1–1 – (t – s)α2–1]

≥ eλ(s–t)

Γ (α2)
[
tα2–1(1 – s)α2–γ1–1 – (1 – s)α2–1tα2–1]

=
eλs[(1 – s)α2–γ1–1 – (1 – s)α2–1]

Γ (α2)
e–λttα2–1.

If 0 ≤ t ≤ s ≤ 1,

G1(t, s) =
eλ(s–t)

Γ (α2)
tα2–1(1 – s)α2–γ1–1

≥ eλs[(1 – s)α2–γ1–1 – (1 – s)α2–1]
Γ (α2)

e–λttα2–1.

Furthermore, from (1 – s)α2–γ1–1 > (1 – s)α2–1, we get G1(t, s) ≥ 0 for ∀(t, s) ∈ [0, 1] × [0, 1].
In the same way, similar conclusions can be obtained for G2(t, s).

Finally, from (B2) and (B3), we can know that m2(s)e–λttα–1 ≤ G(t, s) ≤ M2(s)e–λttα–1.
Since the condition (H) holds, it is easy to see that � > 0. Combining (1 – s)α2–γ1–1 > (1 –
s)α2–1 with � > 0, we obtain m2(s) ≥ 0. Then G(s, t) ≥ 0 for ∀(t, s) ∈ [0, 1]×[0, 1]. Therefore,
our justification for the proof is complete. �

Lemma 2.7 ([20]) Let ξ ∈ (0, 1), A : P×P → P be a mixed monotone operator that satisfies

A
(
tx, t–1y

) ≥ tξ A(x, y), t ∈ (0, 1), x, y ∈ P. (2.17)

B : P → P is an increasing sub-homogeneous operator. Assume that
(I) there is h0 ∈ Ph such that A(h0, h0) ∈ Ph and Bh0 ∈ Ph;

(II) there exists a constant δ0 > 0 such that A(x, y) ≥ δ0Bx, ∀x, y ∈ P.
Then:

(1) A : Ph × Ph → Ph, B : Ph → Ph;
(2) there exist u0, v0 ∈ Ph and r ∈ (0, 1) such that

rv0 ≤ u0 < v0, u0 ≤ A(u0, v0) + Bu0 ≤ A(v0, u0) + B(v0) ≤ v0;

(3) the operator equation A(x, x) + Bx = x has a unique solution x∗ in Ph;
(4) for any initial values x0, y0 ∈ Ph, constructing successively the sequences

xn = A(xn–1, yn–1) + Bxn–1, yn = A(yn–1, xn–1) + Byn–1, n = 1, 2, . . . ,

we have xn → x∗ and yn → x∗ as n → ∞.
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3 Main results
In this section, we will work in the Banach space C[0, 1], the space of all continuous func-
tions on [0, 1]. It is obvious that this space can be equipped with a partial order

x, y ∈ C[0, 1], x ≤ y ⇐⇒ x(t) ≤ y(t) for t ∈ [0, 1].

Setting P = {x ∈ C[0, 1] | x(t) ≥ 0, t ∈ [0, 1]} and h(t) = e–λttα1–1, then we see that P is a
normal cone in C[0, 1].

From Lemma 2.4, we can recognize that the p-Laplacian differential equation integral
boundary value problem (1.1) is equivalent to the integral formulation given by

u(t) =
∫ 1

0
H(t, s)ϕq

(∫ 1

0
G(s, τ )

[
f
(
τ , u(τ ), u(τ )

)
+ g

(
τ , u(τ )

)]
dτ

)

ds.

For convenience, we define an operator T by

T(u, v)(t) =
∫ 1

0
H(t, s)ϕq

(∫ 1

0
G(s, τ )

[
f
(
τ , u(τ ), v(τ )

)
+ g

(
τ , u(τ )

)]
dτ

)

ds. (3.1)

It is evident that u∗ is a solution of p-Laplacian differential equation integral boundary
value problem (1.1) if and only if T(u∗, u∗) = u∗.

