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Abstract
The existence of a solution for a second-order p-Laplacian boundary value problem at
resonance with two dimensional kernel will be considered in this paper.
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1 Introduction
The following second-order p-Laplacian boundary value problem will be considered in
this work:

{
(ϕp(u′(t)))′ + g(t, u(t), u′(t)) = 0, t ∈ (0, +∞),
ϕp(u′(0)) =

∫ +∞
0 v(t)ϕp(u′(t)) dt, ϕp(u′(+∞)) =

∑m
j=1 βj

∫ ηj
0 ϕp(u′(t)) dt,

(1.1)

where g : [0, +∞) ×R
2 →R is an L1-Carathéodory function, 0 < η1 < η2 < · · · ≤ ηm < +∞,

βj ∈R, j = 1, 2, . . . , m, v ∈ L1[0, +∞), v(t) > 0 on [0, +∞), and

ϕp(s) = |s|p–2s, p ≥ 2.

There are many real life applications of boundary value problems with integral and
multi-point boundary conditions on an unbounded domain, for instance, in the study of
physical phenomena such as the study of an unsteady flow of fluid through a semi-infinite
porous medium and radially symmetric solutions of nonlinear elliptic equations. They
also arise in plasma physics and in the study of drain flows; see [1–3].
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Boundary value problems are said to be at resonance if the solution of the correspond-
ing homogeneous boundary value problem is non-trivial. Many authors in the literature
have considered resonant problems. López-Somoza and Minhós [4] obtained existence
results for a resonant multi-point second-order boundary value problem on the half-line,
Capitanelli, Fragapane and vivaldi [5] addressed regularity results for p-Laplacians in pre-
fractal domains, while Jiang and Kosmatov [6] considered resonant p-Laplacian problems
with functional boundary conditions. For other work on resonant problems without p-
Laplacian operator, see [7–10], while for problems with the p-Laplacian operator, see [11–
16]. In [17], Jiang considered the following p-Laplacian operator:

{
(ϕp(u′))′ + f (t, u, u′) = 0, 0 < t < +∞,
u(0) = 0, ϕp(u(+∞)) =

∑n
i=1 αiϕp(u′(ξi)),

where αi > 0, i = 1, 2, . . . , n,
∑n

i=1 αi = 1.
To the best of our knowledge p-Laplacian problems with two dimensional kernel on the

half-line have not received much attention in the literature.
We will give the required lemmas, theorem and definitions in Sect. 2, Sect. 3 will be

dedicated to stating and proving condition for existence of solutions, while an example
will be given in Sect. 4 to validate the result obtained.

2 Preliminaries
In this section, we will give some definitions and lemmas that will be used in this work.

Definition 2.1 ([11]) A map w : [0, +∞) ×R
2 →R is L1[0, +∞)-Carathéodory, if the fol-

lowing conditions are satisfied:
(i) for each (d, e) ∈R

2, the mapping t → w(t, d, e) is Lebesgue measurable;
(ii) for a.e. t ∈ [0,∞), the mapping (d, e) → w(t, d, e) is continuous on R

2;
(iii) for each k > 0, there exists ϕk(t) ∈ L1[0, +∞) such that, for a.e. t ∈ [0,∞) and every

(d, e) ∈ [–k, k], we have

∣∣w(t, d, e)
∣∣ ≤ ϕk(t).

Definition 2.2 ([18]) Let (U ,‖ · ‖U ) and (Z,‖ · ‖Z) be two Banach spaces. The continuous
operator M : U ∩ dom M → Z, is quasi-linear if the following hold:

(i) Im M = M(U ∩ dom M) is a closed subset of Z;
(ii) ker M = {u ∈ U ∩ dom M : Mu = 0} is linearly homeomorphic to R

n, n < +∞.

