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System (1.1) is derived from the time-varying Schrödinger equation, which describes the
interaction of quantum (non-relativistic) particles with the electromagnetic �eld gener-
ated by motion. On the other hand, recently a great attention has been given to the so-
called Kirchho� equations
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a+ b
�

�
|�u|2 dx

	
�u = f (x,u), (1.2)

where � � R
N is a bounded domain or � =R

N , a > 0, b > 0 and u satis�es some bound-
ary conditions. Problem (1.2) is related to the stationary analogue of the Kirchho��
Schrödinger type equation
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a+ b
�

�
|�u|2 dx

	
�u = f (x,u), (1.3)

which was introduced by Kirchho� [6] as a generalization of the well-known D�Alembert
wave equation
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dx
	
= f (x,u), (1.4)

for free vibration of elastic strings. The Kirchho��s model takes into account the length
variation of the string produced by the transverse vibration, so the nonlocal term ap-
pears. For more mathematical and physical background on Schrödinger�Poisson systems
or Kirchho�-type problems, we refer the readers to [1, 2, 13] and the references therein.
The appearance of nonlocal term not only makes it playing an important role in many

physical applications, but also brings some di�culties and challenges in mathematical
analysis. This fact makes the study of Kirchho��Schrödinger�Poisson system or similar
problems particularly interesting. A lot of interesting results on the existence of nonlo-
cal problems were obtained recently in, for example, [4, 5, 7�9, 11, 13�17, 21, 25, 27�29]
and the cited references. We especially refer to the paper [10] for the existence of ground
state positive solutions of Kirchho��Schrödinger-type equations with singular exponen-
tial nonlinearities in R

N .
In the past few years,many researchers began to search for nodal solutions toKirchho��

Schrödinger-type equations or similar problems and got some interesting results. Zhong
and Tang [28] considered the following subcritical Schrödinger�Poisson system:

�
�

�
��u +V (x)u + k�u = |u|2u + �f (u), x �R

3,

��� = u2, x �R
3,

(1.5)

where the nonlinearity f (u) satis�es 3-linear growth condition at in�nity and linear growth
at zero.With the help of the nodal Nehari manifold, they studied the existence and asymp-
totic behavior of least energy nodal solution to system (1.5).
Wang [18] studied the existence of a least energy sign-changing solution for the follow-

ing Kirchho�-type equation:

�
�

�
�(a+ b

�
� |�u|2 dx)�u = |u|4u + �f (x,u), x � � ,

u = 0, x � �� ,
(1.6)
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where � �R
3 is a bounded domain, �,a,b> 0 are �xed parameters. f (x, •) is continuously

di�erentiable for a.e. x � � . By using the constraint variational method and the degree
theory, he got the existence of a least energy nodal solution to theKirchho�-type equation.
Wang, Zhang, and Guan [20] studied the following Schrödinger�Poisson system with

critical growth:

�
�

�
��u +V (x)u + ��u = |u|4u +µf (u), x �R

3,

��� = u2, x �R
3,

where µ,� > 0, f � C1(R,R). They got the existence and asymptotic behavior of a least
energy sign-changing solution to the above system.
Motivated by the above references, in this paper, we study the existence of both ground

state and least energy nodal solution for the following critical Kirchho��Schrödinger�
Poisson system with asymptotically 3-linear growth nonlinearity:

�
�

�
�(a+ b

�
R3 |�u|2 dx)�u +V (x)u + ��u = |u|4u + kf (u), x �R

3,

��� = u2, x �R
3,

(1.7)

where a, b, k, � are positive real numbers. Similar to [22], we suppose that V � C(R3,R+)
and satis�es that E ���� Lp(R3) (compact embedding) for 2 < p < 6, and E �� L6(R3) is
continuous, where E is a Hilbert space de�ned by

E=

�
�

�
H1

r (R3) = {u � H1(R3) : u(x) = u(|x|)}, if V (x) is a constant,

{u � D1,2(R3) :
�
R3 V (x)u2 dx < �}, if V (x) is not a constant

with the inner product de�ned by

�u,v	 =
�

R3

�
a�u • �v+V (x)uv

�
dx, 
u,v � E

and the norm � • �:

�u�2 =
�

R3

�
a|�u|2 +V (x)u2�dx.

As for the function f , we assume f � C(R,R) and satis�es the following hypotheses:
(f1) f (t) • t > 0 for t �= 0;
(f2) limt��

f (t)
t3

= 1 and f (t)
t3

< 1 for all t �R \ {0};
(f3) f (t)

|t|3 is an increasing function in (��, 0) and (0, +�).

Remark1.1 We note that under conditions (f1)�(f3), it is easy to see

lim
t�0

f (t)
t

= 0. (1.8)

The function f (t) = t5

1+t2
is an example satisfying all conditions (f1)�(f3).
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It is well known that the equation ��� = u2 can be solved as

�u(x) =
1
4	

�

R3

u2(y)
|x� y|

dy. (1.9)

So system (1.7) is merely a single equation on u:

�
�

a+ b
�

R3
|�u|2 dx

	
�u +V (x)u + ��uu = |u|4u + kf (u), x �R

3. (1.10)

Based on the results above, the energy functional associated with system (1.7) and so with
(1.10) is de�ned by

Jb
k (u) =

1
2

�

R3

�
a|�u|2 +V (x)u2�dx+

b
4

��

R3
|�u|2 dx

	2

+
�
4

�

R3
�uu2 dx� k

�

R3
F(u)dx�

1
6

�

R3
|u|6 dx

for any u � E. Moreover, under our conditions, Jb
k (u) belongs to C1(E,R), and the FrØchet

derivative of Jb
k is


�
Jb
k

�
(u),v
�
=

�

R3

�
a�u • �v+ V (x)uv

�
dx+ b

��

R3
|�u|2 dx

	��

RN
�u • �v dx

	

+ �
�

R3
�uuv dx� k

�

R3
f (u)v dx�

�

R3
|u|4uv dx

for any u,v � E.
As it is well known, if u � E is a solution of system (1.7) and u– �= 0, then u is a nodal

solution of system (1.7), where

u+ = max
�
u(x), 0

�
, u� = min

�
u(x), 0

�
.

Note that, since system (1.7) involved pure critical nonlinearity |u|4u, it will prevent us
from using the standard arguments as in [3, 12, 19, 22]. Hence, we need to show some
techniques to overcome the lack of compactness in E �� L6(R3).
The main results can be stated as follows.

Theorem 1.1 Suppose that(f1)…(f3) are satis“ed. Then there exists k
 > 0 such that, for
all k � k
, system(1.7) has a least energy nodal solution ub, which has precisely two nodal
domains.

Remark1.2 The least energy nodal solution ub is a solution of (1.7) satisfying

Jb
k (ub) = inf

u�Mb
k

Jb
k (u),

whereMb
k is de�ned by (2.1) in the next section. We recall that the nodal of a continuous

function u : R3 � R is the surface u�1(0). Every connected component of R3 \ u�1(0) is
called a nodal domain.
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Theorem 1.2 Suppose that(f1)…(f3) are satis“ed. Then there exists k

 > 0 such that, for

all k � k

, the c� > 0 is achieved and

Jb
k (ub) > 2c�,

where c� = infu�N b
k

Jb
k (u),N b

k = {u � H\{0}|�(Jb
k )


(u),u	 = 0}, and ub is the least energy nodal

solution obtained in Theorem1.1. In particular , c� > 0 is achieved either by a positive or a

negative function vb which is a ground state solution of system(1.7).

Theorem 1.3 Suppose that(f1)…(f3) are satis“ed. Then there exists k


 > 0 such that, for

all k � k


, for any least energy nodal solution sequence{ubn} with bn � 0 as n� �,
there exists a subsequence, still denoted by{ubn}, such that ubn converges to u0 weakly in E

as n� �, where u0 is a least energy nodal solution of the following problem:

�
�

�
�a�u + V (x)u + ��u = |u|4u + kf (u), x � R

3,

��� = u2, x � R
3.

