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Abstract
In this paper, we introduce and study a tripled system of three associated fractional
differential equations. Prior to proceeding to the main results, the proposed system is
converted into an equivalent integral form by the help of fractional calculus. Our
approach is based on using the addressed tripled system with cyclic permutation
boundary conditions. The existence and uniqueness of solutions are investigated. We
employ the Banach and Krasnoselskii fixed point theorems to prove our main results.
Illustrative examples are presented to explain the theoretical results.
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1 Introduction
Fractional derivatives and integrals find numerous applications in many branches of
physics and engineering ranging from quantum optics to astro-physics and cosmology,
dynamics of materials to biophysics and medicine, dynamical chaos to control, signal pro-
cessing to communications, and more. For recent comprehensive reviews on fractional
derivatives and their applications, we refer the reader to the monographs [25, 34, 36]
and the recent undermentioned papers [1–3, 5, 6, 9, 11, 13, 17, 23, 26–29, 31, 32, 35].
Due to their widespread applications, a system of fractional differential equations subject
to boundary conditions has received much attention amongst researchers who accom-
modate various numerical methods to establish their results; see for instance the papers
[18, 22, 33].

Particularly, coupled fractional boundary systems, which study interaction between two
quantities, have been under consideration as they provide adequate interpretations for
models describing chaotic behavior, anomalous diffusion, ecological effects, and biological
models. Many relevant results have been reported in this direction with different bound-
ary conditions; see [4, 7, 8, 14–16, 21, 30, 37–39] and the references therein.

Tripled fractional boundary systems, which are considered as a generalization of cou-
pled fractional systems, are governed by three associated differential equations with three
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initial or boundary conditions [12, 24]. In [12], Berinde and Borcut introduced the con-
cept of tripled fixed point for nonlinear mappings in partially ordered complete metric
spaces and obtained existence and uniqueness theorems for contractive type mappings.
Karakaya et al.[24] gave some results concerning the existence of tripled fixed points for a
class of condensing operators in Banach spaces.

The cyclic boundary conditions have many applications on channel flow with fully de-
veloped flow at inlet as well as outlet using simple foam. In addition, some researchers
introduced a railway track coupled dynamics model based on cyclic boundary conditions
(see [10] and the references therein).

Unlike coupled fractional systems, the investigations of tripled fractional systems have
gained less attention amongst researchers. To the best of authors’ observation, indeed,
there is no analytical literature on studying the existence of tripled systems of fractional
differential equations.

Motivated by these research works, we investigate in this paper a tripled fractional ab-
stract system with cyclic tripled boundary conditions that has the following form:

⎧
⎨

⎩

cDαk
0 xk(t) = fk(t, x(t)), 1 < αk ≤ 2,

x(j)
k (0) = ak,jx

(j)
σ (k)(T), k = 1, 2, 3; j = 0, 1,

(1.1)

where cDαk
0 denotes the Caputo fractional derivative of order αk , t ∈ J = [0, T], fk : J ×R

3 →
R are continuous functions, x = (x1, x2, x3) ∈ R

3, σ = (1 2 3) is a cycle permutation, and
ak,j ∈R, k = 1, 2, 3, j = 0, 1, such that

∏3
k=1 ak,j �= 1, j = 0, 1. System (1.1) is converted into an

equivalent integral form by the help of fractional calculus. The existence and uniqueness
of solutions with cyclic permutation of tripled boundary conditions are investigated. We
employ the Banach and Krasnoselskii fixed point theorems to prove our main results.

The railway track coupled system investigated in [10] can be modeled as a classical
tripled system if it undergoes an external influence, by which many researchers can be
prompted to generalize this idea using fractional differential models. We emphasize that
the problem considered in the present settings is new and has novel approach that will
provide further insight into the analytical study of tripled fractional systems with cyclic
boundary conditions.