Definition 2.3 ([19]) Let U be a Banach space and U1 ⊂ U a subspace. Let P, Q : U → U1

be operators, then P is a projector if
(i) P2 = P;

(ii) P(λ1u1 + λ2u2) = λ1Pu1 + λ2Pu2 where u1, u2 ∈ U , λ1,λ2 ∈R,
and Q is a semi-projector if

(i) Q2 = Q;
(ii) Q(λu) = λQu where u ∈ U , λ ∈R.

Let U1 = ker M and U2 be the complement space of U1 in U , then U = U1 ⊕U2. Similarly,
if Z1 is a subspace of Z and Z2 is the complement space of Z1 in Z, then Z = Z1 ⊕ Z2. Let
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P : U → U1 be a projector, Q : Z → Z1 be a semi-projector and Ω ⊂ U an open bounded
set with θ ∈ Ω the origin. Also, let N1 be denoted by N , let Nλ : Ω → Z, where λ ∈ [0, 1]
is a continuous operator and Σλ = {u ∈ Ω : Mu = Nλu}.

Definition 2.4 ([20]) Let U be the space of all continuous and bounded vector-valued
functions on [0, +∞) and X ⊂ U . Then X is said to be relatively compact if the following
statements hold:

(i) X is bounded in U ;
(ii) all functions from X are equicontinuous on any compact subinterval of [0, +∞);

(iii) all functions from X are equiconvergent at ∞, i.e. ∀ε > 0, ∃ a T = T(ε) such that
‖A(t) – A(+∞)‖Rn < ε ∀t > T and A ∈ X .

Definition 2.5 ([18]) Let Nλ : Ω → Z, λ ∈ [0, 1] be a continuous operator. The operator
Nλ is said to be M-compact in Ω if there exist a vector subspace Z1 ∈ Z such that dim Z1 =
dim U1 and a compact and continuous operator R : Ω ×[0, 1] → U2 such that, for λ ∈ [0, 1],
the following holds:

(i) (I – Q)Nλ(Ω) ⊂ Im M ⊂ (I – B)Z,
(ii) QNλu = 0 ⇔ QNu = 0, λ ∈ (0, 1),

(iii) R(·, u) is the zero operator and R(·,λ)|Σλ
= (I – P)|Σλ

,
(iv) M[P + R(·,λ)] = (I – Q)Nλ.

Lemma 2.1 ([19]) The following are properties of the function ϕp : R →R:
(i) It is continuous, monotonically increasing and invertible. Its inverse ϕ–1

p = ϕq, where
q > 1 and satisfies 1

p + 1
q = 1.

(ii) For any x, y > 0,
(a) ϕp(x + y) ≤ ϕp(x) + ϕp(y), if 1 < p < 2,
(b) ϕp(x + y) ≤ 2p–2(ϕp(x) + ϕp(y)), if p ≥ 2.

Theorem 2.1 ([18]) Let (U ,‖ · ‖U ) and (Z,‖ · ‖Z) be two Banach spaces and Ω ⊂ U an
open and bounded set. If the following holds:

(A1) The operator M : U ∩ dom M → Z is a quasi-linear,
(A2) the operator Nλ : Ω → Z, λ ∈ [0, 1] is M-compact,
(A3) Mu �= Nλu, for λ ∈ (0, 1), u ∈ ∂Ω ∩ dom M,
(A4) deg{JQN ,Ω ∩ ker M, 0} �= 0, where the operator J : Z1 → U1 is a homeomorphism

with J(θ ) = θ and deg is the Brouwer degree,
then the equation Mu = Nu has at least one solution in Ω .

