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Abstract
In this paper, we deal with a class of fractional critical problems. Under some suitable
assumptions, we derive the existence of a positive solution concentrating at the
critical point of the Robin function by using the Lyapunov–Schmidt reduction
method. Comparing with previous work, we encounter some new challenges
because of a nonlocal term. By making some delicate estimates for the nonlocal term
we overcome the difficulty and find a bubbling solution.
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1 Introduction
This paper is concerned with the solution for the following elliptic equation involving
fractional spectral Laplacian and critical exponent:

⎧
⎨

⎩

(–�)su = |u|2∗
s –2u + λu, u > 0, x ∈ Ω ,

u = 0, x ∈ ∂Ω ,
(1.1)

where 0 < s < 1, 2∗
s = 2N

N–2s , Ω is a smooth bounded domain of RN . (–�)s denotes the frac-
tional Laplace operator, and λ1(Ω) is the first eigenvalue of (–�)s in Ω under zero Dirichlet
boundary data.

The fractional power of the Laplacian (–�)s appears in diverse areas including physic,
biological modeling and mathematical finances; see [6, 7, 12]. An important quality of the
fractional Laplacian is its nonlocal property, which makes it difficult to handle. Caffarelli
and Silvestre gave a new method which allows one to transform nonlocal problems to lo-
cal ones in [8]. Many researchers studied nonlinear problems of Eq. (1.1) based on these
extensions which permit it to use variational methods. More precisely, for the subcritical
exponent, Dipierro et al. proved the existence of a positive and spherically symmetric solu-
tion in [13]. Recently, Wang and Zhou [27] also considered subcritical case, they obtained
the existence of a radial sign-changing solution by using Brouwer degree theory and vari-
ational method. In [30], Yan et al. obtain infinitely many solutions as an application of the
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compactness result. For the equation (–�)s = uq with the supercritical exponents q ≥ N+2s
N–2s ,

the nonexistence of solutions was proved in [3, 25, 26] in which one used the Pohozaev type
identities. Partial differential equations involving the fractional Laplacian have attracted
the attention of many researchers; see for example [2, 5, 6, 8, 14, 15, 17, 18, 22, 23, 29] and
the references therein.

The analogue problem to (1.1) for the Laplacian operator has been studied extensively in
recent years; see [1, 4, 6, 11, 28] and the references therein. For s = 1, the equation becomes
the Brezis–Nirenberg problem

⎧
⎨

⎩

–�u = u
N+2
N–2 + λu, u > 0, x ∈ Ω ,

u = 0, x ∈ ∂Ω .
(1.2)

Rey [20] constructed a family of solutions which asymptotically blow up at a nondegener-
ate critical point of the Robin function. Moreover, this result was extended in [19], where
Musso and Pistoia obtained the existence of multi-peak solutions for certain domains. In
[4], Brezis and Nirenberg considered the existence of positive solutions for problem (1.1)
with s = 1. It is well known that the Sobolev embedding H1

0 (Ω) ↪→ L2∗ (Ω) is not compact
even if Ω is bounded. In [16], a concentration–compactness principle was developed to
treat non-compact critical variational problems. A global compactness result was found
in [24] which describes precisely the obstacles of the compactness for critical semilinear
elliptic problems.

The aim of this paper is to study the problem when p = N+2s
N–2s is the critical Sobolev ex-

ponent and λ > 0 is close to zero. Using variational methods and Lyapunov–Schmidt re-
duction, we prove that Eq. (1.1) admits a positive solution concentrating at the critical
point of the Robin function. However, due to the fact that the fractional Laplacian oper-
ator is nonlocal, very few things on this topic are known about the fractional Laplacian.
We point out that we adopt in the paper the spectral definition of the fractional Lapla-
cian in a bounded case with a Caffarelli–Silverstre type extension [9], and not the integral
definition. We refer to [21] for a nice comparison between these two different notions.

We set the fractional Sobolev space Hs
0(Ω) (0 < s < 1) by

Hs
0(Ω) =

{

u =
∞∑

k=1

akφk ∈ L2(Ω) :
∞∑

k=1

a2
kλ

s
k < ∞

}

,

which is a Hilbert space whose inner product is given by

〈 ∞∑

k=1

akφk ,
∞∑

k=1

bkφk

〉

Hs
0(Ω)

=
∞∑

k=1

akbkλ
s
k if

∞∑

k=1

akφk ,
∞∑

k=1

bkφk ∈ Hs
0(Ω).

Moreover, for a function in Hs
0(Ω), we define the fractional Laplacian as

(–�)s

( ∞∑

k=1

akφk

)

=
∞∑

k=1

akλ
s
kφk .
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We also consider the square root (–�) s
2 : Hs

0(Ω) → L2(Ω). Note that by the above defini-
tions, we have

〈u, v〉Hs
0(Ω) =

∫

Ω

(–�)
s
2 u · (–�)

s
2 v dx =

∫

Ω

(–�)su · v dx for u, v ∈ Hs
0(Ω). (1.3)

If the domain Ω is the whole space R
N , the space Hs(RN ) (0 < s < 1) is given as

Hs(
R

N)
=

{

u ∈ L2(
R

N)
: ‖u‖Hs(RN ) :=

(∫

RN

(
1 + |2πξ |2s)∣∣û(ξ )

∣
∣2 dξ

) 1
2

< ∞
}

,

where û denotes the Fourier transform of u, and the fractional Laplacian (–�)s is defined
to be

̂(–�)su(ξ ) = |2πξ |2sû(ξ ).