(1.11)

Comparing with the literature works, the above three results can be regarded as a gen-
eralization of those in [12, 19, 20]. As for Kirchho��Schrödinger�Poisson equation, to
the best of our knowledge, few results involved the existence and asymptotic behavior of
ground state nodal solutions in case of critical growth. It is worth noting that the Brower
degree method used in [20, 23] is strictly dependent on the nonlinearity f � C1(R,R), so
we have to �nd new ways to solve our model where we only allow f � C(R,R). On the
other hand, in our modeling, both of the nonlocal terms

�
R3 |�u|2 dx and �u appear, we

need to overcome the di�culties caused by the nonlocal terms under a uniform variational
framework. It is also due to the lack of compactness embedded in full space that we can-
not use the method in [18]. Thankfully, after appropriate modi�cations, the deformation
lemma used in [12] can be applied to get the existence of a least energy nodal solution of
the Kirchho��Schrödinger�Poisson system.

2 Some technical lemmas
To �x some notations, the letter C, Ci will be repeatedly used to denote various positive
constants whose exact values are irrelevant. | • |p denote the norm in Lp(R3) for p > 1.
We �rst list some properties of �u for our use, one can �nd the details in [14, 26].

Proposition 2.1 For any u� E, we have

(i) there exists C > 0 such that

�

R3
�uu2 dx � C�u�4 
u � E;

(ii) �u � 0, 
u � E;
(iii) �tu = t2�u, 
t > 0 and u � E;
(iv) if un � u in E, then �un � �u in D1,2(R3) and

�

R3
�unu2

n dx �
�

R3
�uu2 dx.
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For �xed u � E with u– �= 0, the function �u : [0,�) × [0,�) � R and the mapping
Wu : [0,�)× [0,�)�R

2 are well de�ned by

�u(s, t) = Jb
k

�
su+ + tu��,

Wu(s, t) =
�
�

Jb
k

�
�
su+ + tu��,su+

�
,

�

Jb
k

�
�
su+ + tu��, tu���,

and

Mb
k =

�
u � E,u– �= 0 and


�
Jb
k

�
(u),u+� =

�

Jb
k

�
(u),u�� = 0
�
. (2.1)

Lemma 2.1 Assume that(f1)…(f3) are satis“ed, if u � E with u– �= 0, then�u has the fol-

lowing properties:
(i) The pair (s, t) is a critical point of �u with s, t > 0� su+ + tu� �Mb

k ;
(ii) The function �u has a unique critical point (su, tu) on (0,�)× (0,�), which is also

the unique maximum point of �u on [0,�)× [0,�); Furthermore, if
�(Jb

k )

(u),u–	 � 0, then 0 < su, tu � 1.

Proof (i) By the de�nition of �u, we have that

��u(s, t) =
�

��u

�s
,
��u

�t

	

=
�
1
s


�
Jb
k

�
�
su+ + tu��,su+

�
,
1
t


�
Jb
k

�
�
su+ + tu��, tu��

	
.

From the de�nition, item (i) is obvious.
(ii) It is easy to see


�
Jb
k

�
�
su+ + tu��,su+

�

= s2
��u+��2 + bs4

��

R3



�u+

2 dx
	2

+ bs2t2
��

R3



�u+

2 dx
	��

R3



�u�

2 dx
	

+ s4�
�

R3
�u+



u+

2 dx+ s2t2�
�

R3
�u�



u+

2 dx� s6
�

R3



u+

6 dx

� k
�

R3
f
�
su+

�
su+ dx (2.2)

and


�
Jb
k

�
�
su+ + tu��, tu��

= t2
��u���2 + bt4

��

R3



�u�

2 dx
	2

+ bs2t2
�

R3



�u+

2 dx
�

R3



�u�

2 dx+ t4�
�

R3
�u�



u�

2 dx

+ s2t2�
�

R3
�u+



u�

2 dx� t6
�

R3



u�

6 dx� k
�

R3
f
�
tu��tu� dx. (2.3)
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From (f1) and (f2), for any 
 > 0, there is C
 > 0 satisfying



f (t)


 � 
|t| +C
|t|4 (2.4)

for all t � R. From the Sobolev embedding theorem it follows that


�
Jb
k

�
�
su+ + tu��,su+

�

� s2
��u+��2 � s6

�

R3



u+

6 dx� k
s2
�

R3



u+

2 dx� kC
sq
�

R3



u+

5 dx

� s2
��u+��2 � C1s6

��u+��6 � k
C2s2
��u+��2 � kC
C3sq

��u+��5

� (1 � k
C4)s2
��u+��2 �C4s6

��u+��6 � kC4s5
��u+��5.

By choosing 
 > 0 such that (1 � k
C4) > 0, we can infer that


�
Jb
k

�
�
su+ + tu��,su+

�
> 0

for 0 < s� 1 and all t � 0. Similarly, there holds


�
Jb
k

�
�
su+ + tu��, tu�� > 0

for 0 < t � 1 and all s� 0. Hence, there exists �1 > 0 such that


�
Jb
k

�
��1u+ + tu��, �1u+� > 0,

�

Jb
k

�
�
su+ + �1u��, �1u�� > 0 (2.5)

for all s� 0, t � 0. It is worth noting that assumption (f1) implies

F(t)� 0, t �R. (2.6)

Thus, choosing s= �

2 > �1, it follows that, for t � [�1, �


2] and �

2 � 1,


�
Jb
k

�
��

2u

+ + tu��, �

2u

+�

�
�
�

2
�2��u+��2 + b

�
�

2
�4��u+��4 + b

�
�

2
�4��u+��2��u���2

+
�
�

2
�4�

�

R3
�u+



u+

2 dx+
�
�

2
�4�

�

R3
�u�



u+

2 dx�
�
�

2
�6

�

R3



u+

6 dx

� 0.

Analogously, one can show that


�
Jb
k

�
�
su+ + tu��, tu��

� t2
��u���2 + bt4

��u���4 + bs2t2
��u+��2��u���2

+ t4�
�

R3
�u�



u�

2 dx+ s2t2�
�

R3
�u+



u�

2 dx� t6
�

R3



u�

6 dx.
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Choosing �2 > �

2 � 1, we deduce


�
Jb
k

�
��2u+ + tu��, �2u+� < 0,

�

Jb
k

�
�
su+ + �2u��, �2u�� < 0 (2.7)

for all s, t � [�1, �2].
From (2.5) and (2.7), the assumptions of Miranda�s theorem (see Lemma 2.4 in [7]) are

satis�ed. Thus there is (su, tu) � (0,�) × (0,�) satisfying Wu(su, tu) = (0, 0). So suu+ +
tuu� �Mb

k .
Now we turn to proving that the pair (su, tu) is unique. We �rst suppose that u � Mb

k ,
thus

��u+��2 + b
��

R3



�u+

2 dx
	2

+ b
�

R3



�u+

2 dx •
�

R3



�u�

2 dx+ �
�

R3
�u+



u+

2 dx

+ �
�

R3
�u�



u+

2 dx =
�

R3



u+

6 dx+ k
�

R3
f
�
u+�u+ dx (2.8)

and

��u���2 + b
��

R3



�u�

2 dx
	2

+ b
�

R3



�u+

2 dx •
�

R3



�u�

2 dx+ �
�

R3
�u�



u�

2 dx

+ �
�

R3
�u+



u�

2 dx =
�

R3



u�

6 dx+ k
�

R3
f
�
u��u� dx. (2.9)

We will show that the pair (su, tu) = (1, 1) is the unique one such that suu+ + tuu� � Mb
k .