Let

U =
{

u ∈ C2[0, +∞) : u,ϕp
(
u′) ∈ AC[0, +∞), lim

t→+∞ e–t∣∣u(i)(t)
∣∣ exist, i = 0, 1

}
,

with the norm ‖u‖ = max{‖u‖∞,‖u′‖∞} defined on U where ‖u‖∞ = supt∈[0,+∞) e–t|u|. The
space (U ,‖ · ‖) by a standard argument is a Banach Space.
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Let Z = L1[0, +∞) with the norm ‖w‖L1 =
∫ +∞

0 |w(v)|dv. Define M as a continuous op-
erator such that M : dom M ⊂ U → Z where

dom M =

{
u ∈ U :

(
ϕp

(
u′))′ ∈ L1[0, +∞),ϕp

(
u′(0)

)
=

∫ +∞

0
v(t)ϕp

(
u′(t)

)
dt,

lim
t→+∞

(
ϕp

(
u′(t)

))
=

m∑
j=1

βj

∫ ηj

0
ϕp

(
u′(t)

)
dt

}

and Mu = (ϕp(u′(t)))′. We will define the operator Nλu : Ω → Z by

Nλu = –λg
(
t, u(t), u′(t)

)
, λ ∈ [0, 1], t ∈ [0, +∞),

where Ω ⊂ U is an open and bounded set. Then the boundary value problem (1.1) in
abstract form is Mu = Nu.

Throughout the paper we will assume the hypotheses:
(φ1)

∑m
j=1 βjηj =

∫ +∞
0 v(t) dt = 1;

(φ2)

C =

∣∣∣∣∣ Q1e–t Q2e–t

Q1te–t Q2te–t

∣∣∣∣∣ :=

∣∣∣∣∣ c11 c12

c21 c22

∣∣∣∣∣ = c11 · c22 – c12 · c21 �= 0,

where

Q1w =
∫ +∞

0
v(t)

∫ t

0
w(s) ds dt,

and

Q2w =
m∑

j=1

βj

∫ ηj

0

∫ +∞

t
w(s) ds dt.

It is obvious that ker M = {u ∈ dom M : u = a + bt : a, b ∈ R, t ∈ [0, +∞)} and Im M = {w :
w ∈ Z, Q1w = Q2w = 0}.

Clearly, ker M = 2 is linearly homeomorphic to R
2 and Im M ⊂ Z is closed, hence, the

operator M : dom M ⊂ U → Z is quasi-linear.
We next define the projector P : U → U1 as

Pu(t) = u(0) + u′(0)t, u ∈ U , (2.1)

and the operators �1,�2 : Z → Z1 as

�1w =
1
C

(δ11Q1w + δ12Q2w)e–t ,

and

�2w =
1
C

(δ21Q1w + δ22Q2w)e–t ,
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where δij is the co-factor of cij, i, j = 1, 2. Then the operator Q : Z → Z1 will be defined as

Qw = (�1w) + (�2w) · t (2.2)

where Z1 is the complement space of Im M in Z. Then the operator Q : Z → Z1 can easily
be shown to be a semi-projector.

Let the operator R : U × [0, 1] → U2 be defined by

R(u,λ)(t) =
∫ t

0
ϕq

(
ϕp

(
u′(0)

)
–

∫ τ

0
λ
(
g
(
s, u(s), u′(s)

)
– QNu(s)

)
ds

)
dτ – u′(0)t,

where U2 is the complement space of ker M in U.

Lemma 2.2 If g is a L1[0, +∞)-Carathéodory function, then R : U × [0, 1] → U2 is M-
compact.

Proof Let the set Ω ⊂ U be nonempty, open and bounded, then, for u ∈ Ω , there exists
a constant k > 0 such that ‖u‖ < k. Since g is an L1[0, +∞)-Carathéodory function, there
exists ψk ∈ L1[0, +∞) such that, for a.e. t ∈ [0, +∞) and λ ∈ [0, 1], we have

‖Nλu‖L1 + ‖QNλu‖L1 =
∫ +∞

0

∣∣Nλu(v)
∣∣dv +

∫ +∞

0

∣∣QNλu(v)
∣∣dv

≤ ‖ψk‖L1 + ‖QNu‖L1 .