Definition 1.1 For a function u ∈ Hs
0(Ω), we denote its s-harmonic extension w = Es(u)

to the cylinder C as the solution of the problem

⎧
⎪⎪⎨

⎪⎪⎩

div(t1–2s∇w) = 0, in C,

w = 0, on ∂LC,

w(x, 0) = u(x), on x ∈ Ω × {0},
(1.4)

and

(–�)su(x) = –ks lim
y→0+

y1–2s ∂w
∂y

(x, y),

where ks = 21–2sΓ (1 – s)/Γ (s) is a normalization constant.

The extension function w(x, y) belongs to the space

H1
0,L(C) := C∞

0
(
Ω × [0,∞)

)‖·‖H1
0,L(C)

endowed with the norm

‖w‖H1
0,L(C) =

(

ks

∫

C
y1–2s|∇w|2 dx dy

) 1
2

.

The extension operator is an isometry between Hs
0(Ω) and H1

0,L(C), namely

‖u‖Hs
0(Ω) =

∥
∥Es(u)

∥
∥

H1
0,L(C) for all u ∈ Hs

0(Ω).

With this definition, we see problem (1.1) is the Brezis–Nirenberg type problem with the
fractional Laplacian. To treat the nonlocal problem (1.1), we shall study a corresponding
extension problem; we refer the reader to [2, 3, 22] and the references therein. Therefore,
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the nonlocal problem (1.1) can be reformulated to the following local problem:

⎧
⎪⎪⎨

⎪⎪⎩

div(t1–2s∇v) = 0, in C,

v = 0, on ∂LC,

limy→0+ y1–2s ∂v
∂ν

= |v(x, 0)|2∗
s –2v(x, 0) + λv(x, 0), on Ω × {0},

(1.5)

where ∂
∂ν

is the outward normal derivative of ∂C . The extension operator is an isometry
between Hs

0(Ω) and H1
0,L(C), namely

‖u‖Hs
0(Ω) = ‖v‖H1

0,L(C) for all u ∈ Hs
0(Ω). (1.6)

Hence, critical points of the functional

I(v) =
1

2Cs

∫

C
y1–2s|∇v|2 dx dy –

1
2∗

s

∫

Ω×{0}
|v|2∗

s dx –
λ

2

∫

Ω×{0}
|v|2 dx

defined on H1
0,L(C) corresponding to solutions of (1.5). Without loss of generality, we may

assume Cs = 1.
Now we introduce the Green’s function of (–�)s with the Dirichlet boundary condition,

which solves

(–�)sG(·, y) = δy in Ω and G(·, y) = 0 on ∂Ω .

The regular part of G is given by

H(x, y) =
aN ,s

|x – y|N–2s – G(x, y) where aN ,s =
1

|SN–1|
21–2sΓ ( N–2s

2 )
Γ ( N

2 )Γ (s)
.

The diagonal part τ of the function H , namely, τ (x) := H(x, x) for x ∈ Ω is called the Robin
function and it plays a crucial role for our problem.

Theorem 1.2 Assume 0 < s < 1 and N > 4s, the equation has a bubbling solution which
concentrated at the local minimum of the Robin function.

This paper is organized as follows. In Sect. 2, we study the regularity of the Green’s
function of fractional Laplacian and show some estimates. In Sect. 3, using the Lyapunov–
Schmidt reduction method, we prove the main theorem. We exhibit some necessary com-
putations for the construction of concentrating solutions in the appendix.

2 Some preliminaries and estimates
In the following lemma we list some relevant inequalities from [3].

Lemma 2.1 For any 1 ≤ r ≤ 2∗
s and any z ∈ H1

0,L(C), we have

(∫

Ω

∣
∣u(x)

∣
∣r dx

) 2
r
≤ C

∫

C
y1–2s∣∣∇z(x, y)

∣
∣2 dx dy, u = Tr(z), (2.1)

for some positive constant C = C(r, s, N ,Ω).
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When r = 2∗
s , the best constant in (2.1) is denoted by S(s, N), that is,

S(s, N) := inf
z∈H1

0,L(C)\{0}

∫

C y1–2s|∇z(x, y)|2 dx dy

(
∫

Ω
|z(x, 0)|2∗

s dx)
2

2∗s
, (2.2)

where S(s, N) is achieved for Ω = R
N by function Ux,μ which are the s-harmonic extension

of ux,μ, where

ux,μ = aN ,s

(
μ

1 + μ2|x – xλ|2
) N–2s

2
.

Let U(x) = (1 + |x|2) 2s–N
2 and let W be the extension of U . Then

W(x, y) = Es(U) = cN ,s

∫

RN

U(z) dz

(|x – z|2 + y2) N+2s
2

is the extreme function for the fractional Sobolev inequality (2.2). The constant S(s, N)
takes the exact value

S(s, N) =
2π sΓ (1 – s)(Γ ( N

2 ))
2s
N

Γ (s)Γ ( N–2s
2 )(Γ (N))s

.

It was shown that, if a suitable decay assumption is imposed, then {ux,μ : μ > 0, x ∈ R
N }

is the set of all solutions for the problem

(–�)su = up, u > 0 in R
N and lim|x|→∞ u(x) = 0.