Let (s0, t0) be a pair of numbers such that s0u+ + t0u� �Mb
k with 0 < s0 � t0. We have

s20
��u+��2 + bs40

��

R3



�u+

2 dx
	2

+ bs20t
2
0

�

R3



�u+

2 dx •
�

R3



�u�

2 dx

+ s40�
�

R3
�u+



u+

2 dx+ s20t
2
0�

�

R3
�u�



u+

2 dx

= s60

�

R3



u+

6 dx+ k
�

R3
f
�
s0u+�s0u+ dx (2.10)

and

t20
��u���2 + bt40

��

R3



�u�

2 dx
	2

+ bs20t
2
0

�

R3



�u+

2 dx •
�

R3



�u�

2 dx

+ t40�
�

R3
�u�



u�

2 dx+ s20t
2
0�

�

R3
�u+



u�

2 dx

= t60

�

R3



u�

6 dx+ k
�

R3
f
�
t0u��t0u� dx. (2.11)

By comparing (2.9) and (2.11), we deduce

�u��2

t20
+ b

��

R3



�u�

2 dx
	2

+ b
�

R3



�u+

2 dx •
�

R3



�u�

2 dx

+ �
�

R3
�u�



u�

2 dx+ �
�

R3
�u+



u�

2 dx
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� t20

�

R3



u�

6 dx+ k
�

R3

�
f (t0u�)
(t0u�)3

��
u��4 dx. (2.12)

Combining (2.9) with (2.12), one has that

�
1
t20

� 1
	��u���2 �

�
t20 � 1

��

R3



u�

6 dx+ k
�

R3

�
f (t0u�)
(t0u�)3

�
f (u�)
(u�)3

��
u��4 dx.

By using assumption (f3), we get t0 � 1. Analogously, from (2.8), (2.10), and 0 < s0 � t0,

�
1
s20

� 1
	��u+��2 �

�
s20 � 1

� �

R3



u+

6 dx+ k
�

R3

�
f (s0u+)
(s0u+)3

�
f (u+)
(u+)3

��
u+�4 dx.

By using assumption (f3), we get s0 � 1. Consequently, s0 = t0 = 1.
In the case u /�Mb

k , we suppose that there are (s1, t1), (s2, t2) such that

u1 = s1u+ + t1u� �Mb
k, u2 = s2u+ + t2u� �Mb

k.

Thus,

u2 =
�

s2
s1

	
s1u+ +

�
t2
t1

	
t1u� =

�
s2
s1

	
u+
1 +

�
t2
t1

	
u�
1 �Mb

k.

According to u1 �Mb
k and the fact of the previous case, one has that

s2
s1

=
t2
t1

= 1.

Thus s1 = s2, t1 = t2. Therefore (su, tu) is the unique critical point of �u in (0,�)× (0,�).
In the following, we show that the critical point (su, tu) of �u is its unique maximum

point on [0,+�)× [0, +�). By de�nition

�u(s, t) =
s2

2
��u+��2 +

bs4

4

��

R3



�u+

2 dx
	2

+
s4

4
�

�

R3
�u+



u+

2 dx�
s6

6

�

R3



u+

6 dx

�
�

R3
F
�
su+

�
dx+

t2

2
��u��� +

bt4

4

��

R3



�u�

2 dx
	2

+
t4

4
�

�

R3
�u�



u�

2 dx

�
t6

6

�

R3



u+

6 dx�
�

R3
F
�
tu��dx+

s2t2

4
�

�

R3
�u�



u+

2 dx

+
s2t2

4
�

�

R3
�u+



u�

2 dx+
bs2t2

2

�

R3



�u+

2 dx •
�

R3



�u�

2 dx.

Now (2.6) implies that

lim
|(s,t)|��

�u(s, t) = ��.

By contradiction, we suppose that the boundary point (0, t0) is a maximum point of �u

with t0 � 0. By direct computation, it follows that

(�u)
s(s, t0) = s
��u+��2 + bs3

��

R3



�u+

2 dx
	2

+ ast20

��

R3



�u+

2 dx
	��

R3



�u�

2 dx
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+ s3�
�

R3
�u+



u+

2 dx+
st20
2

�
�

R3
�u+



u�

2 dx

+
st20
2

�
�

R3
�u�



u+

2 dx� s5
�

R3



u+

6 dx�
�

R3
f
�
su+

�
u+ dx

> 0

when s� 1. It follows that�u is an increasing functionwith respect to swhen s� 1, which
is a contradiction. Analogously, �u cannot achieve its global maximum on the boundary
point (s, 0) with s� 0.
In the remainder of our proof, we will prove that 0 < su, tu � 1 when �(Jb

k )

(u),u–	 � 0.

Suppose su � tu > 0. One has

s2u
��u+��2 + bs4u

��

R3



�u+

2 dx
	2

+ bs4u

�

R3



�u+

2 dx •
�

R3



�u�

2 dx

+ s4u�
�

R3
�u+



u+

2 dx+ s4u�
�

R3
�u�



u+

2 dx

� s2u
��u+��2 + bs4u

��

R3



�u+

2 dx
	2

+ bs2ut2u

�

R3



�u+

2 dx •
�

R3



�u�

2 dx

+ s4u�
�

R3
�u+



u+

2 dx+ s2ut2u�
�

R3
�u�



u+

2 dx

= s6u

�

R3



u+

6 dx+ k
�

R3
f
�
suu+�suu+ dx. (2.13)

In view of �(Jb
k )


(u),u+	 � 0, one has that

��u+��2 + b
��

R3



�u+

2 dx
	2

+ b
�

R3



�u+

2 dx •
�

R3



�u�

2 dx+ �
�

R3
�u+



u+

2 dx

+ �
�

R3
�u�



u+

2 dx �
�

R3



u+

6 dx+ k
�

R3
f
�
u+�u+ dx. (2.14)

By comparing (2.13) and (2.14), it follows that

�
1
s2u

� 1
	��u+��2 �

�
s2u � 1

��

R3



u+

6 dx+ k
�

R3

�
f (suu+)
(suu+)3

�
f (u+)
(u+)3

��
u+�4 dx.

It implies su � 1. Therefore 0 < su, tu � 1. �

Lemma 2.2 If u �Mb
k , then tu /�Mb

k for every t> 0, t �= 1. More precisely,


�
Jb
k

�
(tu), tu–�
> 0 for t � (0, 1),


�
Jb
k

�
(tu), tu–�
< 0 for t > 1.

Proof From (2.2) and u �Mb
k , we have that


�
Jb
k

�
(tu), tu+� = t2
�
1 � t2

���u+��2 + t4
�
1 � t2

��

R3



u+

6 dx

+ kt4
�

R3

�
f
�
u+� �

f (tu+)
t3

	
u+ dx.
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According to (f3), when 0 < t < 1,


�
Jb
k

�
(tu), tu+� > 0,

while in the case t > 1,


�
Jb
k

�
(tu), tu+� < 0.

Similarly, it is easy to get


�
Jb
k

�
(tu), tu�� > 0 for t � (0, 1),

�

Jb
k

�
(tu), tu�� < 0 for t > 1.

The proof is complete. �

Lemma 2.3 Let ck
b = infu�Mb

k
Jb
k (u), then we have that

lim
k��

ck
b = 0.

Proof For any u �Mb
k , we can deduce

��u–��2 + b
��

R3



�u–

2 dx
	2

+ b
�

R3



�u+

2 dx •
�

R3



�u�

2 dx+ �
�

R3
�u–



u–

2 dx

+ �
�

R3
�u�



u–

2 dx = k
�

R3
f
�
u–�

u– dx+
�

R3



u–

6 dx.

Hence, in view of (2.4), it follows that

��u–��2 � k
�

R3
f
�
u–�

u– dx+
�

R3



u–

6 dx

� k
C1
��u–��2 + kC2

��u–��5 + C3
��u–��6.

Therefore, we have that

(1 � k
C1)
��u–��2 � kC2

��u–��5 +C3
��u–��6.

We now choose 
 small enough such that (1 � k
C1) > 0, so there is � > 0 such that

��u–�� � � (2.15)

for all u � Mb
k . For any u � Mb

k , in view of the de�nition of Mb
k , �(Jb

k )

(u),u	 = 0. From

assumption (f3), we have

f (t)t � 4F(t) � 0, (2.16)

and f (t)t � 4F(t) is increasing in (0,+�) and decreasing in (��, 0). Hence, one gets

Jb
k (u) = Jb

k (u) �
1
4

�

Jb
k

�
(u),u
�
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=
1
4
�u�2 +

1
12

�

R3
|u|6 dx+

k
4

�

R3

�
f (u)u � 4F(u)

�
dx

�
1
4
�u�2

for any u �Mb
k .

