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Abstract
We are concerned with the following elliptic equations with variable exponents:

M([u]s,p(·,·))Lu(x) + V (x)|u|p(x)–2u = λρ(x)|u|r(x)–2u + h(x,u) in R
N ,

where [u]s,p(·,·) :=
∫
RN

∫
RN

|u(x)–u(y)|p(x,y)
p(x,y)|x–y|N+sp(x,y) dx dy, the operator L is the fractional

p(·)-Laplacian, p, r :RN → (1,∞) are continuous functions,M ∈ C(R+) is a
Kirchhoff-type function, the potential function V :RN → (0,∞) is continuous, and
h :RN ×R → R satisfies a Carathéodory condition. Under suitable assumptions on h,
the purpose of this paper is to show the existence of at least two non-trivial distinct
solutions for the problem above for the case of a combined effect of concave–convex
nonlinearities. To do this, we use the mountain pass theorem and variant of the
Ekeland variational principle as the main tools.
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1 Introduction
In the last two decades an increasing deal of attention has been paid to the investigation
on problems of differential equations and variational problems with nonstandard growth
conditions because they can be corroborated as a model for many physical phenomena
which arise in the research of elastic mechanics, electro-rheological fluid (“smart fluids”)
and image processing, etc. We refer the reader to [6, 11, 17, 24, 34, 42, 44] and the refer-
ences therein.

On the other hand, in recent years the study of fractional Sobolev spaces and the cor-
responding nonlocal equations has received a great amount of attention because of their
occurrence in many different applications such as optimization, fractional quantum me-
chanics, the thin obstacle problem, phase transition phenomena, image process, game
theory and Lévy processes; see [14, 23, 28, 36, 39, 45] and the references therein for more
details.
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In this direction it is a natural question to see which results can be recovered when we re-
place the local p(·)-Laplacian, defined as – div(|∇u|p(x)–2∇u), with the nonlocal fractional
p(·)-Laplacian. Very recently, many authors in [1, 5, 7, 8, 18, 19, 29, 33] have investigated
elliptic problems involving the fractional p(·)-Laplacian. A new class of fractional Sobolev
spaces with variable exponents that takes into account a fractional variable exponent op-
erator has been introduced by Kaumann et al. [33]. The authors in [8] particular presented
further primary properties both on this function space and the related nonlocal operator.
As applications, they gave the existence of at least one solution for equations involving
the fractional p(·)-Laplacian. Based on this recent work, Ho and Kim [29] provided fun-
damental embeddings for the fractional Sobolev space with variable exponent and their
applications such as a priori bounds and multiplicity of solutions of the fractional p(·)-
Laplacian problems.

In this paper, we are concerned with a Schrödinger–Kirchhoff type problem driven by
the non-local fractional p(·)-Laplacian as follows:

M
(
[u]s,p(·,·)

)
Lu(x) + V(x)|u|p(x)–2u = λρ(x)|u|r(x)–2u + h(x, u) in R

N , (Pλ)

where [u]s,p(·,·) :=
∫
RN

∫
RN

|u(x)–u(y)|p(x,y)

p(x,y)|x–y|N+sp(x,y) dx dy, p, r : RN → (1,∞) are continuous functions
with 1 < infx∈RN r(x) ≤ supx∈RN p(x), M ∈ C(R+) is a Kirchhoff type function, the potential
functionV : RN → (0,∞) is continuous, and h : RN ×R →R satisfies a Carathéodory con-
dition satisfying the subcritical and p(·)-superlinear nonlinearity, and L is the fractional
p(·)-Laplacian operator defined as

Lu(x) = 2 lim
ε↘0

∫

RN \Bε (x)

|u(x) – u(y)|p(x,y)–2(u(x) – u(y))
|x – y|N+sp(x,y) dy, x ∈R

N ,

where s ∈ (0, 1) and Bε(x) := {y ∈ R
N : |y – x| ≤ ε}. Here, p(x) = p(x, x) for all x ∈ R

N with
p ∈ C(RN × R

N ) satisfying p(x, y) = p(y, x) for all x, y ∈ R
N and 1 < inf(x,y)∈RN ×RN p(x, y) ≤

sup(x,y)∈RN ×RN p(x, y) < N
s .

Let us first assume that a Kirchhoff function M : R+
0 → R

+ satisfies the following condi-
tions:

(M1) M ∈ C(R+
0 ,R+) satisfies inft∈R+

0
M(t) ≥ m0 > 0, where m0 is a constant,

(M2) There exists ϑ ∈ [1, N
N–sp+

) such that ϑM(t) = ϑ
∫ t

0 M(τ ) dτ ≥ M(t)t for any t ≥ 0.
A typical example for M is given by M(t) = b0 + b1tn with n > 0, b0 > 0 and b1 ≥ 0. The
Kirchhoff type problem was primarily introduced in [37] as a generalization of the clas-
sical D’Alembert wave equation for free vibrations of elastic strings. Some interesting
researches by variational methods can be found in [20, 21, 40, 41, 43, 49] for Kirchhoff
type problems. Recently, Pucci et al. [43] studied the existence of nontrivial solutions for
the Schrödinger–Kirchhoff type equations involving the fractional p-Laplacian in R

N ; see
[49] for problems with Dirichlet boundary data. In [40], the authors showed that a p(x)-
Kirchhoff type problem admits at least two nontrivial different solutions by employing ab-
stract critical point theorems which is based on a generalization of Ekeland’s variational
principle [25]. The primary strategy for obtaining this is to observe the relationship be-
tween the mountain pass geometry and the existence of a local minima for an appropriate
functional.
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The main aim of the present paper is to establish the existence of at least two nontrivial
distinct solutions for Schrödinger–Kirchhoff type problems in the case where the non-
linear term is concave–convex, by employing the mountain pass theorem (see [4]) and a
variant of the variational principle of Ekeland (see [6]). This type of nonlinearity has been
extensively investigated since the seminal work of Ambrosetti, Brezis and Cerami [3] for
the Laplacian problem

⎧
⎨

⎩

–	u = λ|u|q–2u + |u|h–2u in Ω ,

u = 0 on ∂Ω ,

where

1 < q < 2 < h < 2∗ :=

⎧
⎨

⎩

2N
N–2 if N > 2,

+∞ if N = 1, 2.

For elliptic equations with the concave–convex nonlinearity, we also infer the reader to
[12, 15, 16, 22, 30, 47, 48, 50] and the references therein. Especially, the existence of mul-
tiple solutions for an elliptic problem of a nonhomogeneous fractional p-Kirchhoff type
involving concave–convex nonlinearities has been established in [50]. In [30], the authors
built the existence of two nontrivial nonnegative solutions and infinitely many solutions
for the following p(x)-Laplacian equations involving concave–convex type nonlinearities
with two parameters:

⎧
⎨

⎩

– div(w(x)|∇v|p(x)–2∇v) = λa(x)|u|q(x)–2u + μb(x)|u|h(x)–2u in Ω ,

u = 0 on ∂Ω ,

where Ω ⊂ R
N is a bounded domain with a smooth boundary ∂Ω , p, q, h ∈ C(Ω , (1,∞))

with q(x) < p(x) < h(x) for all x ∈ Ω , w, a, b are measurable functions on Ω that are posi-
tives a.e. in Ω , and λ, μ are real parameters. Very recently, Biswas and Tiwari [10] studied
problem (Pλ) in a bounded domain, which is subject to Dirichlet boundary conditions
with M ≡ 1, V ≡ 0 and ρ ≡ 1. In order to obtain the multiplicity result, they consid-
ered two aspects: one is to assume the condition by Ambrosetti and Rabinowitz [4] (see
[2, 26] for elliptic equations with variable exponents), and the other is to apply the moun-
tain pass theorem and Ekeland’s variational principle. In that sense, the first purpose of
this article is to show the existence of two nontrivial distinct solutions for the problem
(Pλ) for the case of a combined effect of concave–convex nonlinearities when h fulfils the
condition of Ambrosetti–Rabinowitz type, that is, there exists a constant θ > 0 such that
θ > ϑ supx∈RN p(x) and

0 < θH(x, t) ≤ h(x, t)t, for all t ∈R \ {0} and x ∈R
N ,

where H(x, t) =
∫ t

0
h(x, s) ds. (1.1)

As is well known, this condition is essential in ensuring the boundedness of a Palais–Smale
sequence of the Euler–Lagrange functional corresponding to the problem (Pλ). However,
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in comparison with [2, 10, 11, 26], it is not easy to obtain this compactness condition
because the Kirchhoff function M is not convex and the given problem has the concave–
convex nonlinearity. The second one is to establish the existence of multiple solutions to
(Pλ), provided that the nonlinear growth h fulfils a weaker condition than condition (1.1),
which will be specified later. Roughly speaking, by utilizing analogous arguments to the
first main aim we attempt to establish this multiplicity result when for h one has mild
and different assumptions from condition (1.1) which is originally given in [31]. In order
to obtain this, we give a sufficient condition for the modified function M which is not a
Kirchhoff function as in the original work due to Kirchhoff [37]. As seen before, the main
tools are the mountain pass theorem and a variant of the Ekeland variational principle for
an energy functional with the compactness condition of the Palais–Smale type, namely
the Cerami condition; see Lemma 2.9 in [32] and Corollary 3.2 in [6], respectively. To the
best of our knowledge, the present paper is the first to study the existence of at least two
nontrivial distinct solutions for Schrödinger–Kirchhoff type problems with the concave–
convex nonlinearity in these situations even in the case of M ≡ 1 or constant exponents.