We use Ux,μ ∈ Ds(RN+1
+ ) to denote the s-harmonic extension of ux,μ, so that Ux,μ solves

⎧
⎨

⎩

div(t1–2sUx,μ(x, t)) = 0, (x, t) ∈R
N+1
+ ,

Ux,μ(x, 0) = ux,μ(x), x ∈ R
N .

(2.3)

Now we introduce the Green’s function in case of s-harmonic extension operator. Let G
be the Green’s function of the fractional Laplacian (–�)s with the zero Dirichlet boundary
condition. Then it can be regarded as the trace of the Green’s function GC = GC(z, x) for
the extended Dirichlet–Neumann problem which satisfies

⎧
⎪⎪⎨

⎪⎪⎩

div(t1–2s∇GC(·, x)) = 0, in C,

GC(·, x) = 0, on ∂LC,

∂ s
νGC(·, x) = δx, on Ω × {0}.

(2.4)

In fact, if a function W in C solves

⎧
⎪⎪⎨

⎪⎪⎩

div(t1–2s∇W ) = 0, in C,

W = 0, on ∂LC,

∂ s
νW = g, on Ω × {0},

(2.5)
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for some function g on Ω × {0}, then we can see that W has the expression

W (z) =
∫

Ω

GC(z, y)g(y) dy =
∫

Ω

GC(z, y)(–�)sw(y) dy, z ∈ C,

where w = tr|Ω×{0}W . Then, by plugging z = (x, 0) in the above equalities, we obtain

w(x) =
∫

Ω

GC
(
(x, 0), y

)
(–�)sw(y) dy,

which implies that GC((x, 0), y) = G(x, y) for any x, y ∈ Ω .
The Green’s function GC on the half cylinder C can be partitioned to the singular part

and regular part. The single part is

G
R

N+1
+

(
(x, t), y

)
:=

aN ,s

|(x – y, t)|N–2s ,

which satisfies
⎧
⎨

⎩

div(t1–2s∇x,tGR
N+1
+

((x, t), y) = 0, in R
N+1
+ ,

∂ s
νG

R
N+1
+

((x, 0), y) = δy(x), on Ω × {0}.
(2.6)

In this section, we prove Theorem 1.2 by applying the Lyapunov–Schmidt reduction
method to the extended problem

⎧
⎪⎪⎨

⎪⎪⎩

div(t1–2s∇v) = 0, in C = Ω × (0,∞),

v = 0, on ∂LC = ∂Ω × (0,∞),

∂ s
νv = vp + λv, on Ω × {0},

(2.7)

where 0 < s < 1 and p = N+2s
N–2s . We recall that the functions ux,μ and Ux,μ are defined in (2.3).

It is known that the space of the bounded solutions for the linearized equation

(–�)sφ = pup–1
x,μ φ in R

N (2.8)

is spanned by

∂ux,μ

∂x1
, . . . ,

∂ux,μ

∂xN
and

∂ux,μ

∂μ
, (2.9)

where x = (x1, . . . , xN ) represents the variable in R
N . By the results of Dávial, del Pino and

Sire [10], it also follows that the solutions of the extended problem of

⎧
⎨

⎩

div(t1–2s∇Φ) = 0, in R
N+1
+ = R

N × (0, +∞),

∂ s
νΦ = pUp–1

x,μ Φ , on R
N × {0},

(2.10)

which are bounded on Ω × {0}, consist of the linear combinations of

∂Ux,μ

∂x1
, . . . ,

∂Ux,μ

∂xN
,
∂Ux,μ

∂μ
.
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We define PΩ such that

⎧
⎨

⎩

∂ s
ν(PΩUx,μ) = ∂ s

νUx,μ = U2∗
s –1

x,μ , x ∈ Ω × {0},
PΩUx,μ = 0, x ∈ ∂Ω × (0, +∞).

(2.11)

Let ϕ = Ux,μ – PΩUx,μ, we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

div(t1–2s∇ϕ) = 0, in Ω × (0, +∞),

ϕ|∂Ω = Ux,μ|∂Ω = C0

μ
N–2s

2 |y–xλ|N–2s
(1 + O( 1

μ2|y–xλ|2 )),

∂ s
νϕ = 0, on Ω × {0}.

(2.12)

Consider

⎧
⎪⎪⎨

⎪⎪⎩

div(t1–2s∇(x,t)HC((x, t), y)) = 0, in C,

HC((x, t), y)) = aN ,s
|(x–y),t|N–2s , on ∂LC,

∂ s
νHC((x, 0), y) = 0, on Ω × {0},

(2.13)

then HC((x, t), y) is the regular part of the Green’s function. Thus, we obtain

Ux,μ – PΩUx,μ =
C0

μ
N–2s

2
H

(
(x, t), y

)
.

We define

E =
{

U ∈ H1
0,L(C) :

〈

U ,
∂Ux,μ

∂xj

〉

H1
0,L(C)

= 0, j = 0, 1, . . . , N
}

. (2.14)

In order to prove Theorem 1.2, we only need to prove the following proposition.

Proposition 2.2 Under the assumption of Theorem 1.2, (1.5) has a solution v of the form

v = PΩUx,μ + ω,

where ω ∈ E, PΩUx,μ defined in (2.11), ‖w‖H1
0,L(C) → 0, xλ → x0 as λ → 0.