From the above discussion, we can see that ck
b = infu�Mb

k
Jb
k (u) is well de�ned.

Let u � E with u– �= 0 be �xed. According to Lemma 2.1, for each k > 0, there exist
sk, tk > 0 such that sku+ + tku� � Mb

k . Hence, by (2.6), the Sobolev embedding theorem
and Proposition 2.1, we have

0� ck = inf
u�Mb

k

Jb
k (u) � Jb

k

�
sku+ + tku��

�
1
2
��sku+ + tku���2 +

b
4

��

R3



�
�
sku+ + tku��

2 dx

	2

+
�
4

�

R3
�sku++tku�



sku+ + tku�

2 dx

�
s2k
2

��u+��2 +
t2k
2

��u���2 +Cs4k
��u+��4 + Ct4k

��u���4

for some constants C > 0. We now de�ne

�u =
�
(sk, tk) � [0,�)× [0,�) : Wu(sk, tk) = (0, 0),k > 0

�
.

Hence we have that

s6k

�

R3



u+

6 dx+ t6k

�

R3



u�

6 dx

� s6k

�

R3



u+

6 dx+ t6k

�

R3



u�

6 dx+ k
�

R3
f
�
sku+�sku+ dx+ k

�

R3
f
�
tku��tku� dx

=
��sku+ + tku���2 + b

��

R3



�
�
sku+ + tku��

2 dx

	2

+ �
�

R3
�sku++tku�



sku+ + tku�

2 dx

� s2k
��u+��2 + t2k

��u���2 +Cs4k
��u+��4 + Ct4k

��u���4.

It follows that�u is a bounded set.We suppose that kn � � as n � �. For (skn , tkn) � �u,
there exist s0 and t0 such that

(skn , tkn) � (s0, t0)

as n � � (in the subsequence sense). We suppose that s0 > 0 or t0 > 0. Thanks to sknu+ +
tknu� �Mkn

b , we get

��sknu+ + tknu���2 + b
��

R3



�
�
sknu+ + tknu��

2 dx

	2

+ �
�

R3
�skn u++tkn u�



sknu+ + tknu�

2 dx

=
�

R3



sknu+ + tknu�

6 dx+ kn

�

R3
f
�
sknu+ + tknu���sknu+ + tknu��dx. (2.17)
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According to sknu+ � s0u+ and tknu� � t0u� in E,
�
R3 |�(sknu+ + tknu�)|2 dx � �sknu+ +

tknu��2, (2.4) and (2.6), so as n � �, there holds

�

R3
f
�
sknu+ + tknu���sknu+ + tknu��dx �

�

R3
f
�
s0u+ + t0u���s0u+ + t0u��dx > 0.

Because kn � � as n � � and {sknu+ + tknu�} is bounded in E, following the Sobolev
embedding theorem, we have a contradiction with equality (2.17). Thus, s0 = t0 = 0, and
so limk�� ck

b = 0. �

Lemma 2.4 There exists k
 > 0 such that, for all k � k
, the in“mum ck
b is achieved.

Proof In view of the de�nition of ck
b, we deduce that there exists a sequence {un} � Mk

b

satisfying

lim
n��

Jb
k (un) = ck

b.

Following from (2.8) and (2.9), {un} is bounded in E. So in the subsequence sense, there
exists ub = u+

b + u�
b � E such that un � ub. Since the embedding E �� Lp(R3) is compact

for p � (2, 6), we deduce

un � ub in Lp�
R

3�,
p � (2, 6),

un(x)� ub(x) a.e. x � R
3.

Then we have

u–
n � u–

b in E,

u–
n � u–

b in Lp�
R

3�,

u–
n (x)� u–

b (x) a.e. x �R
3.

Denote � := (S)
3
2

3 , where

S:= inf
u�E\{0}

�u�2

(
�
R3 |u|6 dx)

1
3
.

The Sobolev embedding theorem insures that � > 0. Lemma 2.3 implies that there exists
k
 > 0 such that ck

b < � for all k � k
. Fix k � k
, in view of Lemma 2.1, we have

Jb
k

�
su+n + tu�

n

�
� Jb

k (un)

for all s, t � [0, +�). Because u–
n � u–

b in E, E is a Hilbert space, we can deduce

��u–
n

��2 �
��u–

n � u–
b

��2 = 2
�
u–

n ,u
–
b

�
�

��u–
b

��2,

where we can assume that the sequence {�u–
n �} is convergent, so we have

lim
n��

��u–
n

��2 = lim
n��

��u–
n � u–

b

��2 +
��u–

b

��2.
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Obviously, we can let n � � in both sides of the above equation. On the other hand, by
(2.4) we have

�

R3
F
�
su–

n

�
dx �

�

R3
F
�
su–

b

�
dx.

Thus, we get

lim inf
n��

Jb
k

�
su+n + tu�

n

�

�
s2

2
lim

n��

���u+
n � u+

b

��2 +
��u+

b

��2� +
t2

2
lim

n��

���u�
n � u�

b

��2 +
��u�

b

��2�

+
bs2

4

�
lim inf
n��

��

R3



�u+
n



2 dx
	�2

+
bt2

4

�
lim inf
n��

��

R3



�u�
n



2 dx
	�2

+
bs2t2

4
lim inf
n��

��

R3



�u+
n



2 dx
	

• lim inf
n��

��

R3



�u�
n



2 dx
	

+
�s4

4
lim inf
n��

�

R3
�u+n



u+
n



2 dx+
�t4

4
lim inf
n��

�

R3
�u�n



u�
n



2 dx

�
s6

6
lim

n��

�

u+
n � u+

b



6
6 +



u+
b



6
6

�
�

t6

6
lim

n��

�

u�
n � u�

b



6
6 +



u�
b



6
6

�

� k
�

R3
F
�
su+b

�
dx� k

�

R3
F
�
tu�

b

�
dx

+
�s2t2

4
lim inf
n��

�

R3
�u+n



u�
n



2 dx+
�s2t2

4
lim inf
n��

�

R3
�u�n



u+
n



2 dx.

By using Fatou�s lemma, there holds

lim inf
n��

Jb
k

�
su+n + tu�

n

�
� Jb

k

�
su+b + tu�

b

�
+

s2

2
lim

n��

��u+
n � u+

b

��2 +
t2

2
lim

n��

��u�
n � u�

b

��2

�
s6

6
lim

n��



u+
n � u+

b



6
6 �

t6

6
lim

n��



u�
n � u�

b



6
6

= Jb
k

�
su+b + tu�

b

�
+

s2

2
A1 �

s6

6
B1 +

t2

2
A2 �

t6

6
B2,

where

A1 = lim
n��

��u+
n � u+

b

��2, A2 = lim
n��

��u�
n � u�

b

��2,

B1 = lim
n��



u+
n � u+

b



6
6, B2 = lim

n��



u�
n � u�

b



6
6.

From the above fact, one has that

Jb
k

�
su+b + tu�

b

�
+

s2

2
A1 �

s6

6
B1 +

t2

2
A2 �

t6

6
B2 � ck

b (2.18)

for all s� 0, t � 0.
Claim 1. u–

b �= 0. In fact, by contradiction, if u+
b = 0, we divide it into two cases.

Case 1: B1 = 0. In this case, if A1 = 0, in view of the fact (2.15), we obtain �u+
b� > 0, which

is absurd. If A1 > 0, we let t = 0 in (2.18) that s2

2 A1 � ck
b for all s� 0, which is false.
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Case 2: B1 > 0. In this case, by the de�nition of S, we deduce

� =
(S)

3
2

3
�

1
3

�
A1

(B1)
1
3

	 3
2
.