This paper is designed as follows. In Sect. 2, we briefly review the definitions and col-
lect some preliminary results for the Lebesgue spaces with variable exponents and the
variable exponent Lebesgue–Sobolev space of fractional type. In Sect. 3, we give the exis-
tence results of multiple solutions to the problem (Pλ) by employing as the main tools the
variational principle.

2 Preliminaries
In this section, we briefly introduce some useful definitions and well-known properties
of the variable exponent Lebesgue–Sobolev space of fractional type W s,p(·,·) which will be
treated in the next sections.

Set

C+
(
R

N)
=

{
f ∈ C

(
R

N)
: inf

x∈RN
f (x) > 1

}
.

For any f ∈ C+(RN ), we define

f+ = sup
x∈RN

f (x) and f– = inf
x∈RN

f (x).

For any p ∈ C+(RN ), we introduce the variable exponent Lebesgue space

Lp(·)(
R

N)
:=

{

u : u is a measurable real-valued function,
∫

RN

∣
∣u(x)

∣
∣p(x) dx < ∞

}

,

endowed with the Luxemburg norm

‖u‖Lp(·)(RN ) = inf

{

λ > 0 :
∫

RN

∣
∣
∣
∣
u(x)
λ

∣
∣
∣
∣

p(x)

dx ≤ 1
}

.

The dual space of Lp(·)(RN ) is Lp′(·)(RN ), where 1/p(x) + 1/p′(x) = 1.
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Let 0 < s < 1 and let p ∈ C(RN × R
N , (1,∞)) be such that p is symmetric, i.e., p(x, y) =

p(y, x) for all x, y ∈R
N and

1 < p– := inf
(x,y)∈RN ×RN

p(x, y) ≤ p+ := sup
(x,y)∈RN ×RN

p(x, y) < +∞.

For p ∈ C+(RN ), define

W s,p(·),p(·,·)(
R

N)
:=

{

u ∈ Lp(·)(
R

N)
:
∫

RN

∫

RN

|u(x) – u(y)|p(x,y)

|x – y|N+sp(x,y) dx dy < +∞
}

,

and we set

|u|s,p(·,·) := inf

{

λ > 0 :
∫

RN

∫

RN

|u(x) – u(y)|p(x,y)

λp(x,y)|x – y|N+sp(x,y) dx dy < 1
}

.

Then W s,p(·),p(·,·)(RN ) endowed with the norm

‖u‖s,p,RN := ‖u‖Lp(·)(RN ) + |u|s,p(·,·)

is a separable reflexive Banach space (see [7, 8, 33]). It is immediate that

|u|s,p,RN := inf

{

λ > 0 :
∫

RN

∣
∣
∣
∣
u
λ

∣
∣
∣
∣

p(x)

dx +
∫

RN

∫

RN

|u(x) – u(y)|p(x,y)

λp(x,y)|x – y|N+sp(x,y) dx dy < 1
}

is an equivalent norm of ‖ · ‖s,p,RN with the relation

1
2
‖u‖s,p,RN ≤ |u|s,p,RN ≤ 2‖u‖s,p,RN .

Throughout this paper, for brevity, we write p(x) instead of p(x, x) for some cases and
hence, p ∈ C+(RN ). Furthermore, we write W s,p(·,·)(RN ) instead of W s,p(·),p(·,·)(RN ).

Lemma 2.1 ([27, 38]) The space Lp(·)(RN ) is a separable, uniformly convex Banach space,
and its conjugate space is Lp′(·)(RN ) where 1/p(x) + 1/p′(x) = 1. For any u ∈ Lp(·)(RN ) and
v ∈ Lp′(·)(RN ), we have

∣
∣
∣
∣

∫

RN
uv dx

∣
∣
∣
∣ ≤

(
1

p–
+

1
(p′)–

)

‖u‖Lp(·)(RN )‖v‖Lp′(·)(RN ) ≤ 2‖u‖Lp(·)(RN )‖v‖Lp′(·)(RN ).

Lemma 2.2 ([27]) Denote

ρ(u) =
∫

RN
|u|p(x) dx, for all u ∈ Lp(·)(

R
N)

.

Then
(1) ρ(u) > 1 (= 1; < 1) if and only if ‖u‖Lp(·)(RN ) > 1 (= 1; < 1), respectively;
(2) if ‖u‖Lp(·)(RN ) > 1, then ‖u‖p–

Lp(·)(RN ) ≤ ρ(u) ≤ ‖u‖p+
Lp(·)(RN );

(3) if ‖u‖Lp(·)(RN ) < 1, then ‖u‖p+
Lp(·)(RN ) ≤ ρ(u) ≤ ‖u‖p–

Lp(·)(RN ).
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Proposition 2.3 ([29]) Denote

ρ̃(u) :=
∫

RN
|u|p(x) dx +

∫

RN

∫

RN

|u(x) – u(y)|p(x,y)

|x – y|N+sp(x,y) dx dy.

On W s,p(·,·)(RN ) we have:
(i) for u ∈ W s,p(·,·)(RN ) \ {0}, λ = ‖u‖s,p,RN if and only if ρ̃( u

λ
) = 1;

(ii) ρ̃(u) > 1 (= 1; < 1) if and only if ‖u‖s,p > 1 (= 1; < 1), respectively;
(iii) if ‖u‖s,p,RN ≥ 1, then ‖u‖p–

s,p,RN ≤ ρ̃(u) ≤ ‖u‖p+

s,p,RN ;

(iv) if ‖u‖s,p,RN < 1, then ‖u‖p+

s,p,RN ≤ ρ̃(u) ≤ ‖u‖p–

s,p,RN .

We recall the embedding theorem for the fractional Sobolev space with variable expo-
nent as follows.

Lemma 2.4 (Subcritical embeddings, [29]) We have:
(1) W s,p(·,·)(Ω) ↪→↪→ Lr(·)(Ω), if Ω is a bounded Lipschitz domain and r ∈ C+(Ω) such

that r(x) < Np(x)
N–sp(x) =: p∗

s (x) for all x ∈ Ω ;
(2) W s,p(·,·)(RN ) ↪→ Lr(·)(RN ) for any uniformly continuous function r ∈ C+(RN )

satisfying p(x) ≤ r(x) for all x ∈ R
N and infx∈RN (p∗

s (x) – r(x)) > 0;
(3) W s,p(·,·)(RN ) ↪→↪→ Lr(·)

loc (RN ) for any r ∈ C+(RN ) satisfying r(x) < p∗
s (x) for all x ∈R

N .

Next, we consider the case that the potential function V satisfies
(V) V ∈ C(RN ), infx∈RN V(x) > 0, and meas{x ∈R

N : V(x) ≤ V0} < +∞ for all V0 ∈R.
On the linear subspace

E :=
{

u ∈ W s,p(·,·)(
R

N)
:

∫

RN

∫

RN

|u(x) – u(y)|p(x,y)

|x – y|N+sp(x,y) dx dy +
∫

RN
V(x)

∣
∣u(x)

∣
∣p(x) dx < +∞

}

,

we endow the norm

‖u‖E := inf

{

λ > 0 :
∫

RN
V(x)

∣
∣
∣
∣
u
λ

∣
∣
∣
∣

p(x)

dx +
∫

RN

∫

RN

|u(x) – u(y)|p(x,y)

λp(x,y)|x – y|N+sp(x,y) dx dy < 1
}

.