Theorem 3.1 Assume that the condition (H) holds, and the following conditions are sat-
isfied:

(H1) f (t, u, v) : [0, 1] × [0, +∞) × [0, +∞) → [0, +∞) is continuous, g(t, u) : [0, 1] ×
[0, +∞) → [0, +∞) is continuous with g(t, u) �≡ 0 and a(t) : [0, 1] → R+ is contin-
uous; for fixed t ∈ [0, 1], f (t, u, v) is increasing in u ∈ [0, +∞) and decreasing in
v ∈ [0, +∞), g(t, u) is increasing in u ∈ [0, +∞).

(H2) For ∀t ∈ [0, 1], γ ∈ (0, 1), u, v ∈ [0, +∞), there exists a constant ξ ∈ (0, 1) such that

f
(
t,γ u,γ –1v

) ≥ ϕξ
p (γ )f (t, u, v), (3.2)

g(t,γ u) ≥ ϕp(γ )g(t, u). (3.3)

(H3) For ∀t ∈ [0, 1] and u, v ∈ [0, +∞), there exists a constant δ0 > 0 such that

f (t, u, v) ≥ ϕp(δ0)g(t, u). (3.4)

Then we have:
(I) the p-Laplacian differential equation integral boundary value problem involving

tempered fractional derivative (1.1) has a unique positive solution u∗ ∈ Ph, where
h(t) = e–λttα1–1, t ∈ [0, 1];

(II) for ∀t ∈ [0, 1], there exist u0, v0 ∈ Ph and r ∈ (0, 1) such that rv0 ≤ u0 < v0 and

u0(t) ≤
∫ 1

0
H(t, s)ϕq

(∫ 1

0
G(s, τ )

[
f
(
τ , u0(τ ), v0(τ )

)
+ g

(
τ , u0(τ )

)]
dτ

)

ds,

v0(t) ≥
∫ 1

0
H(t, s)ϕq

(∫ 1

0
G(s, τ )

[
f
(
τ , v0(τ ), u0(τ )

)
+ g

(
τ , v0(τ )

)]
dτ

)

ds;
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(III) for any initial values x0, y0 ∈ Ph, making successively the sequences

xn =
∫ 1

0
H(t, s)ϕq

(∫ 1

0
G(s, τ )

[
f
(
τ , xn–1(τ ), yn–1(τ )

)
+ g

(
τ , xn–1(τ )

)]
dτ

)

ds,

yn =
∫ 1

0
H(t, s)ϕq

(∫ 1

0
G(s, τ )

[
f
(
τ , yn–1(τ ), xn–1(τ )

)
+ g

(
τ , yn–1(τ )

)]
dτ

)

ds,

n = 0, 1, 2, . . . ,

we obtain xn → u∗ and yn → u∗ as n → ∞.

Proof Firstly, we define two operators A : P × P → E and B : P → E by

A(u, v)(t) =
∫ 1

0
H(t, s)ϕq

(∫ 1

0
G(s, τ )f

(
τ , u(τ ), v(τ )

)
dτ

)

ds, (3.5)

B(u)(t) =
∫ 1

0
H(t, s)ϕq

(∫ 1

0
G(s, τ )g

(
τ , u(τ )

)
dτ

)

ds. (3.6)

From (3.1), we have T(u, v) = A(u, v)+B(u) and u is a solution of the p-Laplacian differential
system (1.1) if and only if T(u, u) = u. We show that the operator A satisfies the condition
(2.17) in Lemma 2.7 and the operator B is a sub-homogeneous operator.

From (H1), Lemma 2.5 and Lemma 2.6, we know that A : P × P → P and B : P → P. In
addition, it follows from (H1) and (H2) that A is a mixed monotone operator and B is an
increasing operator. For ∀γ ∈ (0, 1) and u, v ∈ P, from (3.2), we obtain

A
(
γ u,γ –1v

)
(t) =

∫ 1

0
H(t, s)ϕq

(∫ 1

0
G(s, τ )f

(
τ ,γ u(τ ),γ v(τ )

)
dτ

)

ds

≥
∫ 1

0
H(t, s)ϕq

(

ϕξ
p (γ )

∫ 1

0
G(s, τ )f

(
τ , u(τ ), v(τ )