The energy function corresponding to (1.5) is

I(v) :=
1
2

∫

C
y1–2s|∇v|2 dx dy –

λ

2

∫

Ω×{0}
|v|2 dx –

1
p + 1

∫

Ω×{0}
|v|p+1 dx. (2.15)

We expand J(ω) as follows:

J(ω) = I(PΩUx,μ + ω) = J(0) + �(ω) +
1
2

L(ω) + R(ω), (2.16)
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where

L(ω) =
∫

C
y1–2s|∇ω|2 dx dy – λ

∫

Ω×{0}
ω2 dx

–
(
2∗

s – 1
)
∫

Ω×{0}
|PΩUx,μ|2∗

s –2ω2 dx, (2.17)

�(ω) =
∫

Ω×{0}
U2∗

s –1
x,μ ω dx dy –

∫

Ω×{0}
|PΩUx,μ|2∗

s –1ω dx – λ

∫

Ω×{0}
PΩUx,μω dx, (2.18)

and

R(ω) =
1
2∗

s

∫

Ω×{0}

(|PΩUx,μ + ω|2∗
s – |PΩUx,μ|2∗

s – 2∗
s |PΩUx,μ|2∗

s –1ω

–
(
2∗

s
)(

2∗
s – 1

)|PΩUx,μ|2∗
s –2ω2)dx

is the higher order of ω.
In order to find a critical point for J(ω), we need to discuss each term in the expansion

(2.16). We will use x instead of xλ for simplicity in this paper.
Now we arrive at the main result in this section.

Lemma 2.3 There is a constant C > 0 independent of μ such that

∥
∥R′(ω)

∥
∥

H1
0,L(C) ≤ C‖ω‖min{2∗

s –1,2}
H1

0,L(C)

and

∥
∥R′′(ω)

∥
∥

H1
0,L(C) ≤ C‖ω‖min{2∗

s –2,1}
H1

0,L(C) .

Proof By a direct calculation, in the case 2∗
s – 1 > 2, we know that

〈
R′(ω),φ

〉
=

∫

Ω×{0}

(|PΩUx,μ + ω|2∗
s –1 – |PΩUx,μ|2∗

s –1 –
(
2∗

s – 1
)|PΩUx,μ|2∗

s –2ω
)
φ dx

≤ C
∫

Ω×{0}
|PΩUx,μ|2∗

s –3ω2φ dx

≤ C
(∫

Ω×{0}

(|PΩUx,μ|2∗
s –3ω2)

2∗s
2∗s –1 dx

) 2∗s –1
2∗s

(∫

Ω×{0}
φ2∗

s dx
) 1

2∗s

≤ C‖ω‖2
H1

0,L(C)‖φ‖H1
0,L(C)

and

〈
R′′(ω), (φ,ψ)

〉
=

∫

Ω×{0}

(|PΩUx,μ + ω|2∗
s –2 – |PΩUx,μ|2∗

s –2)φψ dx

≤ C
∫

Ω×{0}
(PΩUx,μ)2∗

s –3ωφψ dx

≤ C
(∫

Ω×{0}

(|PΩUx,μ|2∗
s –3ωφ

) 2∗s
2∗s –1 dx

) 2∗s –1
2∗s

(∫

Ω×{0}
ψ2∗

s dx
) 1

2∗s
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≤ C‖ω‖H1
0,L(C)‖φ‖H1

0,L(C)‖ψ‖H1
0,L(C).

Now, we deal with 2∗
s – 1 < 2 to obtain

〈
R′(ω),φ

〉 ≤ C
∫

Ω×{0}
ω2∗

s –1φ dx ≤ C‖ω‖2∗
s –1

H1
0,L(C)‖φ‖H1

0,L(C),

〈
R′′(ω), (φ,ψ)

〉 ≤ C
∫

Ω×{0}
ω2∗

s –2φψ dx ≤ C‖ω‖2∗
s –2

H1
0,L(C)‖φ‖H1

0,L(C)‖ψ‖H1
0,L(C).

As a result, we complete the proof. �

Lemma 2.4 There is a constant C > 0 independent of μ such that

‖�‖H1
0,L(C) ≤ C

(
1

μN–2s +
λ

μ2s

)

.

Proof Recall

�(ω) =
∫

Ω×{0}
U2∗

s –1
x,μ ω dx –

∫

Ω×{0}
|PΩUx,μ|2∗

s –1ω dx – λ

∫

Ω×{0}
(PΩUx,μ)ω dx. (2.19)

By a direct calculation, we have

∣
∣|PΩUx,μ|2∗

s –1 – |Ux,μ|2∗
s –1∣∣ =

∣
∣|Ux,μ – ϕ|2∗

s –1 – |Ux,μ|2∗
s
∣
∣

≤ C
∣
∣U2∗

s –2
x,μ ϕ

∣
∣ ≤ C

1
μ

N–2s
2

H
(
(x0, 0), x0

)
U2∗

s –2
x,μ . (2.20)

For ϕ = Ux,μ – PΩUx,μ, we have

∫

Ω×{0}
|PΩUx,μ|2 dx =

∫

Ω×{0}
(Ux,μ – ϕ)2 dx

=
∫

Ω×{0}
|Ux,μ|2 dx –

∫

Ω×{0}
2Ux,μϕ dx +

∫

Ω×{0}
ϕ2 dx. (2.21)