Then (E,‖ · ‖E) is continuously embedded into W s,p(·,·) as a closed subspace. Therefore,
(E,‖ · ‖E) is also a separable reflexive Banach space. Let E∗ be a dual space of E. Further-
more, 〈·, ·〉 denotes the pairing of E and its dual E∗.

With the aid of Lemma 2.4, the proof of the following assertion is essentially the same
as in those of Lemma 2.6 in [2].

Lemma 2.5 If the potential function V satisfies the assumption (V), then:
(1) we have a compact embedding E ↪→ Lp(·)(RN );
(2) for any measurable function q : RN →R with p(x) < q(x) for all x ∈R

N , there is a
compact embedding E ↪→ Lq(·)(RN ) if infx∈RN (p∗(x) – q(x)) > 0.
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3 Existence of solutions
In this section, the existence of nontrivial weak solutions for (Pλ) is shown by applying
the mountain pass theorem and a variant of Ekeland variational principle under suitable
assumptions.

Definition 3.1 We say that u ∈ E is a weak solution of (Pλ) if

M
(
[u]s,p(·,·)

)
∫

RN

∫

RN

|u(x) – u(y)|p(x,y)–2(u(x) – u(y))(w(x) – w(y))
|x – y|N+sp(x,y) dx dy

+
∫

RN
V(x)|u|p(x)–2uw dx

= λ

∫

RN
ρ(x)|u|r(x)–2uw dx +

∫

RN
h(x, u)w dx

for any w ∈ E, where

[u]s,p(·,·) :=
∫

RN

∫

RN

|u(x) – u(y)|p(x,y)

p(x, y)|x – y|N+sp(x,y) dx dy.

Let us define the functional Φ : E →R by

Φ(u) = M
(
[u]s,p(·,·)

)
+

∫

RN

V(x)
p(x)

|u|p(x) dx.

The following lemma can be proved by using arguments as in [43, Lemma 2].

Lemma 3.2 If (V) and (M1) hold, then the functional Φ : E → R is of class C1(E,R) and

〈
Φ ′(u), w

〉
= M

(
[u]s,p(·,·)

)
∫

RN

∫

RN

|u(x) – u(y)|p(x,y)–2(u(x) – u(y))(w(x) – w(y))
|x – y|N+sp(x,y) dx dy

+
∫

RN
V(x)|u|p(x)–2uw dx, (3.1)

for any u, w ∈ E. Moreover, Φ is weakly lower semi-continuous in E.

Proof It is not difficult to prove that Φ has Fréchet derivative in E and (3.1) holds for any
u, w ∈ E. Now, let {zn}n ⊂ E and z ∈ E satisfy zn → z strongly in E as n → ∞. Without loss
of generality, we assume that zn → z a.e. in R

N . Then the sequence

{ |zn(x) – zn(y)|p(x,y)–2(zn(x) – zn(y))
|x – y|(N+sp(x,y))/p′(x,y)

}

n

is bounded in Lp′(·,·)(RN ×R
N ), as well as a.e. in R

N ×R
N

Un(x, y) :=
|zn(x) – zn(y)|p(x,y)–2(zn(x) – zn(y))

|x – y|(N+sp(x,y))/p′(x,y)

−→ U (x, y) :=
|z(x) – z(y)|p(x,y)–2(z(x) – z(y))

|x – y|(N+sp(x,y))/p′(x,y) .
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Thus, the Brezis–Lieb lemma (see [9]) implies

lim
n→∞

∫

RN

∫

RN

∣
∣Un(x, y) – U (x, y)

∣
∣p′(x,y) dx dy

= lim
n→∞

∫

RN

∫

RN

( |zn(x) – zn(y)|p(x,y)

|x – y|N+sp(x,y) –
|z(x) – z(y)|p(x,y)

|x – y|N+sp(x,y)

)

dx dy. (3.2)

The fact that zn → z strongly in E yields

lim
n→∞

∫

RN

∫

RN

( |zn(x) – zn(y)|p(x,y)

|x – y|N+sp(x,y) –
|z(x) – z(y)|p(x,y)

|x – y|N+sp(x,y)

)

dx dy = 0.

Moreover, the continuity of M implies that

lim
n→∞ M

(
[zn]s,p(·,·)

)
= M

(
[z]s,p(·,·)

)
. (3.3)

From (3.2) it follows that

lim
n→∞

∫

RN

∫

RN

∣
∣Un(x, y) – U (x, y)

∣
∣p′(x,y) dx dy = 0. (3.4)

Similarly,

lim
n→∞

∫

RN
V(x)

∣
∣
∣
∣zn(x)

∣
∣p(x)–2zn(x) –

∣
∣z(x)

∣
∣p(x)–2z(x)

∣
∣p′(x) dx = 0. (3.5)

Combining (3.3)–(3.5) with the Hölder inequality, we have

∥
∥Φ ′(zn) – Φ ′(z)

∥
∥

E∗ = sup
w∈E,‖w‖E=1

∣
∣〈Φ ′(zn) – Φ ′(z), w

〉∣∣ −→ 0

as n → ∞. Hence, Φ ∈ C1(E,R). Finally, notice that the map w �→ [w]s,p(·,·) is lower semi-
continuous in the weak topology of W s,p(·,·)(RN ) and M is nondecreasing and continu-
ous on R

+
0 , so that w �→ M([w]s,p(·,·)) is lower semi-continuous in the weak topology of

W s,p(·,·)(RN ). Indeed, we can define γ : W s,p(·,·)(RN ) →R as follows:

γ (w) =
∫

RN

∫

RN

∣
∣w(x) – w(y)

∣
∣p(x,y)|x – y|–N–sp(x,y) dx dy.

It is easy to see that γ ∈ C1(W s,p(·,·)(RN )) and γ is a convex functional in W s,p(·,·)(RN ). By
Corollary 3.8 in [13], we obtain γ (w) ≤ lim infn→∞ γ (wn). Hence, it is easy to see that Φ is
weakly lower semi-continuous in E (see [46], Lemma 3.3 for more details). �

Let H(x, t) =
∫ t

0 h(x, s) ds. Assume that:
(A1) p, q, r ∈ C+(RN ) and 1 < r– ≤ r+ < p– ≤ p+ < q– ≤ q+ < p∗

s (x) for all x ∈R
N .

(A2) 0 ≤ ρ ∈ L
p(·)

p(·)–r(·) (RN ) ∩ L∞(RN ) with meas{x ∈R
N : ρ(x) �= 0} > 0.

(H1) h : RN ×R →R satisfies the Carathéodory condition.
(H2) There exists nonnegative function σ ∈ L∞(RN ) such that

∣
∣h(x, t)

∣
∣ ≤ σ (x)|t|q(x)–1,

for all (x, t) ∈R
N ×R.
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(H3) There exists a positive constant θ such that θ > ϑp+ and

0 < θH(x, t) ≤ h(x, t)t, for all t ∈R \ {0} and x ∈R
N ,

where ϑ is given in (M2).
(H4) H(x, t) ≥ 0 for all (x, t) ∈R

N ×R.
Let the functional Ψλ : E →R be defined by

Ψλ(u) = λ

∫

RN

ρ(x)
r(x)

|u|r(x) dx +
∫

RN
H(x, u) dx.

Then it is easy to check that Ψλ ∈ C1(E,R), and its Fréchet derivative is

〈
Ψ ′

λ(u), w
〉

= λ

∫

RN
ρ|u|r(x)–2uw dx +

∫

RN
h(x, u)w dx,

for any u, w ∈ E. Subsequently, the functional Iλ : E →R is defined by

Iλ(u) = Φ(u) – Ψλ(u). (3.6)

Then according to Lemma 3.2, it follows that the functional Iλ ∈ C1(E,R), and its Fréchet
derivative is

〈
I ′
λ(u), w

〉
= M

(
[u]s,p(·,·)

)
∫

RN

∫

RN

|u(x) – u(y)|p(x,y)–2(u(x) – u(y))(w(x) – w(y))
|x – y|N+sp(x,y) dx dy

+
∫

RN
V(x)|u|p(x)–2uw dx – λ

∫

RN
ρ(x)|u|r(x)–2uw dx –

∫

RN
h(x, u)w dx,

for any u, w ∈ E.