2 Preliminary assertions
In this section, we recall some basic definitions of fractional calculus [25]. Meanwhile, the
integral form of the solution of system (1.1) as well as the definition of permutation group
are presented. The notations and terminologies herein will be used in the subsequent sec-
tion.

Definition 2.1 ([25]) The Riemann–Liouville fractional integral of a real-valued function
f ∈ C(J) is defined by

Iα
0 f (t) =

∫ t

0

(t – s)α–1

Γ (α)
f (s) ds, t ∈ J ,α > 0,
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provided the integral exists, and I0
0 f (t) := f (t). The Caputo fractional derivative of f ∈

C(n)(J) is given by

cDα
0 f (t) = In–α

0 f (n)(t),

where n = [α] is the greatest integer function.

Lemma 2.2 ([25]) Let [α] = n ∈N, and f ,c Dα
0 f ∈ C(J). Then

Iα
0

cDα
0 f (t) = f (t) + c0 + c1t + c2t2 + · · · + cn–1tn–1

for ci ∈R, i = 0, 1, 2, . . . , n – 1.

For convenience, we introduce the following notations:

b1,1 = b2,2 = b3,3 =
a1,1a2,1a3,1

1 – a1,1a2,1a3,1
, b1,2 =

a1,1

1 – a1,1a2,1a3,1
,

b1,3 =
a1,1a2,1

1 – a1,1a2,1a3,1
, b2,1 =

a2,1a3,1

1 – a1,1a2,1a3,1
, b2,3 =

a2,1

1 – a1,1a2,1a3,1
,

b3,1 =
a3,1

1 – a1,1a2,1a3,1
, b3,2 =

a3,1a1,1

1 – a1,1a2,1a3,1
,

d1,1 = d2,2 = d3,3 =
a1,0a2,0a3,0

1 – a1,0a2,0a3,0
, d1,2 =

a1,0

1 – a1,0a2,0a3,0
,

d1,3 =
a1,0a2,0

1 – a1,0a2,0a3,0
, d2,1 =

a2,0a3,0

1 – a1,0a2,0a3,0
, d2,3 =

a2,0

1 – a1,0a2,0a3,0
,

d3,1 =
a3,0

1 – a1,0a2,0a3,0
, d3,2 =

a3,0a1,0

1 – a1,0a2,0a3,0
,

e1,1 =
a1,0a3,1T(a2,0a3,0a1,1a2,1 + a2,0 + a2,1)

(1 – a1,0a2,0a3,0)(1 – a1,1a2,1a3,1)
,

e1,2 =
a1,0a1,1T(a2,0a3,0 + a2,0a3,1 + a2,1a3,1)

(1 – a1,0a2,0a3,0)(1 – a1,1a2,1a3,1)
,

e1,3 =
a1,0a2,1T(a2,0a3,0a1,1 + a2,0a1,1a3,1 + 1)

(1 – a1,0a2,0a3,0)(1 – a1,1a2,1a3,1)
,

e2,1 =
a2,0a3,1T(a1,0a2,1a3,0 + a1,1a2,1a3,0 + 1)

(1 – a1,0a2,0a3,0)(1 – a1,1a2,1a3,1)
,

e2,2 =
a2,0a1,1T(a1,0a3,0a2,1a3,1 + a3,0 + a3,1)

(1 – a1,0a2,0a3,0)(1 – a1,1a2,1a3,1)
,

e2,3 =
a2,0a2,1T(a1,0a3,0 + a3,0a1,1 + a3,1a1,1)

(1 – a1,0a2,0a3,0)(1 – a1,1a2,1a3,1)
,

e3,1 =
a3,0a3,1T(a1,0a2,0 + a1,0a2,1 + a1,1a2,1)

(1 – a1,0a2,0a3,0)(1 – a1,1a2,1a3,1)
,

e3,2 =
a3,0a1,1T(a1,0a2,0a3,1 + a1,0a2,1a3,1 + 1)

(1 – a1,0a2,0a3,0)(1 – a1,1a2,1a3,1)
,

e3,3 =
a3,0a2,1T(a1,0a2,0a1,1a3,1 + a1,0 + a1,1)