Now for any u ∈ Ω , λ ∈ [0, 1], we have

∥∥R(u,λ)
∥∥∞ = sup

t∈[0,+∞)
e–t∣∣R(u,λ)(t)

∣∣ ≤ 1
e
ϕq

(
ϕp(k) + ‖Nuλ‖L1 + ‖QNλu‖L1

)
+ k

≤ ϕq
(
ϕp(k) + ‖ψk‖L1 + ‖QNu‖L1

)
+ k < +∞ (2.3)

and

∥∥R′(u,λ)
∥∥∞ = sup

t∈[0,+∞)
e–t∣∣R′(u,λ)(t)

∣∣
≤ ϕq

(
ϕp(k) + ‖ψk‖L1 + ‖QNu‖L1

)
+ k < +∞. (2.4)

Therefore it follows from (2.3) and (2.4) that R(u,λ)Ω is uniformly bounded.
Next we show that R(u,λ)Ω is equicontinuous in a compact set. Let u ∈ Ω , λ ∈ [0, 1].

For any T ∈ [0, +∞), with t1, t2 ∈ [0, T] where t1 < t2, we have

∣∣et2 R(u,λ)(t2) – et1 R(u,λ)(t1)
∣∣

=
∣∣∣∣et2

∫ t2

0
ϕq

(
ϕp

(
u′(0)

)
–

∫ τ

0
λ
(
g
(
s, u(s), u′(s)

)
– QNu(s)

)
ds

)
dτ – u′(0)t2e–t2

– e–t1

∫ –t1

0
ϕq

(
ϕp

(
u′(0)

)
–

∫ τ

0
λ
(
g
(
s, u(s), u′(s)

)
– QNu(s)

)
ds

)
dτ + u′(0)t1et1

∣∣∣∣
≤ ∣∣et2 – e–t1

∣∣ ∫ t1

0
ϕq

(
ϕp

(∣∣u′(0)
∣∣) +

∫ τ

0
λ
∣∣g(

s, u(s), u′(s)
)

– QNu(s)
∣∣ds

)
dτ
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+ e–t2

∫ t2

t1

ϕq

(
ϕp

(∣∣u′(0)
∣∣) +

∫ τ

0
λ
∣∣g(

s, u(s), u′(s)
)

– QNu(s)
∣∣ds

)
dτ

+
∣∣t1e–t1 – t2e–t2

∣∣∣∣u′(0)
∣∣

≤ (
et2 – e–t1

)
ϕq

(
ϕp(k) + ‖ψk‖L1 + ‖QNu‖L1

)
t1

+ e–t2ϕq
(
ϕp(k) + ‖ψk‖L1 + ‖QNu‖L1

)
(t2 – t1) +

∣∣t1e–t1 – t2e–t2
∣∣r

→ 0, as t1 → t2, (2.5)

and
∣∣e–t2 R′(u,λ)(t2) – e–t1 R′(u,λ)(t1)

∣∣
=

∣∣∣∣et2ϕq

(
ϕp

(
u′(0)

)
–

∫ t2

0
λ
(
g
(
s, u(s), u′(s)

)
– QNu(s)

)
ds

)
– u′(0)e–t2

– e–t1ϕq

(
ϕp

(
u′(0)

)
–

∫ t1

0
λ
(
g
(
s, u(s), u′(s)

)
– QNu(s)

)
ds

)
+ u′(0)e–t1

∣∣∣∣
≤ (

et2 – e–t1
)
ϕq

(
ϕp(k) + ‖ψk‖L1 + ‖QNu‖L1

)
+

(
e–t1 – e–t2

)
k

→ 0, as t1 → t2. (2.6)

Thus, (2.5) and (2.6) show that R(u,λ)Ω is equicontinuous on [0, T].
We will now prove that R(u,λ)Ω is equiconvergent at ∞. Since limt→+∞ e–t = 0,

lim
t→+∞ e–tR(u,λ)(t) = lim

t→+∞ e–tR′(u,λ)(t) = 0.