Lemma 3.3 Assume that (A1)–(A2) and (H1)–(H2) hold. Then Ψλ and Ψ ′
λ are weakly

strongly continuous on E for any λ > 0.

Proof Let {zn} be a sequence in E such that zn ⇀ z in E as n → ∞. Since {zn} is bounded
in E, Lemma 2.5 guarantees that there exists a subsequence such that

znk (x) → z(x) a.e. in R
N and

znk → z in Lp(·)(
R

N) ∩ Lq(·)(
R

N)
as k → ∞.

(3.7)

First we prove that Ψλ is weakly strongly continuous in E. By the convergence principle,
there exists a function g ∈ Lp(·)(RN ) ∩ Lq(·)(RN ) such that |znk (x)| ≤ g(x) for all k ∈ N and
for almost all x ∈ R

N . Therefore from (H2) and Lemma 2.1, it follows from the Young
inequality that

λ

∫

RN

ρ(x)
r(x)

|znk |r(x) dx +
∫

RN

∣
∣H(x, znk )

∣
∣dx

≤ λ

r–

∫

RN

∣
∣ρ(x)

∣
∣
∣
∣znk (x)

∣
∣r(x) dx +

1
q–

∫

RN
σ (x)

∣
∣znk (x)

∣
∣q(x) dx
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≤ λ

r–

∫

RN

2(p(x) – r(x))
p(x)

∣
∣ρ(x)

∣
∣

p(x)
p(x)–r(x) +

r(x)
p(x)

∣
∣
∣
∣znk (x)

∣
∣r(x)∣∣

p(x)
r(x) dx

+
‖σ‖L∞(RN )

q–

∫

RN

∣
∣znk (x)

∣
∣q(x) dx

≤ C0

[∫

RN

∣
∣ρ(x)

∣
∣

p(x)
p(x)–r(x) +

∣
∣g(x)

∣
∣p(x) dx +

∫

RN

∣
∣g(x)

∣
∣q(x) dx

]

,

for some positive constant C0, and so the integral at the left-hand side is dominated by an
integrable function. Since the function h satisfies the Carathéodory condition by (H1), it
follows from (3.7) that

ρ(x)
r(x)

|znk |r(x) → ρ(x)
r(x)

|z|r(x) and H(x, znk ) → H(x, z) as k → ∞,

for almost all x ∈R
N . Therefore, Lebesgue’s dominated convergence theorem tells us that

λ

∫

RN

ρ(x)
r(x)

|znk |r(x)znk dx +
∫

RN
H(x, znk ) dx

→ λ

∫

RN

ρ(x)
r(x)

|z|r(x)z dx +
∫

RN
H(x, z) dx as k → ∞,

that is, Ψλ(znk ) → Ψλ(z) as k → ∞. Thus Ψλ is weakly strongly continuous in E.
Next, we show that Ψ ′

λ is weakly strongly continuous in E∗. First of all, we note that

∫

RN

∣
∣ρ(x)|znk |r(x)–2znk – ρ(x)|z|r(x)–2z

∣
∣r′(x) dx

≤ C1

∫

RN

∣
∣ρ(x)

∣
∣

1
r(x)–1

∣
∣ρ(x)

∣
∣(|znk |r(x) + |z|r(x))dx

≤ C2

∫

RN

∣
∣ρ(x)

∣
∣
(|znk |r(x) + |z|r(x))dx

≤ C2

∫

RN

2(p(x) – r(x))
p(x)

∣
∣ρ(x)

∣
∣

p(x)
p(x)–r(x) +

r(x)
p(x)

|znk |p(x) +
r(x)
p(x)

|z|p(x) dx, (3.8)

for some positive constants C1, C2. Due to (H2) and Lemma 2.1, we obtain

∫

RN

∣
∣h(x, znk ) – h(x, z)

∣
∣q′(x) dx ≤ C3

∫

RN

∣
∣h(x, znk )

∣
∣q′(x) +

∣
∣h(x, z)

∣
∣q′(x) dx

≤ C4

∫

RN
|znk |q(x) + |z|q(x) dx, (3.9)

for some positive constants C3, C4. Invoking (3.7)–(3.9) and the convergence principle,
one has

∣
∣ρ(x)|znk |r(x)–2 – ρ(x)|z|r(x)–2∣∣r′(x) ≤ f1(x)

and

∣
∣h(x, znk ) – h(x, z)

∣
∣q′(x) ≤ f2(x),
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for almost all x ∈ R
N and for some f1, f2 ∈ L1(RN ), and thus ρ(x)|znk |r(x)–2znk →

ρ(x)|z|r(x)–2z and h(x, znk ) → h(x, z) as k → ∞ for almost all x ∈ R
N . This together with

the Lebesgue dominated convergence theorem yields

∥
∥Ψ ′

λ(znk ) – Ψ ′
λ(z)

∥
∥

E∗

= sup
‖w‖E≤1

∣
∣
〈
Ψ ′

λ(znk ) – Ψ ′
λ(z), w

〉∣
∣

= sup
‖w‖E≤1

∣
∣
∣
∣λ

∫

RN

(
ρ(x)|znk |r(x)–2znk – ρ(x)|z|r(x)–2z

)
w dx +

∫

RN

(
h(x, znk ) – h(x, z)

)
w dx

∣
∣
∣
∣

≤ 2
(
λ
∥
∥ρ(x)|znk |r(x)–2znk – ρ(x)|z|r(x)–2z

∥
∥

Lr′(·)(RN ) +
∥
∥h(x, znk ) – h(x, z)

∥
∥

Lq′(·)(RN )

) → 0

as k → ∞. Consequently, we derive that Ψ ′
λ(znk ) → Ψ ′

λ(z) in E∗ as k → ∞. This completes
the proof. �

Combining Lemmas 3.2 and 3.3, we see that Iλ ∈ C1(E,R) and Iλ is weakly semi-
continuous in E. Before going to the proofs of our main results, we consider some useful
lemmas and consequences presented below. The following assertion means that Iλ satisfies
the geometric condition in the mountain pass theorem.

Lemma 3.4 Assume that (V), (M1)–(M2), (A1)–(A2) and (H1)–(H4) hold. Let Iλ be de-
fined as in (3.6). Then we have the followings:

(1) There exists a positive constant λ∗ such that for any λ ∈ (0,λ∗) we can choose R > 0
and 0 < δ < 1 such that Iλ(u) ≥ R > 0 for all u ∈ E with ‖u‖E = δ;

(2) there exists φ ∈ E, φ > 0 such that Iλ(tφ) → –∞ as t → +∞;
(3) there exists ψ ∈ E, ψ > 0 such that Iλ(tψ) < 0 as t → 0+.

Proof Let us prove condition (1). By Lemma 2.5, there exists a positive constant C5 such
that ‖u‖Lγ (·)(RN ) ≤ C5‖u‖E for p(x) ≤ γ (x) < p∗

s (x). Assume that ‖u‖E < 1. Then it follows
from (H2), Proposition 2.3, and Lemmas 2.1, 2.2(2) and 2.5 that

Iλ(u) = M
(
[u]s,p(·,·)

)
+

∫

RN

(V(x)
p(x)

|u|p(x)
)

dx – λ

∫

RN

(
ρ(x)
r(x)

|u|r(x)
)

dx –
∫

RN
H(x, u) dx

≥ m0

ϑ

∫

RN

∫

RN

|u(x) – u(y)|p(x,y)

p(x, y)|x – y|N+sp(x,y) dx dy +
∫

RN

V(x)
p(x)

|u|p(x) dx

– 2
λ

r+
‖ρ‖

L
p(·)

p(·)–r(·) (RN )
C5 max

{‖u‖r+
E ,‖u‖r–

E
}

–
‖σ‖L∞(RN )

q+
max

{‖u‖q+
Lq(·)(RN ),‖u‖q

Lq(·)(RN )

}

≥ min

{
m0

ϑ
,

1
p+

}

‖u‖p+
E – 2

λ

r+
‖ρ‖

L
p(·)

p(·)–r(·) (RN )
C5‖u‖r–

E –
C5

q+
‖σ‖L∞(RN )‖u‖q–

E

≥
(

min

{
m0

ϑ
,

1
p+

}

– 2
λ

r+
C6‖u‖r––p+

E –
1
q+

C7‖u‖q––p+
E

)

‖u‖p+
E , (3.10)

for positive constants C6, C7. Let us define the function gλ : (0,∞) →R by

gλ(t) = 2C6
λ

r+
tr––p+ + C7

1
q+

tq––p+ .
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Then it is clear that gλ has a local minimum at the point t0 = (λ p+–r–
q––p+

· q+
r+

· 2C6
C7

)
1

q+–r+ and so

lim
λ→0+

gλ(t0) = 0.