(1 – a1,0a2,0a3,0)(1 – a1,1a2,1a3,1)
.
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Lemma 2.3 Let fk ∈ C(J ,R) and
∏3

k=1 ak,j �= 1, j = 0, 1. Then the solution of the linear frac-
tional differential system

cDαk
0 x(t) = fk(t), 1 < αk ≤ 2, t ∈ (0, T), (2.1)

subject to the conditions

x(j)
k (0) = ak,jx

(j)
σ (k)(T), k = 1, 2, 3, j = 0, 1, (2.2)

is given by

xk(t) =
3∑

m=1

(
dk,mIαm

0 fm(T) + (ek,m + tbk,m)Iαm–1
0 fm(T)

)
+ Iαk

0 fk(t). (2.3)

Proof Applying the fractional integral to both sides of (2.1) and using Lemma 2.2, we ob-
tain

xk(t) = ck,0 + ck,1t + Iαk
0 fk(t). (2.4)

Hence, we deduce that

x′
k(t) = ck,1 + Iαk –1

0 fk(t).

The boundary conditions in (2.2) imply that

⎧
⎪⎪⎨

⎪⎪⎩

c1,0 = a1,0(c2,0 + c2,1T + Iα2
0 f2(T)),

c2,0 = a2,0(c3,0 + c3,1T + Iα3
0 f3(T)),

c3,0 = a3,0(c1,0 + c1,1T + Iα1
0 f1(T)),

(2.5)

and
⎧
⎪⎪⎨

⎪⎪⎩

c1,1 = a1,1(c2,1 + Iα2–1
0 f2(T)),

c2,1 = a2,1(c3,1 + Iα3–1
0 f3(T)),

c3,1 = a3,1(c1,1 + Iα1–1
0 f1(T)).

(2.6)

By direct substitutions of the equations in (2.5), we get

c1,1 = b1,1Iα1–1
0 f1(T) + b1,2Iα2–1

0 f2(T) + b1,3Iα3–1
0 f3(T), (2.7)

c2,1 = b2,1Iα1–1
0 f1(T) + b2,2Iα2–1

0 f2(T) + b2,3Iα3–1
0 f3(T), (2.8)

and

c3,1 = b3,1Iα1–1
0 f1(T) + b3,2Iα2–1

0 f2(T) + b3,3Iα3–1
0 f3(T). (2.9)

Similarly, the equations in (2.6) together with the last constants lead to

c1,0 = d1,1Iα1
0 f1(T) + d1,2Iα2

0 f2(T) + d1,3Iα3
0 f3(T)
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+ e1,1Iα1–1
0 f1(T) + e1,2Iα2–1

0 f2(T) + e1,3Iα3–1
0 f3(T), (2.10)

c2,0 = d2,1Iα1
0 f1(T) + d2,2Iα2

0 f2(T) + d2,3Iα3
0 f3(T)

+ e2,1Iα1–1
0 f1(T) + e2,2Iα2–1

0 f2(T) + e2,3Iα3–1
0 f3(T), (2.11)

and

c3,0 = d3,1Iα1
0 f1(T) + d3,2Iα2

0 f2(T) + d3,3Iα3
0 f3(T)

+ e3,1Iα1–1
0 f1(T) + e3,2Iα2–1

0 f2(T) + e3,3Iα3–1
0 f3(T). (2.12)

Substituting the values of ck,j, k = 1, 2, 3, j = 0, 1, in (2.4), we get (2.3). This completes the
proof. �

We adopt the following definition of permutation groups.

Definition 2.4 ([19]) A permutation of a set A is a function σ : A → A that is one to one
and onto.