On the other hand,

1
3

�
A1

(B1)
1
3

	 3
2
= max

s�0

�
s2

2
A1 �

s6

6
B1

�
.

Thanks to ck
b < � , by substituting t = 0 into (2.18), we have that

� � max
s�0

�
s2

2
A1 �

s6

6
B1

�
� ck

b < � ,

which is a contradiction. Thus u+
b �= 0. Similarly, we also get u�

b �= 0. Therefore u–
b �= 0 as

claimed.
Claim 2. B1 = B2 = 0. We only prove B1 = 0. By contradiction, we suppose that B1 > 0.

We have two cases.
Case 1: B2 > 0. Let sa and tb be the numbers such that

s2a
2

A1 �
s6a
6

B1 = max
s�0

�
s2

2
A1 �

s6

6
B1

�
,

t2b
2

A2 �
t6b
6

B2 = max
t�0

�
t2

2
A2 �

t6

6
B2

�
.

Since �u is continuous, we have (su, tu) � [0,sa]× [0, tb] satisfying

�u(su, tu) = max
(s,t)�[0,sa]×[0,tb]

�u(s, t).

Note that if 0 < t � 1, we deduce

�u(s, 0) = Jb
k

�
su+b

�
< Jb

k

�
su+b

�
+ Jb

k

�
tu�

b

�
� Jb

k

�
su+b + tu�

b

�
= �u(s, t)

for all s� [0,sa]. Thus there is t0 � [0, tb] such that

�u(s, 0)� �u(s, t0)

for all s� [0,sa]. It follows that any point of the form (s, 0) with 0 � s� sa is not the max-
imizer of �u. Thus, (su, tu) /� [0,sa]× {0}. Similarly, it shows that (su, tu) /� {0} × [0, tb]. By
direct computation, we get

s2

2
A1 �

s6

6
B1 > 0, (2.19)

t2

2
A2 �

t6

6
B2 > 0 (2.20)
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for all s� (0,sa], t � (0, tb]. Hence there hold

� �
s2a
2

A1 �
s6a
6

B1 +
t2

2
A2 �

t6

6
B2,

� �
t2b
2

A2 �
t6b
6

B2 +
s2

2
A1 �

s6

6
B1

for all s� [0,sa], t � [0, tb]. In view of (2.18), it follows that

�u(s, tb) � 0, �u(sa, t)� 0

for all s� [0,sa], t � [0, tb]. That is, (su, tu) /� {sa}× [0, tb] and (su, tu) /� ×[0,sa]×{tb}. Hence,
we can deduce that (su, tu) � (0,sa)× (0, tb). By Lemma 2.1, it follows that (su, tu) is a critical
point of �u. Thus, suu+ + tuu� �Mb

k . By (2.18), (2.19), and (2.20), we deduce

ck
b � Jb

k

�
suu+

b + tuu�
b

�
+

s2u
2

A1 �
s6u
6

B1 +
t2u
2

A2 �
t6u
6

B2

> Jb
k

�
suu+

b + tuu�
b

�

� ck
b.

It is impossible. The proof of Case 1 is completed.
Case 2: B2 = 0. From the de�nition of Jb

k , it is easy to show that there exists t0 � [0,�)
such that Jb

k (su+b + tu�
b) � 0 for all (s, t) � [0,sa] × [t0,�). Thus, there is (su, tu) � [0,sa] ×

[0,�) satisfying

�u(su, tu) = max
(s,t)�[0,sa]×[0,�)

�u(s, t).

We need to prove that (su, tu) � (0,sa)× (0,�). Similarly, it is noticed that�u(s, 0) < �u(s, t)
for s� [0,sa] and 0 < t � 1, that is, (su, tu) /� [0,sa] × {0}. Also, for s small enough, we get
�u(0, t) < �u(s, t) for t � [0,�), that is, (su, tu) /� {0} × [0,�). We note that

� �
s2a
2

A1 �
s6a
6

B1 +
t2

2
A2

for all t � [0,�). Thus also from (2.20) and B2 = 0, we have �u(sa, t) � 0 for all t � [0,�).
Hence, (su, tu) /� {sa}× [0,�). That is, (su, tu) is an innermaximizer of�u in [0,sa)× [0,�).
So suu+ + tuu� �Mb

k . Hence, by using (2.19), we obtain

ck
b � Jb

k

�
suu+

b + tuu�
b

�
+

s2u
2

A1 �
s6u
6

B1 +
t2u
2

A2 �
t6u
6

B2

> Jb
k

�
suu+

b + tuu�
b

�

� ck
b,

which is a contradiction. It is similar for B2 = 0. From the above discussion, we know that
Claim 2 is true.
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Claim 3. ck
b is achieved. Since u–

b �= 0, by Lemma 2.1, there are su, tu > 0 such that�u :=
suu+

b + tuu�
b �Mk

b. On the other hand, un � ub in E, then
�
R3 (V (x)u2

n)dx �
�
R3 (V (x)u2

b)dx

and lim infn�� �un� � �ub�, so we get

lim inf
n��

�

R3
|�un|2 dx �

�

R3
|�ub|2 dx.

On the other hand, by (2.4), we deduce

lim
n��

�

R3
f
�
u–

n

�
u–

n dx =
�

R3
f (ub)–u–

b dx.

Thanks to Proposition 2.1, we get


�
Jb
k

�
(ub),u–
b

�
� lim inf

n��

��u–
n

��2 + b
�

lim inf
n��

��

R3



�u–
n



2 dx
	�2

+ b lim inf
n��

��

R3



�u+
n



2 dx
	

• lim inf
n��

��

R3



�u�
n



2 dx
	

+ lim inf
n��

�

R3
�un



u–
n



2 dx� lim
n��

�

R3
f
�
u–

n

�
u–

n dx� lim
n��

�

R3



u–
n



6

� lim
n��


�
Jb
k

�
(un),u–
n

�
= 0.

Therefore from Lemma 2.2 we have that 0 < su, tu � 1. Since un �Mk
b, B1 = B2 = 0 and �u�

is lower semicontinuous, it follows that

ck
b � Jb

k (�u)) �
1
4

�

Jb
k

�
(�u),�u
�

=
1
4
��u�2 +

1
12

|�u|66 +
k
4

�

R3

�
f (�u)�u � 4F(�u)

�
dx

=
1
4
���subu+

b

��2 +
��tubu�

b

��2� +
1
12

�

subu+
b



6
6 +



tubu�
b



6
6

�

+
k
4

�

R3

�
f
�
subu+

b

��
subu+

b

�
� 4F

�
subu+

b

��
dx

+
k
4

�

R3

�
f
�
x, tubu�

b

��
tubu�

b

�
� 4F

�
x, tubu�

b

��
dx.

By using 0 < sub , tub � 1, f (t)t � 4F(t) is increasing in (0,+�) and decreasing in (��, 0),
we have

ck
b �

1
4
�ub�2 +

1
12

|ub|66 +
k
4

�

R3

�
f (ub)ub � 4F(ub)

�
dx

� lim inf
n��

�
Jb
k (un) �

1
4

�

Jb
k

�
(un),un
��

= lim inf
n��

Jb
k (un)

= ck
b.

Therefore the in�mum ck
b is achieved by ub = u+

b + u�
b �Mk

b. �
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3 The proof of the main results
In this section, we prove the main results. Firstly, we prove Theorem 1.1. In fact, thanks
to Lemma 2.4, we should prove that the minimizer ub for ck

b is indeed a nodal solution of
system (1.7), but Mb

k is not a smooth manifold, we will apply a new method to complete
our certi�cation.

3.1 The proof of Theorem 1.1

Proof Since ub � Mk
b and Jb

k (u
+
b + u�

b) = ck
b, we have �(Jb

k )

(ub),u+

b	 = �(Jb
k )


(ub),u�
b	 = 0. By

Lemma 2.1, for (s, t) � (R+ ×R+)\(1, 1), we have

Jb
k

�
su+b + tu�

b

�
< Jb

k

�
u+

b + u�
b

�
= ck

b. (3.1)

If (Jb
k )


(ub) �= 0, then there exist � > 0 and � > 0 such that

���
Jb
k

�
(v)
�� � � for all �v� ub� � 3�.