Thus there is λ∗ > 0 such that for each λ ∈ (0,λ∗), there exist R > 0 small enough and δ > 0
such that Iλ(u) ≥ δ > 0 for any u ∈ E with ‖u‖E = R.

Next we show condition (2). Note that condition (H3) implies

H(x, sη) ≥ sθ H(x,η), (3.11)

for all η ∈ R, x ∈R
N , and s ≥ 1.

Take φ ∈ E with φ > 0. Since M(τ ) ≤M(1)τϑ for any τ ≥ 1, it follows from (3.11) that

Iλ(tφ) = M
(
[tφ]s,p(·,·)

)
+

∫

RN

(V(x)
p(x)

|tφ|p(x)
)

dx

– λ

∫

RN

(
ρ(x)
r(x)

|tφ|r(x)
)

dx –
∫

RN
H(x, tφ) dx

≤ tϑp+
(

M(1)[φ]ϑs,p(·,·) +
1

p–

∫

RN
V(x)|φ|p(x) dx

)

– λtr–

∫

RN

(
ρ(x)
r(x)

|φ|r(x)
)

dx – tθ

∫

RN
H(x,φ) dx,

for sufficiently large t ≥ 1. Since θ > ϑp+ > r+, we see that Iλ(tφ) → –∞ as t → ∞.
Finally it remains to prove condition (3). Choose ψ ∈ E such that ψ > 0. Let λ be fixed.

For t ∈ (0, 1) small enough, from (H4) and Lemma 2.2, we obtain

Iλ(tψ) = M
(
[tψ]s,p(·,·)

)
+

∫

RN

(V(x)
p(x)

|tψ |p(x)
)

dx

– λ

∫

RN

(
ρ(x)
r(x)

|tψ |r(x)
)

dx –
∫

RN
H(x, tψ) dx

≤ tp–
((

sup
0≤ξ≤max{‖u‖p–

E ,‖u‖p+
E }

M(ξ )
)

[ψ]s,p(·,·) +
∫

RN

(V(x)
p(x)

|ψ |p(x)
)

dx
)

– λtr+

∫

RN

(
ρ(x)
r(x)

|ψ |r(x)
)

dx.

Since p– > r+, we see that Iλ(tψ) < 0 as t → 0+, as claimed. �

With the aid of Lemma 3.3, we will give that the energy functional Iλ satisfies the Palais–
Smale condition ((PS)-condition for short). This plays a key role in obtaining the existence
of a nontrivial weak solution for the given problem. The basic idea of the proof of this
assertion comes from [43].

Definition 3.5 We say that Iλ satisfies the (PS)-condition in E, if any (PS)-sequence {zn} ⊂
E, namely, {Iλ(zn)} is bounded and I ′

λ(zn) → 0 as n → ∞, admits a strongly convergent
subsequence in E.
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Lemma 3.6 If (V), (M1)–(M2), (A1)–(A2), and (H1)–(H4) hold, then the functional Iλ
satisfies the (PS)-condition for any λ > 0.

Proof Let {zn} be a (PS)-sequence in E, i.e., there exists K > 0 such that |〈I ′
λ(zn), zn〉| ≤

K‖zn‖E and |Iλ(zn)| ≤ K . It is first verified that the sequence {zn} is bounded in E. Suppose
to the contrary that ‖zn‖E → ∞, in the subsequence sense, as n → ∞. By assumption
(M2), we deduce that

K + K‖zn‖E ≥ Iλ(zn) –
1
θ

〈
I ′
λ(zn), zn

〉

= M
(
[zn]s,p(·,·)

)
–

1
θ

M
(
[zn]s,p(·,·)

)
(∫

RN

∫

RN

|zn(x) – zn(y)|p(x,y)

|x – y|N+sp(x,y) dx dy
)

+
∫

RN

(V(x)
p(x)

|zn|p(x) –
V(x)
θ

|zn|p(x)
)

dx

+ λ

∫

RN

(
ρ(x)
θ

|zn|r(x) –
ρ(x)
r(x)

|zn|r(x)
)

dx

+
∫

RN

(
1
θ

h(x, zn)zn – H(x, zn)
)

dx

≥
(

1
ϑ

–
1
θ

)

M
(
[zn]s,p(·,·)

)
(∫

RN

∫

RN

|zn(x) – zn(y)|p(x,y)

|x – y|N+sp(x,y) dx dy
)

+
(

1
p+

–
1
θ

)∫

RN
V(x)|zn|p(x) dx – λ

(
1
r+

–
1
θ

)∫

RN
ρ(x)|zn|r(x) dx

–
∫

RN

(

H(x, zn) –
1
θ

h(x, zn)zn

)

dx,

where θ is the positive constant from (H3). Combining this with conditions (M1) and (H3),
we have

min

{(
1
ϑ

–
1
θ

)

m0,
1

p+
–

1
θ

}

× 1
p+

(∫

RN

∫

RN

|zn(x) – zn(y)|p(x,y)

|x – y|N+sp(x,y) dx dy +
∫

RN
V(x)|zn|p(x) dx

)

– λ

(
1
r+

–
1
θ

)∫

RN
ρ(x)|zn|r(x) dx

≤ K + K‖zn‖E .

For n large enough, we may assume that ‖zn‖E > 1. Then it follows from (H3), Proposi-
tion 2.3 and Lemma 2.4(1) that

1
p+ min

{(
1
ϑ

–
1
θ

)

m0,
1

p+
–

1
θ

}

‖zn‖p–
E – λ

(
1
r+

–
1
θ

)

C8‖zn‖r+
E ≤ K + K‖zn‖E.

Since θ > ϑp+ > p+ > 1 and p– > r+ > 1, this is a contradiction. Hence the sequence {zn} is
bounded in E. Passing to the limit, if necessary, to a subsequence, by Lemma 2.4, we have

zn ⇀ z in E, zn → z a.e. in R
N and

zn → z in Lp(·)(
R

N)
and in Lq(·)(

R
N) (3.12)
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as n → ∞. To prove that {zn} converges strongly to z in E, let ϕ ∈ E be fixed and let Φ̃ϕ

denote the linear functional on E defined by

Φ̃ϕ(w) =
∫

RN

∫

RN

|ϕ(x) – ϕ(y)|p(x,y)–2(ϕ(x) – ϕ(y))(w(x) – w(y))
|x – y|N+sp(x,y) dx dy,

for all w ∈ E. Obviously, by the Hölder inequality, Φ̃ϕ is also continuous, as

∣
∣Φ̃ϕ(w)

∣
∣ ≤ 2

(∫

RN

∫

RN

|ϕ(x) – ϕ(y)|p(x,y)

|x – y|N+sp(x,y) dx dy
) p̃1

p̃2

×
(∫

RN

∫

RN

|w(x) – w(y)|p(x,y)

|x – y|N+sp(x,y) dx dy
) 1

p̃2

≤ 2‖ϕ‖p̃1
E ‖w‖E ,

for any w ∈ E, where p̃1 is either p+ – 1 or p– – 1 and p̃2 is either p+ or p–. Hence, Eq. (3.12)
yields

lim
n→∞

[
M

(
[zn]s,p(·,·)

)
– M

(
[z]s,p(·,·)

)]
Φ̃u(zn – z) = 0, (3.13)

because the sequence {M([zn]s,p(·,·)) – M([z]s,p(·,·))} is bounded in R. Using (H2) and
Lemma 2.2, it follows that

∫

RN

∣
∣
(
h(x, zn) – h(x, z)

)
(zn – z)

∣
∣dx

≤
∫

RN
σ (x)

(|zn|q(x)–1 + |z|q(x)–1)|zn – z|dx

≤ 2‖σ‖L∞(RN )
(‖zn‖q+–1

Lq(·)(RN ) + ‖zn‖q––1
Lq(·)(RN ) + ‖z‖q+–1

Lq(·)(RN ) + ‖z‖q––1
Lq(·)(RN )

)

× ‖zn – z‖Lq(·)(RN ).