This defines the so-called permutation group (A,σ ). Let A = {1, 2, 3}, then the cardinal-
ity of this group is 3! = 6 permutations. For instance, one of such permutations is given by
σ (1) = 2,σ (2) = 3,σ (3) = 1, and this constitutes a cycle σ =

( 1 2 3
2 3 1

)
= (1 2 3). However, we

use this cycle in the boundary conditions of system (1.1) such that, for a triple (x1, x2, x3),
we have x(j)

1 (0) = a1,jx
(j)
2 (T), x(j)

2 (0) = a2,jx
(j)
3 (T), and xj

3(0) = a3,jx
j
1(T), j = 1, 2. The other five

permutations can be used and another integral solution can be obtained which is iso-
morphic to the one in (2.3) with constant differences. To explain this more, we consider
permutation (13)(2). As a consequence of Lemma 2.3, we find the same solution as (2.3)
but with different coefficients. Indeed, we find the following:

b1,1 = b3,3 =
a1,1a3,1

1 – a1,1a3,1
, b2,2 =

a2,1

1 – a2,1
,

b1,3 =
a1,1

1 – a1,1a3,1
, b3,1 =

a3,1

1 – a3,1a1,1
,

b1,2 = b2,1 = b2,3 = b3,2 = 0,

d1,1 =
1

1 – a1,0a3,0
, d2,2 =

a2,0

1 – a2,0
, d3,3 =

a3,0a1,0

1 – a1,0a3,0
,

d1,3 =
a1,0

1 – a1,0a3,0
, d3,1 = a3,0

(
2 – a1,0a3,0

1 – a1,0a3,0

)

,

d1,2 = d2,1 = d2,3 = d3,2 = 0,

e1,1 = a3,1a1,0T
(

1 + a1,1a3,0

(1 – a1,0a3,0)(1 – a1,1a3,1)

)

,

e1,3 = a1,1a1,0T
(

a3,1 + a3,0

(1 – a1,0a3,0)(1 – a1,1a3,1)

)

,

e2,2 =
a2,1a2,0T

(1 – a2,0)(1 – a2,1)
,

e3,1 = a3,0a3,1T
(

a1,0 + a1,1

(1 – a1,0a3,0)(1 – a1,1a3,1)

)

,
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e3,3 = a3,0T
(

a3,1a1,1a1,0

(1 – a1,0a3,0)(1 – a3,1a1,1)

)

,

e2,1 = 0 = e1,2 = e2,3 = e3,2 = 0.

A tripled fixed point of a mapping is given next.

Definition 2.5 ([12]) An element (x1, x2, x3) ∈ X × X × X is called a tripled fixed point of
a mapping � : X × X × X → X if �(x1, x2, x3) = x1, �(x2, x1, x3) = x2, and �(x3, x2, x1) = x3.

Define an operator Ψ : X × X × X → X × X × X such that

Ψ (x1, x2, x3) =
(
�(x1, x2, x3),�(x2, x1, x3),�(x3, x2, x1)

)
.

Then (x1, x2, x3) is a tripled fixed point of � iff (x1, x2, x3) is a fixed point of Ψ , that is,
Ψ (x1, x2, x3) = (x1, x2, x3).

For completeness, we recall the following tools of fixed point theory.

Theorem 2.6 (Banach fixed point theorem [20]) Let D be a nonempty closed subset of a
Banach space E. Then any contraction mapping T from D into itself has a unique fixed
point.

Theorem 2.7 (Krasnoselskii fixed point theorem [20]) Let B be a closed convex and
nonempty subset of a Banach space X. Let Ψ1, Ψ2 be operators defined on B such that

(i) Ψ1x + Ψ2y ∈ B whenever x, y ∈ B;
(ii) Ψ1 is a contraction mapping;

(iii) Ψ2 is compact and continuous.
Then there exists z ∈ B such that z = Ψ1z + Ψ2z.

3 Main results
In this section we use the Banach and Krasnoselskii fixed point theorems to ensure the
existence of solution for tripled system (1.1).