We know by result (2.15), if u � Mb
k , there exists L > 0 such that �u–

b � > L, and we can
assume 6� < L. Let Q := ( 12 ,

3
2 )× ( 12 ,

3
2 ) and g(s, t) = su+b + tu�

b , (s, t) � Q. In view of (3.1), it is
easy to see that

ck
b := max

�Q
I � g< ck

b. (3.2)

Let 
 := min{(ck
b � ck

b)/4, ��/8} and S� := B(ub, �), according to Lemma 2.3 of [24], there
exists a deformation � � C([0, 1]× E,E) satisfying

(a) �(t ,v) = v if t = 0, or v /� (Jb
k )

�1([ck
b � 2
,ck

b + 2
])� S2� ;
(b) �(1, (Jb

k )
ck
b+
 � S�) � (Jb

k )
ck
b�
 ;

(c) Jb
k (�(1,v))� Jb

k (v) for all v � E;
(d) Jb

k (�(•,v)) is nonincreasing for every v � E.
We remind that, for a functional � : E�R, the level set �µ is de�ned by �µ = {u � E :

�(u) � µ}. Firstly, we need to prove that

max
(s,t)� flQ

Jb
k

�
�
�
1,g(s, t)

��
< ck

b. (3.3)

In fact, it follows from Lemma 2.1 that Jb
k (g(s, t))� ck

b < ck
b + 
. That is,

g(s, t) �
�
Jb
k

�ck
b+
 .

On the other hand, from (a) and (d), we get

Jb
k

�
�(1,v)

�
� Jb

k

�
�(0,v)

�
= Jb

k (v), 
v � E. (3.4)

For (s, t) � Q, when s �= 1 or t �= 1, according to (3.1) and (3.4),

Jb
k

�
�
�
1,g(s, t)

��
� Jb

k

�
g(s, t)

�
< ck

b.
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If s= 1 and t = 1, that is, g(1, 1) = ub, so that it holds g(1, 1) � (Jb
k )

ck
b+
 � S� , then by (b)

Jb
k

�
�
�
1,g(1, 1)

��
� ck

b � 
 < ck
b.

Thus (3.3) holds. In the following, we prove that �(1,g(Q)) �Mk
b �=∅, which contradicts

the de�nition of ck
b. Let �(s, t) := �(1,g(s, t)) and

� (s, t) :=
�
1
s


�
Jb
k

�
��(s, t)
�
,
�
�(s, t)

�+�,
1
t


�
Jb
k

�
��(s, t)
�
,
�
�(s, t)

���
	
.

The claim holds if there exists (s0, t0) � Q such that � (s0, t0) = (0, 0). Since

��g(s, t) � ub
��2 =

��(s� 1)u+
b + (t � 1)u�

b

��2

� |s� 1|2
��u+

b

��2

> |s� 1|2(6�)2,

and |s� 1|2(6�)2 > 4�2 � s< 2/3 or s> 4/3, using the item (a) above and the range of s,
for s= 1

2 and for every t � [ 12 ,
3
2 ], we have g( 12 , t) /� S2� . So from (a) we have �( 12 , t) = g( 12 , t).

Thus

�
�
1
2
, t

	
=

�
2
��

Jb
k

�

�
1
2

u+
b + tu�

b

	
,
1
2

u+
b

�
,
1
t

��
Jb
k

�

�
1
2

u+
b + tu�

b

	
, tu�

�	
.

By Lemma 2.2, we know that

��
Jb
k

�

�
1
2

u+
b + tu�

b

	
,
1
2

u+
b

�

=
��

Jb
k

�

�
1
2

u+
b

	
,
1
2

u+
b

�
+

t2b
4

�

R3



�u�
b



2 dx •
�

R3



�u+
b



2 dx+
t2b
4

�

R3
�u�b



u+
b



2 dx

�
��

Jb
k

�

�
1
2

ub

	
,
1
2

u+
b

�
> 0,

from which we obtain
��

Jb
k

�

�
1
2

u+
b + tu�

b

	
,
1
2

u+
b

�
> 0 for every t �

�
1
2
,
3
2

�
. (3.5)

Similarly, for s= 3
2 and for every t � [ 12 ,

3
2 ], we have �( 32 , t) = g( 32 , t), so that

��
Jb
k

�

�
3
2

u+
b + tu�

b

	
,
3
2

u+
b

�

=
��

Jb
k

�

�
3
2

u+
b

	
,
3
2

u+
b

�
+
9t2

4
b
�

R3



�u�
b



2 dx •
�

R3



�u+
b



2 dx+
9t2

4
b
�

R3
�u�b



u+
b



2 dx

�
��

Jb
k

�

�
3
2

ub

	
,
3
2

u+
b

�
< 0,

so that
��

Jb
k

�

�
3
2

u+
b + tu�

b

	
,
3
2

u+
b

�
< 0 for every t �

�
1
2
,
3
2

�
. (3.6)
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Similarly, we have

��
Jb
k

�

�

su+b +
1
2

u�
b

	
,
1
2

u�
b

�
> 0 for every s�

�
1
2
,
3
2

�
, (3.7)

��
Jb
k

�

�

su+b +
3
2

u�
b

	
,
3
2

u�
b

�
< 0 for every s�

�
1
2
,
3
2

�
. (3.8)

Since � is continuous on Q, according to (3.5)�(3.7), by Miranda�s theorem (Lemma 2.4
[7]), we have� (s0, t0) = 0 for some (s0, t0) � Q, so �(1,g(s0, t0)) = �(s0, t0) �Mk

b. By (3.3), we
have a contradiction. From the above discussion, we conclude that ub is a nodal solution
for system (1.7).
Finally, we prove that ub has exactly two nodal domains. To this end, we �rst write ub as

ub = u1 + u2 + u3

with u1 � 0, u2 � 0. Set �i = {x � R
3 : ui (x) �= 0}. We further assume �i � �j = � for i �= j,

i, j = 1, 2, 3. Since ub is a nodal solution, we suppose the nodal domains �1 �= �, �2 �= �. By
contradiction, we suppose ub possessesmore than two nodal domains, thenwe have u3 �= 0
and so �3 �= �. Setting v := u1 +u2, we easily see that v– �= 0. So, there exists a positive pair
(sv, tv) such that

svu1 + tvu2 �Mk
b.

Thus,

Jb
k (svu1 + tvu2) � ck

b.

Moreover, using the fact that �(Jb
k )


(ub),ui	 = 0, from the de�nition, we get �(Jb
k )


(v),v–	 � 0.
So, thanks to Lemma 2.1, we have that

(sv, tv) � (0, 1]× (0, 1].

By direct calculation,

0 =

�

Jb
k

�
(ub),u3
�

= �u3�2 + b
�

R3
|�u1|2 dx •

�

RN
|�u3|2 dx

+ b
�

R3
|�u2|2 dx •

�

RN
|�u3|2 dx+ b

��

RN
|�u3|2 dx

	2

+ �
�

R3
�u1 |u3|2 dx+

�
4

�

R3
�u2 |u3|2 dx+ �

�

R3
�u3 |u3|2 dx

� �
�

R3
|u3|6 dx�

k
4

�

R3
f (u3)u3 dx

=

�

Jb
k

�
(u3),u3
�
+ b

�

R3

�
|�u1|2 + |�u2|2

�
dx •

�

RN
|�u3|2 dx

+ �
�

R3
�u1 |u3|2 dx+ �

�

R3
�u2 |u3|2 dx
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< 4Jb
k (u3) + b

�

R3
|�u1|2 dx •

�

RN
|�u3|2 dx+ b

�

R3
|�u2|2 dx •

�

RN
|�u3|2 dx

+ �
�

R3
�u1 |u3|2 dx+ �

�

R3
�u2 |u3|2 dx, (3.9)