By a direct calculation, we have

∫

Ω×{0}
ϕ2 dx =

∫

Ω

(
1

μ
N–2s

2
H

(
(x, 0), x

)
)2

dx = O
(

1
μN–2s

)

(2.22)

and

∫

Ω

U2
x,μ dx =

∫

Ω×{0}

(
μ

1 + μ2|y – xλ|2
)N–2s

dy =
∫

Ωμ

μ–N
(

μ

1 + |z|2
)N–2s

dz

=
C0

μ2s

∫

RN

1
(1 + |z|2)N–2s dz + O

(
1

μ2s

)

, (2.23)

where Ωμ = {y : μ–1y = x ∈ Ω}.
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Inserting (2.22) and (2.23) to (2.21), we obtain

∫

Ω×{0}
|PΩUx,μ|2 dx ≤ C

μ2s + O
(

1
μ2s+1

)

. (2.24)

Combining (2.19), (2.20) and (2.24), we have

∥
∥�(ω)

∥
∥

H1
0,L(C) ≤

∫

Ω×{0}

(|PΩUx,μ|2∗
s –1 – U2∗

s –1
x,μ

)
ω dx + λ

∫

Ω×{0}
(PΩUx,μ)ω dx

≤ C
∫

Ω×{0}
U2∗

s –2
x,μ

μ
N–2s

2
H

(
(x0, 0), x0

)
ω dx + λ

∫

Ω×{0}
(PΩUx,μ)ω dx

≤ C

μ
N–2s

2

(∫

Ω×{0}

∣
∣U2∗

s –2
x,μ H

(
(x0, 0), x0

)∣
∣

2N
N+2s dx

) N+2s
2N ‖ω‖H1

0,L(C)

+ λ

(∫

Ω×{0}
(PΩUx,μ)2 dx

) 1
2 ‖ω‖H1

0,L(C)

≤ C

μ
N–2s

2

(∫

Ω×{0}

∣
∣U2∗

s –2
x,μ

∣
∣

2∗s
2∗s –2 dx

) 2∗s –2
2∗s ‖ω‖H1

0,L(C)

+ λ

(∫

Ω×{0}
(PΩUx,μ)2 dx

) 1
2 ‖ω‖H1

0,L(C)

≤ C
(

1
μN–2s +

λ

μ2s

)

‖ω‖H1
0,L(C). (2.25)

Then we get the conclusion. �

3 The finite-dimensional reduction and proof of the main results
In this section, we intend to prove the main theorem by the Lyapunov–Schmidt reduction.
It is easy to check that Lw can be generated by a bounded linear operator L from E to E,
which is defined as

〈Lω,ϕ〉 =
∫

C
y1–2s∇ω∇ϕ dx dy – λ

∫

Ω×{0}
ωϕ dx –

(
2∗

s – 1
)
∫

Ω×{0}
(PΩUx,μ)2∗

s –2ωϕ dx.

Next, we show the invertibility of L in E.

Proposition 3.1 There exists a constant ρ > 0, such that

‖PLω‖H1
0,L(C) ≥ ρ‖ω‖H1

0,L(C), ω ∈ E.

Proof We argue it by contradiction. Suppose that there are n → +∞, xn → x0, μn → +∞,
λn → 0, ωn ∈ E, such that

‖PLωn‖H1
0,L(C) ≤ 1

n
‖ωn‖H1

0,L(C).

Without loss of generality, we assume ‖ωn‖H1
0,L(C) = 1, then ‖PLωn‖H1

0,L(C) ≤ 1
n .



Wang Boundary Value Problems        (2020) 2020:145 Page 11 of 18

Then

∫

C
y1–2s∇ϕ∇ωn dx dy – λn

∫

Ω×{0}
ϕωn dx –

(
2∗

s – 1
)
∫

Ω×{0}
(PΩUxn ,μn )2∗

s –2ϕωn dx

= o(1)‖ϕ‖H1
0,L(C) + α0

〈
∂PΩUxn ,μn

∂μ
,ϕ

〉

H1
0,L(C)

+
N∑

i=1

αi

〈
∂PΩUxn ,μn

∂xi
,ϕ

〉

H1
0,L(C)

. (3.1)

Step 1, we claim α0,αi = 0 for (i = 1, . . . , N). Let ϕ = ∂PΩUxn ,μn , we obtain

∫

C
y1–2s∇(∂PΩUxn ,μn )∇ωn dx dy – λn

∫

Ω×{0}
(∂PΩUxn ,μn )ωn dx

–
(
2∗

s – 1
)
∫

Ω×{0}
(PΩUxn ,μn )2∗

s –2(∂PΩUxn ,μn )ωn dx

=
∫

Ω×{0}

(
2∗

s – 1
)
U2∗

s –2
xn ,μn∂(PΩUxn ,μn )ωn dx – λn

∫

Ω×{0}
∂(PΩUxn ,μn )ωn dx

–
(
2∗

s – 1
)
∫

Ω×{0}
(PΩUxn ,μn )2∗

s –2∂(PΩUxn ,μn )ωn dx

= on(1), (3.2)

where ∂(PΩUxn ,μn ) = ∂(PΩ Uxn ,μn )
∂μ

or ∂(PΩ Uxn ,μn )
∂xi

for i = 1, . . . , N . Then α0,αi = 0 for (i =
1, . . . , N).