Hence,
∣∣∣e–tR(u,λ)(t) – lim

t→+∞ e–tR(u,λ)(t)
∣∣∣

=
∣∣∣∣e–t

∫ t

0
ϕq

(
ϕp

(
u′(0)

)
–

∫ τ

0
λ
(
g
(
s, u(s), u′(s)

)
– QNu(s)

)
ds

)
dτ – te–tu′(0) – 0

∣∣∣∣
≤ te–tϕq

(
ϕp(k) + ‖ψk‖L1 + ‖QNu‖L1

)
+ kte–t

→ 0, uniformly as t → +∞, (2.7)

and ∣∣∣e–tR′(u,λ)(t) – lim
t→+∞ e–tR′(u,λ)(t)

∣∣∣
=

∣∣∣∣e–tϕq

(
ϕp

(
u′(0)

)
–

∫ t

0
λ
(
g
(
s, u(s), u′(s)

)
– QNu(s)

)
ds

)
– e–tu′(0) – 0

∣∣∣∣
≤ e–tϕq

(
ϕp(k) + ‖ψk‖L1 + ‖QNu‖L1

)
+ ke–t

→ 0, uniformly as t → +∞. (2.8)

Therefore R(u,λ)Ω is equiconvergent at +∞. It then follows from Definition 2.4 that
R(u,λ) is compact. �

Lemma 2.3 The operator Nλ is M-compact.
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Proof Since Q is a semi-projector, Q(I – Q)Nλ(Ω) = 0. Hence, (I – Q)Nλ(Ω) ⊂ ker Q =
Im M. Conversely, let w ∈ Im M, then w = w – Qw = (I – Q)w ∈ (I – Q)Z. Hence, condition
(i) of definition (2.5) is satisfied. It can easily be shown that condition (ii) of Definition 2.5
holds.

Let u ∈ Σλ = {u ∈ Ω : Mu = Nλu}, then Nλu ∈ Im M. Hence, QNλu = 0 and R(u, 0)(t) = 0.
From (ϕp(u′(t)))′ + g(t, u(t), u′(t)) = 0, t ∈ (0, +∞), we have

R(u,λ)(t) =
∫ t

0
ϕq

(
ϕp

(
u′(0)

)
–

∫ τ

0
λg

(
s, u(s), u′(s)

)
ds

)
dτ – u′(0)t

=
∫ t

0
ϕq

(
ϕp

(
u′(0)

)
+ ϕp

(
u′(τ )

)
– ϕp

(
u′(0)

))
dτ – u′(0)t

= u(t) – u(0) – u′(0)t = u(t) – Pu(t) =
[
(I – P)u

]
(t).

Therefore, condition (iii) of definition (2.5) holds.
Let u ∈ Ω . Since Mu = (ϕp(u′(t)))′ we have

M
[
Pu + R(u,λ)

]
(t) =

(
ϕp

([
Pu + R(u,λ)

])′(t)
)′

=
(

ϕp

[
u(0) + u′(0)t +

∫ t

0
ϕq

(
ϕp

(
u′(0)

)
–

∫ τ

0
λ
(
g
(
s, u(s), u′(s)

)

– QN(s)
)

ds
)

dτ – u′(0)t
]′)′

=
(

ϕp
(
u′(0)

)
–

∫ τ

0
λ
(
g
(
s, u(s), u′(s)

)
– QN(s)

)
ds

)′
= (I – Q)Nλ(t),

that is, condition (iv) of definition (2.5) holds. Hence, Nλ is M-compact in Ω . �

3 Existence result
In this section, the conditions for existence of solutions for boundary value problem (1.1)
will be stated and proved.