�

�

Jb
k

�
(u3),u3
�
= b

�

R3

�
|�u1|2 + |�u2|2

�
dx •

�

RN
|�u3|2 dx

+ �
�

R3
�u1 |u3|2 dx+ �

�

R3
�u2 |u3|2 dx. (3.10)

Then, by using (2.16), we get

ck
b � Jb

k (svu1 + tvu2) = Jb
k (svu1 + tvu2) �

1
4

�

Jb
k

�
(svu1 + tvu2),svu1 + tvu2
�

=
1
4
�
�svu1�2 + �tvu2�2

�
+

k
4

�

R3

�
f (svu1)(svu1) � 4F(svu1)

�
dx

+
k
4

�

R3

�
f (tvu2)(tvu2) � 4F(tvu2)

�
dx+

s6v
12

�

R3
|u1|6 dx+

t6v
12

�

R3
|u2|6 dx

�
1
4
�
�u1�2 + �u2�2

�
+

k
4

�

R3

�
f (u1)u1 � 4F(u1)

�
dx

+
k
4

�

R3

�
f (u2)u2 � 4F(u2)

�
dx+

1
12

�

R3
|u1|6 dx+

1
12

�

R3
|u2|6 dx

= Jb
k (u1 + u2) �

1
4

�

Jb
k

�
(u1 + u2), (u1 + u2)
�
.

Similar to the computation of (3.10), from �(Jb
k )


(ub),ub	 = 0, there holds

�

�

Jb
k

�
(u1 + u2),u1 + u2
�

=

�

Jb
k

�
(u3),u3
�
+ 2b

�

R3

�
|�u1|2 + |�u2|2

�
dx •

�

R3
|�u3|2 dx

+ �
�

R3
(�u1 + �u2 )|u3|2 dx+ �

�

R3
�u3

�
|u1|2 + |u2|2

�
dx. (3.11)

By using (3.9), (3.10), and (3.11), we get

ck
b � Jb

k (u1 + u2) �
1
4

�

Jb
k

�
(u1 + u2), (u1 + u2)
�

= Jb
k (u1 + u2) +

1
4

�

Jb
k

�
(ub),u3
�
+

b
4

�

R3
|�u1|2 dx •

�

RN
|�u3|2 dx

+
b
4

�

R3
|�u2|2 dx •

�

RN
|�u3|2 dx+

�
4

�

R3
�u3 |u1|2 dx+

�
4

�

R3
�u3 |u2|2 dx

< Jb
k (u1) + Jb

k (u2) + Jb
k (u3) +

b
4

�

RN

�
|�u2|2 + |�u3|2

�
dx •

�

RN
|�u1|2 dx

+
b
4

�

RN

�
|�u1|2 + |�u3|2

�
dx •

�

RN
|�u2|2 dx

+
b
4

�

RN

�
|�u1|2 + |�u2|2

�
dx •

�

RN
|�u3|2 dx
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+
�
4

�

R3
�u3

�
|u1|2 + |u2|2

�
dx+

�
4

�

R3
�u1+u2 |u3|2 dx

= Jb
k (ub) = ck

b.

So we get u3 = 0 and ub has exactly two nodal domains. �

3.2 The proof of Theorem 1.2
To prove Theorem 1.2, we should �rst prove that there exists a ground state solution of
(1.7) for k large enough, and then to prove that the energy of sign-changing solution ub is
strictly larger than twice of that of the ground state solution.

Proof Similar to the proof of Lemma 2.4, we claim that there exists k

1 > 0 such that, for

all k � k

1, and 
b > 0, there exists vb � N k

b such that Jb
k (vb) = c� > 0. We give a brief proof

of this claim.
We �rst list some results for the Nehari manifoldN k

b . One can prove them by following
the ideas as those in Lemma 2.4.

(i) If v �N k
b , then Jb

k (tv)� Jb
k (v) for all t � 0;

(ii) There exists � > 0 such that �v� � � for all v �N k
b ;

(iii) There exists M > 0 such that �v� � M for all v �N k
b .

According to the de�nition of c�, there is a sequence {vn} �N k
b such that limn�� Jb

k (vn) =
c�. By property (iii), {vn} is bounded inE. In the subsequence sense, there exists vb � Esuch
that vn � vb.

Denote � := (S)
3
2

3 , where S := infu�E\{0}
�u�2

(
�
R3 |u|6 dx)

1
3
. Similar to the proof of Lemma 2.3,

there is k
 > 0 such that c� < � for all k � k
. Therefore, lim infn�� Jb
k (tvn)� Jb

k (tvb)+ t2

2 A�
t6

6 B, where A = limn�� �vn�vb�2, B= limn�� |vn�vb|66. From the above fact and property
(i), we have

Jb
k (tvb) +

t2

2
A �

t6

6
B� c� (3.12)

for all t � 0.
Firstly, we prove that vb �= 0. By contradiction, we suppose vb = 0.
Case 1: B= 0. If A = 0, that is, vn � vb in E, then vb � N k

b , and so we have �vb� > � by
property (ii), which contradicts our supposition. If A > 0, t2

2 A � c� for all t � 0, which is a
contradiction.

Case 2: B> 0. According to the de�nition of S, we have that � = (S)
3
2

3 � 1
3 (

A

(B)
1
3
)
3
2 . It is

easy to see that

1
3

�
A

(B)
1
3

	 3
2
=

�t2

2
A �

�t6

6
B := max

t�0

�
t2

2
A �

t6

6
B
�
,

so we have that

� � max
t�0

�
t2

2
A �

t6

6
B
�

� ck
b < � ,

which is a contradiction.
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Secondly, we claim that B = 0. By contradiction, we suppose that B > 0. Firstly, we can
maximize �vb(t) = Jb

k (tvb) in [0,�). Indeed, there exists t0 � [0,�) such that Jb
k (tvb) � 0

for all t � [t0,�). Let tv be an inner maximizer of �v in [0,�). Jb
k (�tvb) +� � Jb

k (�tvb) + �t2
2 A�

�t6
6 B � c� < � implies that Jb

k (�tvb) < 0. So tv � �t and t2v
2 A � t6v

6 B> 0. Thus from tvvb � N k
b we

get a contradiction by

c� � Jb
k (tvvb) < Jb

k (tvvb) +
t2v
2

A �
t6v
6

B� c�.

Lastly, we prove that c� is achieved by vb. From the above arguments, we have vb �= 0
and �v := tvvb � N k

b . Furthermore, because vn � vb in E and vn � N k
b , we have that

�(Jb
k )


(vb),vb	 � 0. Similar to Lemma 2.1, we have 0 < tv � 1. Also as in the proof of
Lemma 2.4, we have

c� � Jb
k (�v) �

1
4

�

Jb
k

�
(�v), �v
�

=
1
4
�tvvb�2 +

1
12

|tvvb|66 +
k
4

�

R3

�
f (tvvb)tvvb � 4F(tvvb)

�
dx

�
1
4
�vb�2 +

1
12

|vb|66 +
k
4

�

R3

�
f (vb)vb � 4F(vb)

�
dx,

lim inf
n��

�
Jb
k (vn) �

1
4

�

Jb
k

�
(vn),vn
��

= c�.

Therefore, tv = 1, and c� is achieved by vb �N k
b .

By standard arguments, the critical points of the functional Jb
k onN k

b are critical points
of Jb

k in E, and we obtain (Jb
k )


(vb) = 0, so vb is a positive or negative solution. That is, vb is
a ground state solution of system (1.7). For all k � k
, and 
b> 0, problem (1.7) has a least
energy nodal solution ub. Let

k

 = max
�
k
,k


1
�
.

Suppose that ub = u+ + u�. As in the proof of Lemma 2.1, there exist su+ , tu� � (0, 1) such
that

su+u+ �N k
b , tu�u� �N k

b .

Hence, by Lemma 2.1, we deduce

2c� � Jb
k

�
su+u+� + Jb

k

�
tu�u�� � Jb

k

�
su+u+ + tu�u�� < Jb

k

�
u+ + u�� = ck

b. �

3.3 Proof of Theorem 1.3
At the end of the section, we give an analysis for the behavior of ub as b � 0. We regard
b > 0 as a parameter in equation (1.7).