Step 2, we show that
∫

Ω×{0}(PΩUxn ,μn )2∗
s –2∂(PΩUxn ,μn )ωn dx = on(1), since

∫

Ω×{0}
|PΩUxn ,μn |2∗

s –2∂(PΩUxn ,μn )ωn dx

=
(∫

{(μn|y–xn|≥R)×{0}}
+

∫

{(μn|y–xn|≤R)×{0}}

)

|PΩUxn ,μn |2∗
s –2∂(PΩUxn ,μn )ωn dx.

We consider the following inequality:

∫

{(μn|y–xn|≥R)×{0}}

∣
∣(PΩUxn ,μn )2∗

s –2(∂PΩUxn ,μn )ωn
∣
∣dx

≤
∫

(μn|y–xn|≥R)×{0}
|Uxn ,μn |2∗

s –2∂Uxn ,μnωn dx

=
∫

{(|z|≥R)×{0}}
U2∗

s –2
0,1 ∂U0,1ω̃n dx

≤
(∫

{(|z|≥R)×{0}}

(
U2∗

s –2
0,1 ∂U0,1

) 2N
N+2s dx

) N+2s
2N ‖ω̃n‖L2∗s (Ω)

= oR(1)‖ω‖L2∗s (Ω) = oR(1), (3.3)

where ω̃n(y) = μ
– N–2s

2
n ω(μ–1

n x + xn), z = μn|y – xn|.
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Now, we consider
∫

{(μn|y–xn|≤R)×{0}} |PΩUxn ,μn |2∗
s –2∂(PΩUxn ,μn )ωn dx. Since

‖ωn(x)‖H1
0,L(C) = 1, then ‖ω̃n‖H1

0,L(C) = 1. Then {w̃n} is bounded in H1
0,L(C). We have

ω̃n ⇀ ω, weakly in H1
0,L(C),

ω̃n(x, 0) → ω(x, 0), strongly in Lp(Ω)
(
1 < p < 2∗

s
)
.

(3.4)

Since ω̃n(y) satisfies

⎧
⎪⎪⎨

⎪⎪⎩

div(t1–2s∇ω̃n) = 0, in Ωμ × {(0, +∞)},
ω̃n = 0, on ∂LΩμ × {(0, +∞)},
∂ s
νω̃n = ω̃

2∗
s –1

n + λnω̃n, in Ωμ × {0},
(3.5)

we see that ω satisfies the following equations:

⎧
⎪⎪⎨

⎪⎪⎩

div(t1–2s∇ω) = 0, in R
N+1
+ ,

ω > 0, in R
N+1
+ ,

∂ s
νω = ω2∗

s –1, in R
N × {0},

(3.6)

hence ω = α0
∂U0,1
∂μ

+
∑N

i=1 αi
∂U0,1
∂xi

.
Since ωn ∈ E, then 〈wn, ∂Uxn ,μn

∂μ
〉(Hs

0,L(C)) = 0, 〈ωn, ∂Uxn ,μn
∂xi

〉H1
0,L(C) = 0, then we get

〈ω, ∂U0,1〉H1
0,L(C) = 0. Thus ω = 0 and

∫

{(μn|y–xn|≤R)×{0}}
|PΩUxn ,μn |2∗

s –2∂(PΩUxn ,μn )ωn dx ≤ C
(∫

|y|≤R
ω2

n

) 1
2 → 0. (3.7)

Combining (3.3) and (3.7), we obtain
∫

Ω×{0}(PΩUxn ,μn )2∗
s –2∂(PΩUxn ,μn )ωn dx = on(1).

Step 3, in (3.1), we denote ϕ = wn, we have

on(1)‖wn‖H1
0,L(C) =

∫

C
y1–2s|∇ωn|2 dx dy – λn

∫

Ω×{0}
|ωn|2 dx

–
(
2∗

s – 1
)
∫

Ω×{0}
(PΩUxn ,μn )2∗

s –2|ωn|2 dx

= ‖ωn‖2
H1

0,L(C) + on(1)‖ωn‖2
H1

0,L(C), (3.8)

we get a contradiction, thus L is invertible. �

Now we perform the finite-dimensional reduction procedure.

Proposition 3.2 There is a C1 map from S to H1
0,L: ω = ω(μ), satisfying ω ∈ E, and

J ′(ω)|E = 0. (3.9)

Moreover, there exists a constant C > 0 independent of μ such that

‖ω‖H1
0,L(C) ≤ C

(
1

μN–2s +
λ

μ2s

)

. (3.10)
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Proof We will use the contraction theorem to prove it. It is known that �(ω) is a bounded
linear functional in E. By the Riesz representation theorem, there is an � ∈ E such
that

�(ω) = 〈�,ω〉.

So, finding a critical point for I(ω) is equivalent to solving

� + Lω + R′(ω) = 0. (3.11)

By Proposition 3.1, L is invertible. Thus (3.11) is equivalent to

ω = A(ω) := –L–1(� + R′(ω)
)
.

Set

S :=
{

ω ∈ E : ‖ω‖H1
0,L(C) ≤

(
C

μN–2s +
λ

μ2s

)1–θ}

.