)
dτ

)

ds

= γ ξ A(u, v)(t). (3.7)

That is, A(γ u,γ –1v) ≥ γ ξ A(u, v) for ∀γ ∈ (0, 1), u, v ∈ P. Furthermore, for ∀γ ∈ (0, 1) and
u ∈ P, from (3.3), we have

B(γ u)(t) =
∫ 1

0
H(t, s)ϕq

(∫ 1

0
G(s, τ )g

(
τ ,γ u(τ )

)
dτ

)

ds

≥ ϕq
(
ϕp(γ )

)
∫ 1

0
H(t, s)ϕq

(∫ 1

0
G(s, τ )g

(
τ , u(τ )

)
dτ

)

ds

= γ B(u)(t). (3.8)

That is, the operator B is a sub-homogeneous operator.
Secondly, we show that A(h, h) ∈ Ph and Bh ∈ Ph. From Lemma 2.5 and Lemma 2.6, we

have

A(h, h)(t) =
∫ 1

0
H(t, s)ϕq

(∫ 1

0
G(s, τ )f

(
τ , h(τ ), h(τ )

)
dτ

)

ds

≤
∫ 1

0
H(t, s)ϕq

(∫ 1

0
M2(τ )e–λssα2–1f

(
τ , h(τ ), h(τ )

)
dτ

)

ds
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≤
∫ 1

0
M1(s)e–λttα1–1ϕq

(∫ 1

0
M2(τ )e–λssα2–1f

(
τ , h(τ ), h(τ )

)
dτ

)

ds

≤
{∫ 1

0

M1(s)s(α2–1)(q–1)

eλs(q–1) ϕq

(∫ 1

0
M2(τ )f (τ , hmax, 0) dτ

)

ds
}

e–λttα1–1

and

A(h, h)(t) =
∫ 1

0
H(t, s)ϕq

(∫ 1

0
G(s, τ )f

(
τ , h(τ ), h(τ )

)
dτ

)

ds

≥
∫ 1

0
H(t, s)ϕq

(∫ 1

0
m2(τ )e–λssα2–1f

(
τ , h(τ ), h(τ )

)
dτ

)

ds

≥
∫ 1

0
m1(s)e–λttα1–1ϕq

(∫ 1

0
m2(τ )e–λssα2–1f

(
τ , h(τ ), h(τ )

)
dτ

)

ds

≥
{∫ 1

0

m1(s)s(α2–1)(q–1)

eλs(q–1) ϕq

(∫ 1

0
m2(τ )f (τ , 0, hmax) dτ

)

ds
}

e–λttα1–1,

where hmax = max{h(t) : t ∈ [0, 1]}. Setting

L1 =
∫ 1

0

M1(s)s(α2–1)(q–1)

eλs(q–1) ϕq

(∫ 1

0
M2(τ )f (τ , hmax, 0) dτ

)

ds,

l1 =
∫ 1

0

m1(s)s(α2–1)(q–1)

eλs(q–1) ϕq

(∫ 1

0
m2(τ )f (τ , 0, hmax) dτ

)

ds,

it is easy to see that L1 > l1 > 0. Hence, we get l1h(t) ≤ A(h, h) ≤ L1h(t). That is, A(h, h) ∈ Ph.
Similarly,

B(h)(t) =
∫ 1

0
H(t, s)ϕq

(∫ 1

0
G(s, τ )g

(
τ , h(τ )

)
dτ

)

ds

≤
{∫ 1

0

M1(s)s(α2–1)(q–1)

eλs(q–1) ϕq

(∫ 1

0
M2(τ )g(τ , hmax) dτ

)

ds
}

e–λttα1–1

and

B(h)(t) =
∫ 1

0
H(t, s)ϕq

(∫ 1

0
G(s, τ )g

(
τ , h(τ )

)
dτ

)

ds

≥
{∫ 1

0

m1(s)s(α2–1)(q–1)

eλs(q–1) ϕq

(∫ 1

0
m2(τ )g(τ , 0) dτ

)

ds
}

e–λttα1–1.