Theorem 3.1 Assume g is a L[0, +∞)-Carathéodory function and the following hypotheses
hold:

(H1) there exist functions x1(t), x2(t), x3(t) ∈ L1[0, +∞) such that, for a.e. t ∈ [0, +∞),

∣∣g(
t, u, u′)∣∣ ≤ e–t(x1(t)|u|p–1 + x2(t)

∣∣u′∣∣p–1) + x3(t), (3.1)

(H2) for u ∈ dom M there exists a constant A0 > 0, such that, if |u(t)| > A0 for t ∈ [0, +∞)
or |u′(t)| > A0 for t ∈ [0, +∞], then either

Q1Nu(t) �= 0 or Q2Nu(t) �= 0, t ∈ [0, +∞), (3.2)

(H3) there exists a constant l > 0 such that, for |a| > l or |b| > l either

Q1N(a + bt) + Q2N(a + bt) < 0, t ∈ [0, +∞), (3.3)
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or

Q1N(a + bt) + Q2N(a + bt) > 0, t ∈ [0, +∞), (3.4)

where a, b ∈R, |a| + |b| > l and t ∈ [0, +∞).
Then the boundary value problem (1.1) has at least one solution, provided

22q–4(‖x2‖L1 + 2q–2‖x1‖L1
)

< 1, for 1 < p ≤ 2,

or

ϕq
(‖x1‖L1 + ‖x2‖L1

)
< 1, for p > 2.

The following lemmas are also needed to prove our main result.

Lemma 3.1 The set Ω1 = {u ∈ dom M : Mu = Nλu for some λ ∈ (0, 1)} is bounded.

Proof Let u ∈ Ω1 then Nλu ∈ Im M = ker Q. Hence, QNλu = 0 and QNu = 0. It follows
from H2 that there exist t0, t1 ∈ [0, +∞), such that |u(t0)| ≤ A0 and |u′(t1)| ≤ A0. From
u(t) = u(t0) +

∫ t
t0

u′(v) dv, we have

∣∣u(t)
∣∣ =

∣∣∣∣u(t0) –
∫ t

t0

u′(s) ds
∣∣∣∣ ≤ A0 + |t – t0|

∥∥u′∥∥∞.

Hence,

‖u‖∞ = sup
t→∞

e–t∣∣u(t)
∣∣ ≤ A0 +

∥∥u′∥∥∞. (3.5)

Also, from Mu = Nλu, we get

ϕp
(
u′(t)

)
= –

∫ t

t1

λg
(
s, u(s), u′(s)

)
ds + ϕp

(
u(t1)

)
.

In view of (3.1), we have

∣∣(u′(t)
)∣∣ ≤ ϕq

(
ϕp(A0) +

∫ +∞

0

(
x1(t)

∣∣ϕp
(
u(t)

)∣∣ + x2(t)
∣∣ϕp

(
u′)∣∣ + x3(t)

)
dt

)

≤ ϕq
(
ϕp(A0) + ‖x1‖L1ϕp

(‖u‖∞
)

+ ‖x2‖L1ϕp
(∥∥u′∥∥∞

)
+ ‖x3‖L1

)
≤ ϕq

(
ϕp(A0) + ‖x1‖L1ϕp

(
A0 +

∥∥u′∥∥∞
)

+ ‖x2‖L1ϕp
(∥∥u′∥∥∞

)
+ ‖x3‖L1

)
. (3.6)

If 1 < p ≤ 2, it follows from Lemma 2.1 that

∥∥u′∥∥∞ ≤ 22q–4[ϕq(‖x3‖L1 ) + A0(1 + 2q–2‖x1‖L1

1 – 22q–4(‖x2‖L1 + 2q–2‖x1‖L1 )
. (3.7)

If p > 2 then, by Lemma 2.1, we get

∥∥u′∥∥∞ ≤ A0(1 + ϕq(‖x1‖L1 ) + ϕq(‖x3‖L1 )
1 – ϕq(‖x1‖L1 + ‖x2‖L1 )

. (3.8)
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Since ‖u‖ = max{‖u‖∞,‖u′‖∞} ≤ A0 + ‖u′‖∞, in view of (3.7) and (3.8), Ω1 is
bounded. �

Lemma 3.2 If Ω2 = {u ∈ ker M : –λu + (1 – λ)JQNu = 0,λ ∈ [0, 1]}, J : Im Q → ker M is a
homomorphism, then Ω2 is bounded.