Then, due to (3.12), one has

lim
n→∞

∫

RN

(
h(x, zn) – h(x, z)

)
(zn – z) dx = 0. (3.14)

Because zn ⇀ z in E and I ′
λ(zn) → 0 in E∗ as n → ∞, we have

〈
I ′
λ(zn) – I ′

λ(z), zn – z
〉 → 0 as n → ∞.

Hence, Eqs. (3.12)–(3.14) yield as n → ∞

o(1) =
〈
I ′
λ(zn) – I ′

λ(z), zn – z
〉

= M
(
[zn]s,p(·,·)

)
Φ̃zn (zn – z) – M

(
[z]s,p(·,·)

)
Φ̃z(zn – z)

+
(
M

(
[zn]s,p(·,·)

)
– M

(
[z]s,p(·,·)

))
Φ̃z(zn – z)

+
∫

RN
V(x)

(|zn|p(x)–2zn – |z|p(x)–2z
)
(zn – z) dx
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– λ

∫

RN
ρ(x)

(|zn|r(x)–2zn – |z|r(x)–2z
)
(zn – z) dx

–
∫

RN

(
h(x, zn) – h(x, z)

)
(zn – z) dx

= M
(
[zn]s,p(·,·)

)[
Φ̃zn (zn – z) – Φ̃z(zn – z)

]

+
∫

RN
V(x)

(|zn|p(x)–2zn – |z|p(x)–2z
)
(zn – z) dx

– λ

∫

RN
ρ(x)

(|zn|r(x)–2zn – |z|r(x)–2z
)
(zn – z) dx

–
∫

RN

(
h(x, zn) – h(x, z)

)
(zn – z) dx + o(1),

that is,

lim
n→∞

(

M
(
[zn]s,p(·,·)

)[
Φ̃zn (zn – z) – Φ̃z(zn – z)

]

+
∫

RN
V(x)

(|zn|p(x)–2zn – |z|p(x)–2z
)
(zn – z) dx

– λ

∫

RN
ρ(x)

(|zn|r(x)–2zn – |z|r(x)–2z
)
(zn – z) dx

)

= 0.

By convexity, (M1), (V), and (H2) we have in particular

M
(
[zn]s,p(·,·)

)[
Φ̃zn (zn – z) – Φ̃z(zn – z)

] ≥ 0,

V(x)
(|zn|p(x)–2zn – |z|p(x)–2z

)
(zn – z) dx ≥ 0,

and

ρ(x)
(|zn|r(x)–2zn – |z|r(x)–2z

)
(zn – z) dx ≥ 0.

It follows that

lim
n→∞ Φ̃zn (zn – z) – Φ̃z(zn – z) = 0, (3.15)

lim
n→∞

∫

RN
V(x)

(|zn|p(x)–2zn – |z|p(x)–2u
)
(zn – z) dx = 0, (3.16)

and

lim
n→∞

∫

RN
ρ(x)

(|zn|r(x)–2zn – |z|r(x)–2u
)
(zn – z) dx = 0. (3.17)

It should be noted that we have the well-known useful inequalities

|ξ – η|p(x,y) ≤

⎧
⎪⎪⎨

⎪⎪⎩

C9(|ξ |p(x,y)–2ξ – |η|p(x,y)–2η) · (ξ – η) for (x, y) ∈ �1,

C10[(|ξ |p(x,y)–2ξ – |η|p(x,y)–2η) · (ξ – η)]
p(x,y)

2

× (|ξ |p(x,y) + |η|p(x,y))
2–p(x,y)

2 for (x, y) ∈ �2 and (ξ ,η) �= (0, 0),

(3.18)
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for all ξ ,η ∈ R
N , where C9 and C10 are positive constants depending only on p(·, ·),

�1 = {(x, y) ∈ R
N × R

N : p(x, y) ≥ 2}, and �2 = {(x, y) ∈ R
N × R

N : 1 < p(x, y) < 2}; see [35,
Proposition 3.3].

It is now assumed that (x, y) ∈ �1. Then, by (3.15) and (3.18) as n → ∞,

∫

RN

∫

RN

|(zn – z)(x) – (zn – z)(y)|p(x,y)

|x – y|N+sp(x,y) dx dy

=
∫

RN

∫

RN

∣
∣zn(x) – zn(y) – z(x) + z(y)

∣
∣p(x,y)|x – y|–(N+sp(x,y)) dx dy

≤ C9

∫

RN

∫

RN

[∣
∣zn(x) – zn(y)

∣
∣p(x,y)–2

× (
zn(x) – zn(y)

)
–

∣
∣z(x) – z(y)

∣
∣p(x,y)–2(z(x) – z(y)

)]

× (
zn(x) – zn(y) – z(x) + z(y)

)|x – y|–(N+sp(x,y)) dx dy

≤ C9
(
Φ̃zn (zn – z) – Φ̃z(zn – z)

)
= o(1). (3.19)

Similarly, utilizing (V), (3.16) and (3.18) as n → ∞,

∫

�1

V(x)|zn – z|p(x) dx ≤ C9

∫

�1

V(x)
(|zn|p(x)–2zn – |z|p(x)–2z

)
(zn – z) dx = o(1).

Subsequently, the case (x, y) ∈ �2 is considered. As {zn} is bounded in E, there exists K0 > 0
such that

∫

RN

∫

RN

|zn(x) – zn(y)|p(x,y)

|x – y|N+sp(x,y) dx dy ≤ K0,

for all n ∈N. By (3.15), (3.18) and Lemma 2.1, we have

∫

RN

∫

RN

|(zn – z)(x) – (zn – z)(y)|p(x,y)

|x – y|N+sp(x,y) dx dy

≤ C10

∫

RN

∫

RN

{[∣∣zn(x) – zn(y)
∣
∣p(x,y)–2

× (
zn(x) – zn(y)

)
–

∣
∣z(x) – z(y)

∣
∣p(x,y)–2(z(x) – z(y)

)]

× (
zn(x) – zn(y) – z(x) + z(y)

)} p(x,y)
2

(∣∣zn(x) – zn(y)
∣
∣p(x,y) +

∣
∣z(x) – z(y)

∣
∣p(x,y)) 2–p(x,y)

2

× |x – y|–(N+sp(x,y)) dx dy

≤ 2C11
(
Φ̃zn (zn – z) – Φ̃z(zn – z)

)α

×
(∫

RN

∫

RN

|zn(x) – zn(y)|p(x,y)

|x – y|N+sp(x,y) dx dy +
∫

RN

∫

RN

|z(x) – z(y)|p(x,y)

|x – y|N+sp(x,y) dx dy
)β

= o(1),

where C11 = 2C10(2K)β , α is either p–/2 or p+/2, and β is either (2 – p+)/2 or (2 – p–)/2.
Similarly, by invoking (3.12), there is a positive constant L such that

∫
RN V(x)|zn|p(x) dx ≤ L
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for all n ∈N. Moreover, by Lemma 2.1, (3.16) and (3.18) as n → ∞,

∫

�2

V(x)|zn – z|p(x) dx ≤ C12

(∫

RN
V(x)

(|zn|p(x)–2zn – |z|p(x)–2u
)
(zn – z) dx

)α

= o(1), (3.20)

where C12 = 4C10(2L)β . From (3.19) and (3.20), we obtain

∫

RN

∫

RN

|zn(x) – zn(y)|p(x,y)–2

|x – y|N+sp(x,y) dx dy +
∫

RN
V(x)|zn – z|p(x) dx → 0 as n → ∞.

Therefore, ‖zn – z‖E → 0 as n → ∞. Hence, Iλ satisfies the (PS)-condition. This completes
the proof. �

The proof of the following theorem can be found in [10, 30, 43], however, we will give
the proof for the reader’s convenience.

Theorem 3.7 Let (V), (M1)–(M2), (A1)–(A2), and (H1)–(H4) hold. Then there exists a
positive constant λ∗ such that for any λ ∈ (0,λ∗), the functional Iλ admits at least two non-
trivial different solutions in E.