We shall verify that A is a contraction mapping from S to itself. In fact, on the one hand,
for any ω ∈ S, we obtain

∥
∥A(ω)

∥
∥

H1
0,L(C) ≤ C

(‖�‖H1
0,L(C) +

∥
∥R′(ω)

∥
∥

H1
0,L(C)

)

≤ C
(‖�‖H1

0,L(C) + ‖ω‖min{2∗
s –1,2}

H1
0,L(C)

)

≤
(

C
μN–2s +

λ

μ2s

)

+
(

C
μN–2s +

λ

μ2s

)(1–θ ) min{2∗
s –1,2}

≤ C
μN–2s +

λ

μ2s . (3.12)

On the other hand, for any ω1,ω2 ∈ S,

∥
∥A(ω1) – A(ω2)

∥
∥

H1
0,L(C) =

∥
∥L–1R′(ω1) – L–1R′(ω2)

∥
∥

H1
0,L(C)

≤ C
∥
∥R′(ω1) – R′(ω2)

∥
∥

H1
0,L(C)

≤ C
∥
∥R′′(θω1 + (1 – θ )ω2

)∥
∥‖ω1 – ω2‖H1

0,L(C)

≤ C
∥
∥θω1 + (1 – θ )ω2

∥
∥min{2∗

s –2,1}
H1

0,L(C) ‖ω1 – ω2‖H1
0,L(C)

≤ 1
2
‖ω1 – ω2‖H1

0,L(C). (3.13)

Then the result follows from the contraction mapping theorem. �
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We proved that there exist αi (i = 0, 1, . . . , j) satisfying

(–�)s(PΩUx,μ + ω) – λ(PΩUx,μ + ω) – (PΩUx,μ + ω)2∗
s –1

= α0
∂PΩUx,μ

∂μ
+

N∑

i=1

αi
∂PΩUx,μ

∂xi
(3.14)

and ‖ω‖H1
0,L(C) ≤ C

μN–2s + C λ

μ2 .
Now, we want to show that α0 = α1 = · · · = αn = 0. First we denote

ω(x,μ) =
1
2

∫

C
y1–2s∣∣∇(PΩUx,μ + ω)

∣
∣2 dx dy –

λ

2

∫

Ω×{0}
|PΩUx,μ + ω|2 dx

–
1
2∗

s

∫

Ω×{0}
|PΩUx,μ + ω|2∗

s dx.

Next, we have the following lemma.

Lemma 3.3 If (x,μ) is the critical point of ω(x,μ), then α0 = α1 = · · · = αn = 0.

Proof We can refer to [19], we omit the proof. �

Now, we consider the critical point of w(x,μ). For ω = 0, we obtain

ω̄(x,μ) =
1

2Cs

∫

C
y1–2s|∇PΩUx,μ|2 dx dy –

λ

2

∫

Ω×{0}
|PΩUx,μ|2 dx

–
1
2∗

s

∫

Ω×{0}
|PΩUx,μ|2∗

s dx

=
s
N

∫

RN
u2∗

s
0,1 dx +

B0H((x, 0), x)
μN–2s –

λB1

μ2 + h.o.t,

where B0, B1 are defined in the appendix.
By a direct calculation, we get

ω(x,μ) = ω̄x,μ +
∫

C
∇(PΩUx,μ)∇ω dx dy

– λ

∫

Ω×{0}
(PΩUx,μ)ω dx –

∫

Ω×{0}
(PΩUx,μ)2∗

s –1ω dx

–
1
2∗

s

∫

Ω×{0}
(PΩUx,μ + ω)2∗

s – (PΩUx,μ)2∗
s – 2∗

s (PΩUx,μ)2∗
s –1ω dx

+
1
2

∫

C
|∇ω|2 dx dy –

1
2
λ

∫

Ω×{0}
ω2 dx. (3.15)
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Since ‖ω‖H1
0,L(C) ≤ C( 1

μN–2s + λ

μ2 ), we have

∫

C
∇(PΩUx,μ)∇ω dx dy – λ

∫

Ω×{0}
(PΩUx,μ)ω dx –

∫

Ω×{0}
(PΩUx,μ)2∗

s –1ω dx

=
∫

Ω×{0}
U2∗

s –1
x,μ ω dx dy – λ

∫

Ω×{0}
(PΩUx,μ)ω dx –

∫

Ω×{0}
(PΩUx,μ)2∗

s –1ω dx

= o(1)‖ω‖H1
0,L(C). (3.16)

Combining (3.15) and (3.16), we obtain

ω(x,μ) = ω̄(x,μ) + o(1)‖ω‖H1
0,L(C)

= A +
B0H((x, 0), x)

μN–2s –
λB1

μ2 + o
(

1
μN–2s +

λ

μ2

)

.

Then we get (x0,μ0) is the critical point of ω(x,μ), where x0 is the local minimizer of the
Robin function H((x0, 0), x0), and μ = μ0 = ( (N–2s)B0H((x0,0),x0)

2λB1
)

1
N–2s–4 .

Appendix: Energy expansion
In this section, we will give the energy expansion for the approximate solution. Recall

I(v) =
1
2

∫

C
y1–2s|∇v|2 dx dy –

λ

2

∫

Ω×{0}
|v|2 dx –

1
p + 1

∫

Ω×{0}
|v|p+1 dx. (A.1)

Proposition A.1 We have

I(PΩUx,μ) = A +
B

μN–2s H
(
(x0, 0), x0

)
–

λB1

μ2s + O
(

1
μN–2s+1

)

, (A.2)

where A = C1
∫

RN u2∗
s

0,1 dx, B = C2
∫

RN
1

(1+|z|2)
N+2s

2
dz and B1 = C0

∫

RN
1

(1+|z|2)N–2s dz.