The Banach space X = C(J ,R) of continuous real-valued functions is defined on J with
the usual maximum norm. Hence, we obtain a Banach space X3 = X × X × X equipped
with the norm ‖x‖X3 = ‖(x1, x2, x3)‖X3 = ‖x1‖ + ‖x2‖ + ‖x3‖. Using the result of Lemma 2.3,
we define the operator Ψ : X3 → X3 by

Ψ x(t) =
(
Ψ1x1(t),Ψ2x2(t),Ψ3x3(t)

)
,

where

Ψkxk(t) = Iαk
0 fk

(
t, x(t)

)
+

3∑

m=1

(
dk,mIαm

0 fm
(
T , x(T)

)

+ (ek,m + tbk,m)Iαm–1
0 fm

(
T , x(T)

))
. (3.1)

If the operator Ψk : X → X given by (3.1) has a fixed point in X, then Ψkxk = xk , k = 1, 2, 3.
Hence in connection with Definition 2.5, we let Ψ1x1 = �(x1, x2, x3), Ψ2x2 = �(x2, x1, x3),
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and Ψ3x3 = �(x3, x2, x1). This assumption connects the definition of the tripled fixed point
introduced in Definition 2.5 with the fixed point of the tripled operator Ψ = (Ψ1,Ψ2,Ψ3).
By this idea, we obtain the main results later.

We make use of the following assumption:
(Λ) Let fk : J × X3 → X, k = 1, 2, 3, be a jointly continuous function, and there exists a

positive constant Lk such that

∣
∣fk(t, x) – fk(t, y)

∣
∣ ≤ Lk‖x – y‖X3

for all t ∈ J and x, y ∈ X3.

Theorem 3.1 Let condition (Λ) be satisfied. Then tripled system (1.1) has a unique solu-
tion whenever

η =
3∑

k=1

(
LkTαk

Γ (αk + 1)
+

3∑

m=1

Lm

(( |dk,m|
αm

+ |bk,m|
)

T + |ek,m|
)

Tαm–1

Γ (αm)

)

< 1.

Proof Let Br = {x ∈ X3 : ‖x‖X3 ≤ r} be a closed subset in X3 such that

r > (1 – η)–1
3∑

k=1

(
NkTαk

Γ (αk + 1)
+

3∑

m=1

Nm

(( |dk,m|
αm

+ |bk,m|
)

T + |ek,m|
)

Tαm–1

Γ (αm)

)

.

Firstly, we show that Ψ (Br) ⊂ Br . For this, define supt∈J |fk(t, 0)| = Nk < ∞, k = 1, 2, 3, then
|fk(t, x)| ≤ Lk‖x‖X3 + Nk for any t ∈ J . Therefore

∣
∣Ψkxk(t)

∣
∣ ≤ tαk

Γ (αk + 1)
(
Lk‖x‖X3 + Nk

)

+
3∑

m=1

( |dk,m|Tαm

Γ (αm + 1)
+

(|ek,m| + t|bk,m|) Tαm–1

Γ (αm)

)
(
Lm‖x‖X3 + Nm

)

≤
(

Lktαk

Γ (αk + 1)
+

3∑

m=1

Lm

( |dk,m|T
αm

+
(|ek,m| + t|bk,m|)

)
Tαm–1

Γ (αm)

)

r

×
(

Nktαk

Γ (αk + 1)
+

3∑

m=1

Nm

( |dk,m|T
αm

+
(|ek,m| + t|bk,m|)

)
Tαm–1

Γ (αm)

)

.

Consequently,

‖Ψ x‖X3 ≤
3∑

k=1

(
NkTαk

Γ (αk + 1)
+

3∑

m=1

Nm

(( |dk,m|
αm

+ |bk,m|
)

T + |ek,m|
)

Tαm–1

Γ (αm)

)

+
3∑

k=1

(
LkTαk

Γ (αk + 1)
+

3∑

m=1

Lm

(( |dk,m|
αm

+ |bk,m|
)

T + |ek,m|
)

Tαm–1

Γ (αm)

)

r

≤ r.
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Next, we show that the operator Ψ is a contraction. For this, let x, y ∈ X3, then for any t ∈ J
we get

∣
∣Ψkxk(t) – Ψkyk(t)

∣
∣

≤
(

Lktαk

Γ (αk + 1)
+

3∑

m=1

Lm

( |dk,m|T
αm

+
(|ek,m| + t|bk,m|)

)
Tαm–1

Γ (αm)

)

‖x – y‖X3 .