Proof Thanks to Lemmas 3.4 and 3.6, there exists λ∗ > 0 such that for all λ ∈ (0,λ∗), Iλ
satisfies the mountain pass geometry and (PS)-condition. By employing the mountain pass
theorem, we infer that there exists a critical point u0 ∈ E of Iλ with Iλ(u0) = d > 0 = Iλ(0).
Hence u0 is a nontrivial weak solution of the problem (Pλ). Let us denote d := infu∈Br Iλ(u)
where Br := {u ∈ E : ‖u‖E < r} with a boundary ∂Br . Then by (3.10) and Lemma 3.4(3), we
have –∞ < d < 0. Putting 0 < ε < infu∈∂Br Iλ(u) – d, by Theorem 1.1 in [25] (see also [30]),
we can find uε ∈ Br such that we have the well-known useful inequalities

⎧
⎨

⎩

Iλ(uε) ≤ d + ε,

Iλ(uε) < Iλ(u) + ε‖u – uε‖E , for all u ∈ Br , u �= uε .
(3.21)

This implies that uε ∈ Br since Iλ(uε) ≤ d + ε < infu∈∂Br Iλ(u). From these facts we see that
uε is a local minimum of Ĩλ(u) = Iλ(u) + ε‖u – uε‖E . Now by taking u = uε + tw for w ∈ B1

and sufficiently small t > 0, from (3.21), we deduce

0 ≤ Ĩλ(uε + tw) – Ĩλ(uε)
t

=
Iλ(uε + tw) – Iλ(uε)

t
+ ε‖w‖E .

Therefore, letting t → 0+, we get

〈
I ′
λ(uε), w

〉
+ ε‖w‖E ≥ 0.

Replacing w by –w in the argument above, we have

–
〈
I ′
λ(uε), w

〉
+ ε‖w‖E ≥ 0.
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Thus, one has

∣
∣
〈
I ′
λ(uε), w

〉∣
∣ ≤ ε‖w‖E ,

for any w ∈ B1. Hence

∥
∥I ′

λ(uε)
∥
∥

E∗ ≤ ε. (3.22)

Using (3.21) and (3.22), we can choose a sequence {zn} ⊂ Br such that
⎧
⎨

⎩

Iλ(zn) → c as n → ∞,

‖I ′
λ(zn)‖E∗ → 0 as n → ∞.

(3.23)

Thus, {zn} is a bounded (PS)-sequence in the reflexive Banach space E. According to
Lemma 3.6, {zn} has a subsequence {znk } such that znk → u1 in E as k → ∞. This together
with (3.23) yields Iλ(u1) = d and I ′

λ(u1) = 0. Hence u1 is a nontrivial nonnegative solution of
the given problem with Iλ(u1) < 0 which is different from u0. This completes the proof. �

The existence of nontrivial solutions for the problem is now investigated if (H3) is re-
placed with the following condition:

(H5) There exists a constant θ ≥ 1 such that

θH(x, t) ≥H(x, st),

for (x, t) ∈R
N ×R and s ∈ [0, 1], where H(x, t) = h(x, t)t – p+ϑH(x, t) and ϑ is

given in (M2).
This condition originally comes from the work of Jeanjean [31]. As is well known, this

is weaker condition than (1.1).

Definition 3.8 We say that Iλ satisfies the Cerami condition ((C)-condition for short) in
E, if any (C)-sequence {zn}n ⊂ E, i.e. {Iλ(zn)} is bounded and ‖I ′

λ(zn)‖E∗ (1 + ‖zn‖E) → 0 as
n → ∞, has a convergent subsequence in E.

Lemma 3.9 It is assumed that (V), (M1)–(M2), (A1)–(A2), (H1)–(H2), and (H4)–(H5).
hold. Furthermore, assume that

(M3) M : R+ →R
+ is a differentiable and decreasing function.

Then, the functional Iλ satisfies the (C)-condition for any λ > 0.

Proof Let {zn} be a (C)-sequence in E, i.e., sup |Iλ(zn)| ≤ K1 and 〈I ′
λ(zn), zn〉 = o(1) → 0, as

n → ∞, and K1 is a positive constant. In view of Lemma 3.6, it needs only to be proved that
{zn} is bounded in E. To this end, arguing by contradiction, it is assumed that ‖zn‖E > 1
and ‖zn‖E → ∞ as n → ∞, and a sequence {ωn} is defined by ωn = zn/‖zn‖E . Then, up to a
subsequence, still denoted by {ωn}, we obtain ωn ⇀ ω in E as n → ∞, and by Lemma 2.5,

ωn(x) → ω(x) a.e. in R
N , ωn → ω in Lr(·)(

R
N)

, and

ωn → ω in Lp(·)(
R

N)

as n → ∞, where p(x) < r(x) < ps
∗(x) for all x ∈R

N .
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Let Ω2 = {x ∈ R
N : ω(x) �= 0}. By the same argument as in Lemma 3.6, |Ω2| = 0; thus,

ω(x) = 0 for almost all x ∈ R
N . As Iλ(tzn) is continuous in t ∈ [0, 1], for each n ∈ N, there

exists tn ∈ [0, 1] such that

Iλ(tnzn) := max
t∈[0,1]

Iλ(tzn).

Let {�k} be a positive sequence of real numbers such that limk→∞ �k = ∞ and �k > 1 for
any k. Then, it is clear that ‖�kωn‖E = �k > 1 for any k and n. Let k be fixed. Because ωn → 0
strongly in Lq(·)(RN ) as n → ∞, it follows from the continuity of the Nemytskii operator
that H(x,�kωn) → 0 in L1(RN ) as n → ∞. Hence,

lim
n→∞

∫

RN
H(x,�kωn) dx = 0. (3.24)

Because ‖zn‖E → ∞ as n → ∞, we have ‖zn‖E > �k for sufficiently large n. Thus, by (M2),
(3.24), and Proposition 2.3 we have

Iλ(tnzn) ≥ Iλ
(

�k

‖zn‖E
zn

)

= Iλ(�kωn)

= M
(
[�kωn]s,p(·,·)

)
+

∫

RN

V(x)
p(x)

|�kωn|p(x) dx

– λ

∫

RN

ρ(x)
r(x)

|�kωn|r(x) dx –
∫

RN
H(x,�kωn) dx

≥ min

{
m0

ϑp+ ,
1

p+

}

×
(∫

RN

∫

RN

|�kωn(x) – �kωn(y)|p(x,y)

|x – y|N+sp(x,y) dx dy +
∫

RN
V(x)|�kωn|p(x) dx

)

– λ

∫

RN

ρ(x)
r(x)

|�kωn|r(x) dx –
∫

RN
H(x,�kωn) dx

≥ min

{
m0

ϑp+ ,
1

p+

}

‖�kωn‖p–

E – 2
λ

r+
‖ρ‖

L
p(·)

p(·)–r(·) (RN )
‖�kωn‖r+

E

–
∫

RN
H(x,�kωn) dx

≥ min

{
m0

ϑp+ ,
1

p+

}

�
p–

k – 2C13
λ

r+
�

r+
k ,

for sufficiently large n and p– > r+ > 1. Then, letting n and k tend to infinity, it follows that

lim
n→∞ Iλ(tnzn) = ∞. (3.25)

Because Iλ(0) = 0 and |Iλ(zn)| ≤ K1 as n → ∞, it is obvious that tn ∈ (0, 1) and 〈I ′
λ(tnzn),

tnzn〉 = 0. Note that there is a positive constant K such that

∫

RN

(
1

r(x)
–

1
p+ϑ

)

ρ(x)|sz|r(x) dx ≥ θ

∫

RN

(
1

r(x)
–

1
p+ϑ

)

ρ(x)|z|r(x) dx – K, (3.26)
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for any z ∈ E and s ∈ [0, 1], where θ and ϑ come from (H5) and (M2), respectively. There-

fore, by (M2), (M3), (H5) and (3.26), for all n large enough, we have

1
θ

Iλ(tnzn) =
1
θ

Iλ(tnzn) –
1

p+θϑ

〈
I ′
λ(tnzn), tnzn

〉
+ o(1)

=
1
θ
M

(
[tnzn]s,p(·,·)

)

–
1

p+θϑ
M

(
[tnzn]s,p(·,·)

)
(∫

RN

∫

RN

|tnzn(x) – tnzn(y)|p(x,y)

|x – y|N+sp(x,y) dx dy
)

+
1
θ

∫

RN

(V(x)
p(x)

|tnzn|p(x) –
V(x)
p+ϑ

|tnzn|p(x)
)

dx

–
λ

θ

∫

RN

(
ρ(x)
r(x)

|tnzn|r(x) –
ρ(x)
p+ϑ

|tnzn|r(x)
)

dx

+
1
θ

∫

RN

(
1

p+ϑ
h(x, tnzn)tnzn – H(x, tnzn)