Proof Recall

I(PΩUx,μ) =
1
2

∫

C
y1–2s|∇PΩUx,μ|2 dx dy –

λ

2

∫

Ω×{0}
|PΩUx,μ|2 dx

–
1

p + 1

∫

Ω×{0}
|PΩUx,μ|p+1 dx. (A.3)

First, using (2.11), we note the following identity:

∫

C
y1–2s∣∣∇(PΩUx,μ)

∣
∣2 dx dy =

∫

Ω×{0}
∂ s
ν(PΩUx,μ)(PΩUx,μ) dx

=
∫

Ω×{0}
U2∗

s –1
x,μ (PΩUx,μ) dx

=
∫

Ω×{0}
U2∗

s –1
x,μ (Ux,μ – ϕ) dx. (A.4)
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By a direct computation, we have

∫

Ω×{0}
U2∗

s
x,μ dx =

∫

Ω

a
2N

N–2s
N ,s

(
μ

1 + μ2|x – xλ|2
)N

dx

=
∫

Ωμ

a
2N

N–2s
N ,s

(
μ

1 + |z|2
)N

μ–N dz =
∫

Ωμ

C0

(1 + |z|2)N dz

=
∫

RN

C0

(1 + |z|2)N dz –
∫

RN \Ωμ

C0

(1 + |z|2)N dz

=
∫

RN
u2∗

s
0,1 dx + O

(
1

μN

)

(A.5)

and
∫

Ω×{0}
U2∗

s –1
x,μ ϕ dx

=
∫

Ω

(

aN ,s

(
μ

1 + μ2|x – xλ|2
) N–2s

2
)2∗

s –1( C0

μ
N–2s

2
H

(
(x, 0), y

)
+

1
μ

N+2s
2

)

dx

=
1

μ
N–2s

2

∫

Ω

((
μ

1 + μ2|x – xλ|2
) N–2s

2
)2∗

s –1

H
(
(x, 0), x0

)
dx + O

(
1

μN–2s+1

)

=
1

μ
N–2s

2

∫

Ωμ

[
μ

N–2s
2

(1 + |z|2) N–2s
2

] N+2s
N–2s

H
((

μ–1z + x0
)
, x0

)
μ–N dz + O

(
1

μN–2s+1

)

=
1

μN–2s

∫

Ωμ

H((x0, 0), x0)
(1 + |z|2) N+2s

2
dz + O

(
1

μN–2s+1

)

=
H((x0, 0), x0)

μN–2s

∫

RN

1
(1 + |z|2) N+2s

2
dz + O

(
1

μN–2s+1

)

. (A.6)

Combining (A.4)–(A.6), we obtain

∫

C
y1–2s∣∣∇(PΩUx,μ)

∣
∣2 dx dy

= C1

∫

RN
u2∗

s
0,1 dx – C2

H((x0, 0), x0)
μN–2s

∫

RN

1
(1 + |z|2) N+2s

2
dz + O

(
1

μ
N
2

)

= A –
H((x0, 0), x0)

μN–2s B + O
(

1
μ

N
2

)

, (A.7)

where A = C1
∫

RN u2∗
s

0,1 dx, B = C2
∫

RN
1

(1+|z|2)
N+2s

2
dz.

For the second term of the right hand side of (A.3), similarly, we have

∫

Ω×{0}
|PΩUx,μ|2∗

s dx =
∫

Ω×{0}
|Ux,μ – ϕ|2∗

s dx

=
∫

Ω×{0}
U2∗

s
x,μ dx – 2∗

s

∫

Ω×{0}
U2∗

s –1
x,μ ϕ dx + O

(∫

Ω×{0}
U2∗

s –2
x,μ ϕ2

)

= A –
2∗

s H((x0, 0), x0)
μN–2s B + O

(
1

μ
N–2s+2

2

)

. (A.8)
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Since ϕ = Ux,μ – PΩUx,μ, by a direct computation, we have

∫

Ω×{0}
|PΩUx,μ|2 dx =

∫

Ω×{0}
(Ux,μ – ϕ)2 dx

=
∫

Ω×{0}
(|Ux,μ|2 dx –

∫

Ω×{0}
2Ux,μϕ dx +

∫

Ω×{0}
ϕ2 dx. (A.9)

Since

∫

Ω×{0}
ϕ2 dx =

∫

Ω

(
1

μ
N–2s

2
H

(
(x, 0), x

)
)2

dx = O
(

1
μN–2s

)

(A.10)

and

∫

Ω×{0}
U2

x,μ dx =
∫

Ω×{0}

(
μ

1 + μ2|y – x|2
)N–2s

dy =
∫

Ωμ

μ–N
(

μ

1 + |z|2
)N–2s

dz

=
C0

μ2s

∫

RN

1
(1 + |z|2)N–2s dz + O

(
1

μ2s

)

, (A.11)

where B1 = C0
∫

RN
1

(1+|z|2)N–2s dz, we obtain

∫

Ω×{0}
|PΩUx,μ|2 dx =

B1

μ2s + O
(

1
μN–2s

)

. (A.12)

Combining (A.7), (A.8) and (A.12), we get (A.2). �
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