It follows that

‖Ψ x – Ψ y‖X3 ≤
3∑

k=1

(
LkTαk

Γ (αk + 1)
+

3∑

m=1

Lm

(( |dk,m|
αm

+ |bk,m|
)

T + |ek,m|
)

Tαm–1

Γ (αm)

)

≤ η‖x – y‖X3 .

Since η < 1, therefore Ψ is a contraction operator. Then, by the Banach fixed point the-
orem, the operator Ψ has a unique fixed point which is the unique solution of problem
(1.1). This completes the proof. �

In the next result, we apply the Krasnoselskii fixed point theorem (Theorem 2.7) to prove
the existence of at least one solution of the tripled fractional system (1.1). For this purpose,
we decompose the triple operator Ψ : X3 → X3 into two triple operators Ψ1 and Ψ2 such
that

Ψ x(t) = Ψ1x(t) + Ψ2x(t),

where Ψix(t) = (Ψ1,ix1(t),Ψ2,ix2(t),Ψ3,ix3(t)), i = 1, 2, and

⎧
⎨

⎩

Ψk,1xk(t) = Iαk
0 fk(t, x(t)), k = 1, 2, 3,

Ψk,2xk(t) =
∑3

m=1(dk,mIαm
0 fm(T , x(T)) + (ek,m + tbk,m)Iαm–1

0 fm(T , x(T))).

Theorem 3.2 Let fk : J × X3 → X, k = 1, 2, 3, be a jointly continuous function, and there
exist nonnegative fractional integrable real-valued functions ϕk and μk such that

⎧
⎨

⎩

|fk(t, x) – fk(t, y)| ≤ ϕk(t)‖x – y‖X3 ,

|fk(t, 0)| ≤ μk(t), t ∈ J , k = 1, 2, 3,

where x, y ∈ X3. Then tripled system (1.1) has a solution provided that

3∑

k=1

mk max
t∈J

Iαk
0 ϕk(t) + nk max

t∈J
Iαk –1

0 ϕk(t) < 1,

where mk = 1 +
∑3

m=1 |dm,k| and nk =
∑3

m=1 |em,k| + T |bm,k|.

Proof Let Br = {x ∈ X3 : ‖x‖X3 ≤ r} be a closed convex nonempty subset in X3 such that

r ≥
∑3

k=1 mk maxt∈J Iαk
0 μk(t) + nk maxt∈J Iαk –1

0 μk(t)
1 –

∑3
k=1 mk maxt∈J Iαk

0 ϕk(t) + nk maxt∈J Iαk –1
0 ϕk(t)

.
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We show that Ψ1 is a contraction and Ψ2 is compact on Br . Before doing these two steps,
we show that Ψ1x + Ψ2y ∈ Br whenever x, y ∈ Br . Let x = (x1, x2, x3) and y = (y1, y2, y3) be
any elements of Br , then for t ∈ J we have

∣
∣Ψk,1xk(t)

∣
∣ ≤ Iαk

0
∣
∣fk

(
t, x(t)

)∣
∣ ≤ Iαk

0 ϕk(t)‖x‖X3 + Iαk
0 μk(t),

and

∣
∣Ψk,2yk(t)

∣
∣ ≤

3∑

m=1

(|dk,m|Iαm
0

∣
∣fm

(
T , y(T)

)∣
∣ +

(|ek,m| + t|bk,m|)Iαm–1
0

∣
∣fm

(
T , y(T)

)∣
∣
)

≤ ‖y‖X3

3∑

m=1

|dk,m|Iαm
0 ϕm(t) +

(|ek,m| + t|bk,m|)Iαm–1
0 ϕm(t)

+
3∑

m=1

|dk,m|Iαm
0 μm(t) +

(|ek,m| + t|bk,m|)Iαm–1
0 μm(t).