Set

L2 =
∫ 1

0

M1(s)s(α2–1)(q–1)

eλs(q–1) ϕq

(∫ 1

0
M2(τ )g(τ , hmax) dτ

)

ds,

l2 =
∫ 1

0

m1(s)s(α2–1)(q–1)

eλs(q–1) ϕq

(∫ 1

0
m2(τ )g(τ , 0) dτ

)

ds.

From L2 > l2 > 0 and l2h ≤ B(h) ≤ L2h, we get Bh ∈ Ph. Since h ∈ Ph, letting h0 = h, we see
that the condition (I1) of Lemma 2.7 is satisfied.
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Finally, we show that the condition (II) of Lemma 2.7 is also satisfied. For u, v ∈ P, from
(3.4), we get

A(u, v)(t) =
∫ 1

0
H(t, s)ϕq

(∫ 1

0
G(s, τ )f

(
τ , u(τ ), v(τ )

)
dτ

)

ds

≥
∫ 1

0
H(t, s)ϕq

(∫ 1

0
ϕp(δ0)G(s, τ )g

(
τ , u(τ )

)
dτ

)

ds

= δ0B(u)(t). (3.9)

Now, all conditions of Lemma 2.7 are satisfied. Hence, the conclusions of Theorem 3.1
follow from Lemma 2.7. �

Corollary 3.1 Assume that the condition (H) holds and
(H ′

1) f (t, u, v) : [0, 1] × [0, +∞) × [0, +∞) → [0, +∞) is continuous, g(t, u) ≡ 0 for ∀t ∈
[0, 1] and u ∈ [0, +∞), a(t) : [0, 1] → R+ is continuous;

(H ′
2) f (t, u, v) is increasing in u ∈ [0, +∞) for fixed t ∈ [0, 1] and v ∈ [0, +∞), decreasing

in v ∈ [0, +∞) for fixed t ∈ [0, 1] and u ∈ [0, +∞);
(H ′

3) for ∀t ∈ [0, 1], γ ∈ (0, 1), u, v ∈ [0, +∞), there exists a constant ξ ∈ (0, 1) such that

f
(
t,γ u,γ –1v

) ≥ ϕξ
p (γ )f (t, u, v).

Then we have:
(I) The p-Laplacian differential equation integral boundary value problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

R
0D

α2,λ
t (ϕp(R

0D
α1,λ
t u(t))) = f (t, u(t), u(t)), t ∈ [0, 1],

u(0) = u′(0) = · · · = u(n–2)(0) = 0,

ϕp(R
0D

α1,λ
t u)(0) = 0,

u(1) = β
∫ 1

0 e–λ(1–t)u(t) dt,
R
0D

γ1,λ
t (ϕp(R

0D
α1,λ
t u))(1) =

∫ η

0 a(s)R
0D

γ2,λ
t [ϕp(R

0D
α1,λ
t u(s))] dA(s),

has a unique positive solution u∗ ∈ Ph, where h(t) = e–λttα1–1.
(II) For ∀t ∈ [0, 1], there exist u0, v0 ∈ Ph and r ∈ (0, 1) such that rv0 ≤ u0 < v0 and

u0(t) ≤
∫ 1

0
H(t, s)ϕq

(∫ 1

0
G(s, τ )f

(
τ , u0(τ ), v0(τ )

)
dτ

)

ds,

v0(t) ≥
∫ 1

0
H(t, s)ϕq

(∫ 1

0
G(s, τ )f

(
τ , v0(τ ), u0(τ )

)
dτ

)

ds.