)

dx + o(1)

≤ 1
θ
M

(
[tnzn]s,p(·,·)

)

–
1

p+θϑ
M

(
[tnzn]s,p(·,·)

)
(∫

RN

∫

RN

|tnzn(x) – tnzn(y)|p(x,y)

|x – y|N+sp(x,y) dx dy
)

+
1
θ

∫

RN

(V(x)
p(x)

|tnzn|p(x) –
V(x)
p+ϑ

|tnzn|p(x)
)

dx

–
λ

θ

∫

RN

(
ρ(x)
r(x)

|tnzn|r(x) –
ρ(x)
p+ϑ

|tnzn|r(x)
)

dx

+
1

p+θϑ

∫

RN
H(x, tnzn) dx + o(1)

≤ 1
θ

[

M
(
[zn]s,p(·,·)

)

–
1

p+ϑ
M

(
[zn]s,p(·,·)

)
(∫

RN

∫

RN

|zn(x) – zn(y)|p(x,y)

|x – y|N+sp(x,y) dx dy
)]

+
1
θ

∫

RN

(V(x)
p(x)

|zn|p(x) –
V(x)
p+ϑ

|zn|p(x)
)

dx

– λ

∫

RN

(
ρ(x)
r(x)

|zn|r(x) –
ρ(x)
p+ϑ

|zn|r(x)
)

dx

+
1

p+ϑ

∫

RN
H(x, zn) dx + λK + o(1)

≤M
(
[zn]s,p(·,·)

)
+

∫

RN

V(x)
p(x)

|zn|p(x) dx

– λ

∫

RN

ρ(x)
r(x)

|zn|r(x) dx –
∫

RN
H(x, zn) dx

–
1

p+ϑ
M

(
[zn]s,p(·,·)

)
(∫

RN

∫

RN

|zn(x) – zn(y)|p(x,y)

|x – y|N+sp(x,y) dx dy
)

–
1

p+ϑ

∫

RN
V(x)|zn|p(x) dx
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+
λ

p+ϑ

∫

RN
ρ(x)|zn|r(x) dx +

1
p+ϑ

∫

RN
h(x, zn)zn dx + λK + o(1)

= Iλ(zn) –
1

p+ϑ

〈
I ′
λ(zn), zn

〉
+ λK + o(1) ≤ λK + K1 + o(1),

which contradicts (3.25). This completes the proof. �

We give an example on the function M that fulfils the assumptions (M1)–(M3); see [40].

Example 3.10 Let us consider

M(t) = 1 +
1

e + t
, t ≥ 0.

Then, it follows from direct calculations that this function M satisfies the assumptions
(M1)–(M3).

In the rest of the present paper we establish the existence of at least two distinct non-
trivial solutions to the problem (Pλ) under the condition on h which is weaker than (H3).
In order to obtain this assertion we need to employ the following variational principle of
Ekeland’s type in [6, 40], initially developed by Zhong [51].

Lemma 3.11 ([6, 40]) Let E be a Banach space and x0 be a fixed point of E. Suppose that
h : E → R∪ {+∞} is a lower semi-continuous function, not identically +∞, bounded from
below. Then, for every ε > 0 and y ∈ E such that

h(y) < inf
E

h + ε,

and every λ > 0, there exists some point z ∈ E such that

h(z) ≤ h(y), ‖z – x0‖E ≤ (
1 + ‖y‖E

)(
eλ – 1

)
,

and

h(x) ≥ h(z) –
ε

λ(1 + ‖z‖E)
‖x – z‖E , for all x ∈ E.

Theorem 3.12 Let (V), (M1)–(M3), (A1)–(A2), (H1)–(H2), and (H4)–(H5) hold. In ad-
dition, assume that

(H6) lim|t|→∞ H(x,t)
|t|ϑp+ = ∞ uniformly for almost all x ∈ R

N .
Then there exists a positive constant λ∗ such that for any λ ∈ (0,λ∗), the functional Iλ admits
at least two nontrivial different solutions in E.

Proof To apply Lemma 3.4, we first show condition (2) in this lemma. By the assumption
(H6), for any M0 > 0, there exists a constant δ > 0 such that

H(x, t) ≥ M0|t|ϑp+
, (3.27)
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for |t| > δ and for almost all x ∈R
N . Take w ∈ E\{0}. Then, for large enough t > 1, Eq. (3.27)

implies that

Iλ(tw) = M
(
[tw]s,p(·,·)

)
+

∫

RN

(V(x)
p(x)

|tw|p(x)
)

dx

– λ

∫

RN

(
ρ(x)
r(x)

|tw|r(x)
)

dx –
∫

RN
H(x, tw) dx

≤M(1)
(
[tw]s,p(·,·)

)ϑ +
1

p–

∫

RN
V(x)|tw|p(x) dx

–
λ

r–

∫

RN
ρ(x)|tw|r(x) dx –

∫

RN
H(x, tw) dx

≤ |t|ϑp+
(

M(1)[w]ϑs,p(·,·) +
1

p–

∫

RN
V(x)|w|p(x) dx – M0

∫

RN
|w|ϑp+

dx
)

,

where ϑ was given in (M2), because M(τ ) ≤ M(1)τϑ for τ ≥ 1. If M0 is large enough,
then we deduce that Iλ(tw) → –∞ as t → ∞, as required.

Thanks to Lemmas 3.4 and 3.9, there exists a positive number λ∗ such that for all
λ ∈ (0,λ∗), Iλ satisfies the mountain pass geometry and (C)-condition. By employing
the mountain pass theorem, we infer that there exists a critical point z0 ∈ E of Iλ with
Iλ(z0) = d > 0 = Iλ(0). Hence z0 is a nontrivial weak solution of the problem (Pλ). Let us
denote d := infz∈Br Iλ(z) where Br := {z ∈ E : ‖z‖E < r} with a boundary ∂Br . Then by (3.10)
and Lemma 3.4(3), we have –∞ < d < 0. Putting 0 < ε < infz∈∂Br Iλ(z) – d, by Lemma 3.11,
we can choose zε ∈ Br such that

⎧
⎨

⎩

Iλ(zε) ≤ d + ε,

Iλ(zε) < Iλ(z) + ε
1+‖zε‖E

‖z – zε‖E , for all z ∈ Br , z �= zε .
(3.28)

This implies that zε ∈ Br since Iλ(zε) ≤ d + ε < infz∈∂Br Iλ(z). From these facts we see that zε

is a local minimum of Ĩλ(z) = Iλ(z) + ε
1+‖zε‖E

‖z – zε‖E . Now by taking z = zε + tw for w ∈ B1

and sufficiently small t > 0, from (3.28), we deduce

0 ≤ Ĩλ(zε + tw) – Ĩλ(zε)
t

=
Iλ(zε + tw) – Iλ(zε)

t
+

ε

1 + ‖zε‖E
‖w‖E .

Therefore, letting t → 0+, we get

〈
I ′
λ(zε), w

〉
+

ε

1 + ‖zε‖E
‖w‖E ≥ 0.

Replacing w by –w in the argument above, we have

–
〈
I ′
λ(zε), w

〉
+

ε

1 + ‖zε‖E
‖w‖E ≥ 0.

Thus, one has

(
1 + ‖zε‖E

)∣∣〈I ′
λ(zε), w

〉∣∣ ≤ ε‖w‖E ,
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for any w ∈ B1. Hence we have

(
1 + ‖zε‖E

)∥∥I ′
λ(zε)

∥
∥

E∗ ≤ ε. (3.29)

Using (3.28) and (3.29), we can choose a sequence {zn} ⊂ Br such that

⎧
⎨

⎩

Iλ(zn) → d as n → ∞,

(1 + ‖zn‖E)‖I ′
λ(zn)‖E∗ → 0 as n → ∞.

(3.30)

Thus, {zn} is a bounded Cerami sequence in the reflexive Banach space E. According to
Lemma 3.9, {zn} has a subsequence {znk } such that znk → z1 in E as k → ∞. This together
with (3.30) shows that Iλ(z1) = d and I ′

λ(z1) = 0. Hence z1 is a nontrivial nonnegative so-
lution of the given problem with Iλ(z1) < 0 which is different from z0. This completes the
proof. �
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