In consequence, we obtain

‖Ψ1x‖X3 ≤ ‖x‖X3

3∑

k=1

max
t∈J

Iαk
0 ϕk(t) +

3∑

k=1

max
t∈J

Iαk
0 μk(t)

and

‖Ψ2y‖X3 ≤‖y‖X3

3∑

m=1

3∑

k=1

|dk,m|max
t∈J

Iαm
0 ϕm(t) +

(|ek,m| + T |bk,m|)max
t∈J

Iαm–1
0 ϕm(t)

+
3∑

m=1

|dk,m|max
t∈J

Iαm
0 μm(t) +

(|ek,m| + t|bk,m|)max
t∈J

Iαm–1
0 μm(t). (3.2)

Hence

‖Ψ1x + Ψ2y‖X3 ≤ r
3∑

k=1

mk max
t∈J

Iαk
0 ϕk(t) + nk max

t∈J
Iαk –1

0 ϕk(t)

+
3∑

k=1

mk max
t∈J

Iαk
0 μk(t) + nk max

t∈J
Iαk –1

0 μk(t).

In accordance with the previous estimates and the value of r, we deduce that Ψ1x + Ψ2y ∈
Br .

Next we show the contraction of Ψ1. Let x, y ∈ X3, then

∣
∣Ψk,1xk(t) – Ψk,1yk(t)

∣
∣ ≤ Iαk

0
∣
∣fk

(
t, x(t)

)
– fk

(
t, y(t)

)∣
∣

≤ Iαk
0 ϕk(t)‖x – y‖X3

≤ max
t∈J

Iαk
0 ϕk(t)‖x – y‖X3 .
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Hence

‖Ψ1x – Ψ1y‖X3 ≤
( 3∑

k=1

max
t∈J

Iαk
0 ϕk(t)

)

‖x – y‖X3 .

Since maxt∈J Iαk
0 ϕk(t) ≤ mk maxt∈J Iαk

0 ϕk(t) < 1, we deduce the contraction.
The last step shows the compactness of Ψ2. It is obvious by (3.2) that Ψ2 maps bounded

sets into bounded sets. On the other hand, the continuity of fk and its fractional integral
would imply the continuity of the operator Ψ2. The only thing we add is the equicontinuity
of the family Ψ2Br . Let t1, t2 ∈ J with t1 < t2, then we have

∣
∣Ψk,2xk(t2) – Ψk,2xk(t1)

∣
∣ ≤ (t2 – t1)

3∑

m=1

|bk,m|(Iαm–1
0

(
rϕm(T) + μm(T)

))
.

Accordingly, we find that

‖Ψ2x‖X3 ≤ (t2 – t1)
3∑

m=1

(
(
Iαm–1

0
(
rϕm(T) + μm(T)

)) 3∑

m=1

|bk,m|
)

,

which tends to zero as t1 → t2 independently of x. Hence, by the Arzelà–Ascoli theorem,
the operator Ψ2 is compact. Using Krasnoselskii Theorem 2.7, there exists a fixed point
x ∈ Br ⊂ X3 satisfying the operator equation x = Ψ1x + Ψ2x, which is the solution of tripled
system (1.1). This completes the proof. �

4 Application
Corresponding to system (1.1), we consider the following tripled fractional system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cD
6
5
0 x1(t) = t

20 + 1√
169+t2 ( |x1(t)|

1+|x(t)| + |x2(t)|
1+|y(t)| + |x3(t)|

1+|z(t)| ),
cD

3
2
0 x2(t) = 1√

64+t2 + t|x1(t)|
20 + t|x2(t)|

15(t3+1) + t|x3(t)|
15(2+t) ,

cD
9
8
0 x3(t) = e–t

10+t + |x1(t)|√
169+t2 + |x2(t)|

12+t + |x3(t)|
15

√
1+t2 ,

(4.1)

where t ∈ [0, 1] with

⎧
⎪⎪⎨

⎪⎪⎩

x1(0) = x2(1), 5x′
1(0) = 2x′

2(1),

2x2(0) = x3(1), 7x′
2(0) = 2x′

3(1),

3x3(0) = x1(1), 4x′
3(0) = 3x′

1(1).