Proof For a, b ∈ R, let J : Im Q → ker M be defined by

J(a + bt) =
1
C

[
δ11|a| + δ12|b| +

(
δ21|a| + δ22|b|)t)

]
e–t . (3.9)

If (3.3) holds, for any u(t) = a + bt ∈ Ω3, from –λu + (1 – λ)JQNu = 0, we obtain

{
δ11(–λ|a| + (1 – λ)Q1N(a + bt)) + δ12(–λ|b| + (1 – λ)Q2N(a + bt)) = 0,
δ21(–λ|a| + (1 – λ)Q1N(a + bt)) + δ22(–λ|b| + (1 – λ)Q2N(a + bt)) = 0.

Since C �= 0,

λ|a| = (1 – λ)Q1N(a + bt),

λ|b| = (1 – λ)Q2N(a + bt).
(3.10)

From (3.10), when λ = 1, a = b = 0. When λ = 0,

Q1N(a + bt) + Q2N(a + bt) = 0,

which contradicts (3.3) and (3.4), hence from (H3), |a| ≤ l and |b| ≤ l. For λ ∈ (0, 1), in view
of (3.3) and (3.10), we have

0 ≤ λ
(|a| + |b|) = (1 – λ)

[
Q1N(a + bt) + Q2N(a + bt)

]
< 0,

which contradicts λ(|a|+ |b|) ≥ 0. Hence, (H3), |a| ≤ l and |b| ≤ l, thus ‖u‖ ≤ 2l. Therefore
Ω2 is bounded. �

Proof of Theorem 3.1 Since M is quasi-linear, condition (A1) of Theorem 2.1 holds,
Lemma 2.2 proved (A2), while Lemma 3.1 shows that (A3) holds.

Let Ω ⊃ Ω1 ∪ Ω2 be a nonempty, open and bounded set, u ∈ dom M ∩ ∂Ω , H(u,λ) =
–λu + (1 – λ)JQNu, and J be as defined in Lemma 3.2 then H(u,λ) �= 0 . Therefore by the
homotopy property of the Brouwer degree

deg{JQN |Ω∩ker M,Ω ∩ ker M, 0} = deg
{

H(·, 0),Ω ∩ ker M, 0
}

= deg
{

H(·, 1),Ω ∩ ker M, 0
}

= deg{–I,Ω ∩ ker M, 0} �= 0.

Hence, condition (A4) of Theorem 2.1 also holds. �

Since all the conditions of Theorem 2.1 are satisfied, the abstract equation Mu = Nu has
at least one solution in Ω ∩ dom M. Hence, (1.1) has at least one solution.



Imaga and Iyase Boundary Value Problems        (2020) 2020:114 Page 10 of 11

4 Example
Consider the following boundary value problem:

{
(ϕ4(u′(t)))′ + e–t–2 sin t · u3 + e–t–3 cos t · u′3 + 1

6 e–6t = 0, t ∈ (0, +∞),
ϕ4(u′(0)) =

∫ +∞
0 2e–2tϕ4(u′(t)) dt, ϕ4(u′(+∞)) = 9

∫ 1/9
0 ϕ4(u′(t)) dt.

(4.1)

Here v(t) = 2e–2t , p = 4, q = 4
3 , β1 = 9, η1 = 1

9 , x1 = e–t–2 sin t and x2 = e–t–3 cos t. Therefore,∑1
j=1 βjηj = 1,

∫ +∞
0 v(t) dt = 1, C �= 0 and ϕq(‖x1‖L1 + ‖x2‖L2 ) < 1. It can easily be seen that

conditions (H1)–(H3) hold. Hence, (4.1) has at least one solution.
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