Proof For any b > 0, let ub � E be the least energy nodal solution of system (1.7) obtained
in Theorem 1.1.We will complete our proof with the following three assertions. We recall
that ubn is a least energy nodal solution of system (1.7) with b= bn � 0 as n � �.
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Claim (a).As n is large enough, {ubn} is bounded in E.
Choose a test function � � C�

c (R3) with �– �= 0. From (2.7), for any b � [0, 1], there exists
a pair of positive numbers (k1,k2) such that


�
Jb
k

�
�
k1�+ + k2���,k1�+� < 0,

and


�
Jb
k

�
�
k1�+ + k2���,k2��� < 0.

Thus, according to Lemma 2.1(ii), for any b � [0, 1], there is a unique pair s�(b), t�(b) �
(0, 1]× (0, 1] such that

� := s�(b)k1�+ + t�(b)k2�� �Mk
b. (3.13)

Hence, for any b � [0, 1], by using (2.4), we get

Jb
k (ub) � Jb

k (�) = Jb
k (�) �

1
4

�

Jb
k

�
(�),�
�

=
1
4
���2 +

k
4

�

R3

�
f (�)� � 4F(�)

�
dx+

1
12

�

R3
|�|6 dx

�
1
4
���2 +

k
4

�

R3

�
C1�

2 +C2�
q�

dx+
1
12

�

R3
|�|6 dx

�
1
4
�
k2
1
���+��2 + k2

2
������2� +

k
4

�

R3

�
C1k12



�+

2 + C1k22


��

2�dx

+
k
4

�

R3

�
C2k15



�+

5 +C2k25


��

5�dx+

k16

12

�

R3



�+

6 dx+
k26

12

�

R3



��

6 dx

:= C�,

where C� > 0 is a constant independent of b. So, as n is large enough, it follows that

C� + 1� Jk
bn
(ubn) = Jk

bn
(ubn) �

1
4

�

Jk
bn

�
(ubn),ubn

�
�

1
4
�ubn�

2.

Therefore, we can deduce Claim (a) from the above inequality.
Claim (b).System (1.11) possesses a nodal solution u0.
Since {ubn} is bounded in E, in the subsequence sense, there exists u0 � E such that

ubn � u0 in E,

ubn � u0 in Lp�
R

3� for p � (2, 6),

ubn � u0 a.e. in R
3. (3.14)
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Thanks to {ubn} being a least energy nodal solution of system (1.7) with b = bn, we have
that

�

R3

�
a�ubn • �v+V (x)ubnv

�
dx+ bn

��

R3
|�ubn |

2 dx
	��

R3
�ubn • �v dx

	

+ �
�

R3
�ubn

ubnv dx� k
�

R3
f (ubn )v dx�

�

R3
|ubn |

4ubnv dx= 0 (3.15)

for any v � C�
c (R3). Combining (3.14), (3.15) with Claim (a), we have that

�

R3

�
a�u0 • �v+V (x)u0v

�
dx+ �

�

R3
�u0u0v dx

� k
�

R3
f (u0)v dx�

�

R3
|u0|4u0v dx= 0

for any v � C�
c (R3). It implies that u0 is a weak solution of the Kirchho� equation (1.11).

We next deduce that u–
0 �= 0. Since ubn �Mk

bn
, we have

��u–
bn

��2 + bn

��

R3



�u–
bn



2 dx
	2

+ bn

�

R3
�u–

bn
|2 dx •

�

R3



�u�
bn



2 dx)

+ �
�

R3
�u–

bn



u–
bn



2 dx+ �
�

R3
�u�

bn



u–
bn



2 dx

=
�

R3



u–
bn



6 dx+ k
�

R3
f
�
u–

bn

�
u–

bn
dx.

Hence, by using Claim (a) and the continuous embedding E �� L6(R3), we have ubn is
bounded in L6(R3), thus there exists k


2 > 0 such that, for all k � k

2, we have that

� �
��u–

bn

��2 �
�

R3



u–
bn



6 dx+ k
�

R3
f
�
u–

bn

�
u–

bn
dx � 2k

�

R3
f
�
u–

bn

�
u–

bn
dx.

By using (2.4), we have that

0 <
�

R3
f
�
u–
0
�
u–
0 dx.

Since u0 is a solution of system (1.11), we have that

��u–
0
��2 � k

�

R3
f
�
x,u–

0
�
u–
0 dx+

�

R3



u–
0


6 dx � k

�

R3
f
�
u–
0
�
u–
0 dx > 0.

It implies u–
0 �= 0.

Claim (c).Problem (1.11) possesses a least energy nodal solution v0.
Similar to the proof of Theorem 1.1, there is k


3 > 0 such that, for all k � k

3, problem

(1.11) possesses a least energy nodal solution v0, where J0k (v0) = c0k and (J0k )

(v0) = 0. Let

k


 = max
�
k
,k


2,k


3
�
.
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According to Lemma 2.1, there exists a positive pair (sbn , tbn) � (0,�) × (0,�) such that
sbnv+0 + tbnv�0 �Mk

bn
. That is,

s2bn

��v+0
��2 + �s4bn

�

R3
�v+0



v+0


2 dx+ �s2bn

t2bn

�

R3
�v�0



v+0


2 dx+ bns4bn

��

R3



�v+0


2 dx

	2

+ bns2bn
t2bn

�

R3



�v+0


2 dx •

�

R3



�v�0


2 dx

= s6bn

�

R3



v+0


6 dx+ k

�

R3
f
�
sbnv+0

�
sbnv+0 dx (3.16)

and

t2bn

��v�0
��2 + �t4bn

�

R3
�v�0



v�0


2 dx+ �s2bn

t2bn

�

R3
�v+0



v�0


2 dx+ bnt4bn

��

R3



�v�0


2 dx

	2

+ bns2bn
t2bn

�

R3



�v+0


2 dx •

�

R3



�v�0


2 dx

= t6bn

�

R3



v�0


6 dx+ k

�

R3
f
�
tbnv�0

�
tbnv�0 dx. (3.17)

By recalling Claim (a), up to a subsequence, we can deduce sbn � s0 and tbn � t0, then it
follows from (3.16) and (3.17) that

s20�v+0�
2 + �s40

�

R3
�v+0

|v+0 |
2dx+ �s20t

2
0

�

R3
�v�0

|v+0 |
2

= s60

�

R3
|v+0 |

6dx+ k
�

R3
f (s0v+0 )s0v

+
0dx (3.18)

and

t20�v�0�
2 + �t40

�

R3
�v�0

|v�0 |
2 + �s20t

2
0

�

R3
�v+0

|v�0 |
2

= t60

�

R3
|v�0 |

6dx+ k
�

R3
f (t0v�0 )t0v

�
0dx. (3.19)

Thanks to v0 being a weak solution of problem (1.11), we get

��v+0
��2 + �

�

R3
�v+0

|v+0 |
2 dx+ �

�

R3
�v�0

|v+0 |
2 dx

=
�

R3



v+0


6 dx+ k

�

R3
f
�
v+0

�
v+0 dx (3.20)

and

��v�0
��2 + �

�

R3
�v�0

|v�0 |
2 dx+ �

�

R3
�v+0

|v�0 |
2 dx

=
�

R3



v�0


6 dx+ k

�

R3
f
�
v�0

�
v�0 dx. (3.21)
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By comparing formulas (3.18)�(3.21), it is obvious that (s0, t0) = (1, 1). Similar to the proof
of Lemma 2.1, we have

J0k (v0) � J0k (u0) = lim
n��

Jbn
k (ubn) � lim

n��
Jbn
k

�
sbnv+0 + tbnv�0

�
= J0k

�
v+0 + v�0

�
= J0k (v0).

The above inequality implies that u0 is a least energy nodal solution of problem (1.11). So
far, we have proved Theorem 1.3. �
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