(4.2)

Using the given data, we find the following constants:

a1,0 = 1, a1,1 =
2
5

, a2,0 =
1
2

, a2,1 =
2
7

,

a3,0 =
1
3

, a3,1 =
3
4

,

b1,1 = b2,2 = b3,3 = 0.09, b1,2 = 0.4375, b1,3 = 0.125,

b2,1 = 0.2344, b2,3 = 0.3125, b3,1 = 0.8203, b3,2 = 0.3281,
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d1,1 = d2,1 = d2,2 = d3,3 = 0.2, d1,2 = 1.2, d1,3 = d2,3 = 0.6, (4.3)

d3,1 = 0.4 = d3,2, e1,1 = 0.7921, e1,2 = 0.397, e1,3 = 0.4562,

e2,1 = 0.5578, e2,2 = 0.3031, e2,3 = 0.1437,

e3,1 = 0.2953, e3,2 = 0.2781, e3,3 = 0.1937,

L1 =
1

13
, L2 =

1
15

, L3 =
1

12
.

Then we deduce that η ≈ 0.95 < 1. Hence by Theorem 3.1 there is a unique solution for
system (4.1). Furthermore, we have

ϕ1(t) =
1√

169 + t2
, ϕ2(t) =

t
15

, ϕ3(t) =
1

12
,

μ1(t) =
t

20
, μ2(t) =

1√
64 + t2

, μ3(t) =
e–t

10 + t
,

and

m1 = 1.8, m2 = 2.8, m3 = 2.4,

n1 = 2.79, n2 = 1.834, n3 = 1.3211.

Hence

3∑

k=1

mk max
t∈J

Iαk
0 ϕk(t) + nk max

t∈J
Iαk –1

0 ϕk(t) = 0.812 < 1.

Therefore, using Theorem 3.2, there exists a solution of system (4.1). The reduction of
the condition value from 0.95 to 0.812 is substantial. However, we lose the uniqueness
property of the solution.

The used permutation in the boundary condition (4.2) has the form (1 2 3). Let us use
another permutation of the boundary conditions for system (4.1) that has the form (1 3)(2)
such that

⎧
⎪⎪⎨

⎪⎪⎩

x1(0) = x3(1), 5x′
1(0) = 2x′

3(1),

2x2(0) = x2(1), 7x′
2(0) = 2x′

2(1),

3x3(0) = x1(1), 4x′
3(0) = 3x′

1(1)

with the same constants as (4.3). Hence we deduce the same results as in the previous
example. Furthermore, one can use four other permutations, namely (1 2)(3), (1)(2 3),
(1 3 2), and identity (1)(2)(3).

5 Conclusion
In this paper, we investigate a tripled system of three fractional differential equations of or-
der α ∈ (1, 2]. The existence and uniqueness of solutions of the proposed system associated
with cyclic permutation boundary conditions are established. The Banach and Krasnosel-
skii fixed point theorems are used as tools to prove our main results. We present examples
to illustrate the applicability of the main results.
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We study a fractional system consisting of three associated equations together with a
new type of boundary conditions that is related to permutation groups. This might be a
novel approach that will provide substantial potential for developing more new ideas in
this field.

The results of this paper can be extended to a tripled system of fractional equations
with impulsive effects and nonlocal conditions. Indeed, a tripled fractional system along
with different boundary conditions can be considered and discussed. Finally, the results of
this paper can be extended to m-tuple fractional systems. We leave investigation of these
topics as future work for interested readers.
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