(III) For any initial values x0, y0 ∈ Ph, making successively the sequences

xn =
∫ 1

0
H(t, s)ϕq

(∫ 1

0
G(s, τ )f

(
τ , xn–1(τ ), yn–1(τ )

)
dτ

)

ds,

yn =
∫ 1

0
H(t, s)ϕq

(∫ 1

0
G(s, τ )f

(
τ , yn–1(τ ), xn–1(τ )

)
dτ

)

ds,

n = 0, 1, 2, . . . ,

we obtain xn → u∗ and yn → u∗ as n → ∞.
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Proof Letting g(t, u(t)) ≡ 0, from Theorem 3.1, we get the conclusions. �

4 Applications
Example We consider the p-Laplacian differential equation integral boundary value prob-
lem involving a tempered fractional derivative as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

R
0D

3
2 ,1
t (ϕ3(R

0D
5
2 ,1
t u(t))) = f (t, u(t), u(t)) + g(t, u(t)), 0 ≤ t ≤ 1;

u(0) = u′(0) = 0;

ϕ3(R
0D

5
2 ,1
t u)(0) = 0;

u(1) =
∫ 1

0 et–1u(t) dt,
R
0D

3
8 ,1
t (ϕ3(R

0D
5
2 ,1
t u))(1) =

∫ 1
0

R
0D

2
8 ,1
t [ϕ3(R

0D
5
2 ,1
t u(t))] d( t

2 );

(4.1)

where f (t, u, v) = (1 – t)– 1
3 t– 2

3 u 1
3 + v– 1

5 , g(t, u) = (1 – t)– 1
8 t– 1

6 u 1
3 , p = 3, λ = 1 > 0, η = 1 and

A(t) = t
2 . For any t ∈ (0, 1), u > 0 and v > 0 and we see that α1 = 5

2 , α2 = 3
2γ1 = 3

8 , γ2 = 2
8 ,

β = 1, a(t) ≡ 1 in the systems (4.1).
Let us investigate if all the conditions required in Theorem 3.1 are satisfied.
(1) From δ =

∫ η

0 e–λssα2–γ2–1a(s) dA(s) = 0.2385, it is easy to see that
Γ (α2 – γ1)

∫ η

0 e–λssα2–γ2–1a(s) dA(s) = 0.2246 and e–λΓ (α2 – γ2) = 0.3334, clearly,
e–λΓ (α2 – γ2) > Γ (α2 – γ1)

∫ η

0 e–λssα2–γ2–1a(s) dA(s). Then the condition (H) is
satisfied.

(2) It is obvious that f (t, u, v) : (0, 1) × R+ × R+ → R+ and g(t, u) : (0, 1) × R+ → R+ are
continuous. In addition, f (t, u, v) is increasing in u for fixed t ∈ (0, 1) and v ∈ R+,
decreasing in v for fixed t ∈ (0, 1) and u ∈ R+; furthermore, for fixed t ∈ (0, 1), g(t, u)
is increasing in u.

(3) For any γ ∈ (0, 1), t ∈ (0, 1), u, v > 0, taking ξ = 1
2 ∈ (0, 1), we have

f
(
t,γ u,γ –1v

)
= (1 – t)– 1

3 t– 2
3 (γ u)

1
3 +

(
γ –1v

)– 1
5

≥ γ
1
2
[
(1 – t)– 1

3 t– 2
3 u

1
3 + v– 1

5
]

≥ γ
[
(1 – t)– 1

3 t– 2
3 u

1
3 + v– 1

5
]

= ϕξ
p (γ )f (t, u, v)

and

g(t,γ u) = (1 – t)– 1
8 t– 1

6 (γ u)
1
3

≥ γ 2[(1 – t)– 1
8 t– 1

6 u
1
3
]

= ϕp(γ )g(t, u).

(4) Taking δ0 = 1
2 , for ∀t ∈ (0, 1) and u, v ∈ [0, +∞), we have

f (t, u, v) = (1 – t)– 1
3 t– 2

3 u
1
3 + v– 1

5

≥ 1
4
[
(1 – t)– 1

8 t– 1
6 u

1
3
]

= ϕp(δ0)g(t, u).
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From the above conditions, we can see that all the assumptions of Theorem 3.1 are satis-
fied. Hence, Theorem 3.1 implies that the p-Laplacian differential system (4.1) has a unique
positive solution u∗ ∈ Ph, where h(t) = e–tt 3

2 . Furthermore, for any initial values x0, y0 ∈ Ph,
making successively the sequences xn = T(xn–1, yn–1), yn = T(yn–1, xn–1), n = 0, 1, 2, . . . , we
obtain xn → u∗ and yn → u∗ as n → ∞.
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