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Abstract
In this paper, we study the second-order Hamiltonian systems

ü – L(t)u +∇W(t,u) = 0,

where t ∈R, u ∈R
N , L andW depend periodically on t, 0 lies in a spectral gap of the

operator –d2/dt2 + L(t) andW(t, x) is locally superquadratic. Replacing the common
superquadratic condition that lim|x|→∞ W(t,x)

|x|2 = +∞ uniformly in t ∈R by the local

condition that lim|x|→∞ W(t,x)
|x|2 = +∞ a.e. t ∈ J for some open interval J ⊂ R, we prove

the existence of one nontrivial homoclinic soluiton for the above problem.
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1 Introduction and main results
Consider the second-order Hamiltonian systems

ü – L(t)u + ∇W (t, u) = 0, (1.1)

where t ∈R, u ∈R
N , L ∈ C(R,RN×N ) and W ∈ C1(R×R

N ,R) satisfies the following basic
conditions:

(W1) W is T-periodic in t and there exist constants C0 > 0 and p > 2 such that

∣
∣∇W (t, x)

∣
∣ ≤ C0

(

1 + |x|p–1), ∀(t, x) ∈R×R
N .

(W2) ∇W (t, x) = o(|x|) as x → 0 uniformly in t and W (t, x) ≥ 0 for all (t, x).
Usually, a solution u of system (1.1) is said to be homoclinic to 0 if u(t) → 0 as |t| → ∞.

Furthermore, if u(t) 
≡ 0, then u is called a nontrivial homoclinic solution.
During the past two decades, there has been a remarkable amount of progress in the

study of homoclinic motions of Hamiltonian systems, with many new ideas and meth-
ods being introduced; see, for instance, [2, 3, 5, 6, 8, 12–15, 20, 22–26] for results con-
cerning the second-order systems, and [4, 7, 17–19] for the first-order systems. For
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(1.1) with periodic potential, most results are obtained under the assumptions that L(t)
is positive definite for all t ∈ R and W (t, x) is globally superquadratic in x; see, e.g.,
[2, 3, 5, 8, 10, 12, 14, 22, 24, 25]. A common feature of this work is that the following
assumption, which is originally due to Ambrosetti and Rabinowitz [1], is imposed on the
nonlinearity:

(AR) ∃ μ > 2 such that 0 < μW (t, x) ≤ (∇W (t, x), x) for all (t, x) ∈ R× (RN\{0}).
It is well known that the crucial role of (AR) is to verify the mountain-pass geometry of
the corresponding functional and also to ensure the boundedness of Palais–Smale (PS)
sequences. It is also well known that many functions such as

W (t, x) = |x|2 ln
(

1 + |x|)

do not satisfy (AR). In recent years, many more natural conditions than (AR) have been
proposed in the study of periodic or homoclinic solutions for superquadratic Hamiltonian
systems. Ding and Lee [8] consider (1.1) with periodicity. Instead of (AR), they assume
that

(S1) W (t, x)/|x|2 → +∞ as |x| → ∞ uniformly in t;
(S2) W̃ (t, x) := 1

2 (∇W (t, x), x) – W (t, x) > 0 if x 
= 0, and there exist ε ∈ (0, 1) and r > 0
such that (∇W (t, x), x) ≤ cW̃ (t, x)|x|2–ε for all t ∈R and |x| ≥ r;

and prove the existence of infinitely many geometrically distinct solutions for both asymp-
totically quadratic and superquadratic cases. See also [12, 22, 25] for the related results.

If 0 lies in a spectral gap of the operator –d2/dt2 + L(t), that is,
(L) –Λ1 := sup[σ (A) ∩ (–∞, 0)] < 0 < Λ2 := inf[σ (A) ∩ (0, +∞)], where

A := –d2/dt2 + L(t) and σ denotes the spectrum,
then the negative space E– of the quadratic form in the energy functional given by (2.5)
is infinite dimensional. For this reason, we say that the problem is strongly indefinite. Up
to now, few papers deal with this situation; see [2, 3, 10, 24]. Besides the conditions (L),
(AR) and the restrictive assumption of W (t, x) ≥ c|x|μ and |∇W (t, x)| ≤ c|x|μ–1 for all (t, x),
Arioli and Szulkin [2] prove the existence of one nontrivial homoclinic orbit by construct-
ing subharmonics and passing to the limit. Recently, Chen [3] proves the existence of one
nontrivial ground state homoclinic orbit under hypotheses (L), (W2), (S1) and

(S3) W̃ (t, x) > 0 if x ∈R
N\{0}, and there exist c, r > 0 and k < 1 such that

|∇W (t, x)|k
|u|k ≤ cW̃ (t, x), |x| ≥ r.

Inspired by the works mentioned above and the recent paper [21], we are interested in
the case where 0 lies in a gap of σ (A) and W (t, x) is locally superquadratic, i.e., it is allowed
to be superquadratic at some t ∈R and asymptotically quadratic at other t ∈R. The main
ingredient is the observation that even in the strongly indefinite case, all Cerami sequences
of the energy functional are bounded. Therefore, the existence of one homoclinic solution
is proved by using the generalized linking theorem of Li and Szulkin (see [11]). Precisely,
we further weaken (S1) to the following hypotheses:

(W3) There exists an open interval J ⊂R such that lim|x|→∞ W (t,x)
|x|2 = +∞ a.e. t ∈ J .
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(W4) W̃ (t, x) ≥ 0 for all (t, x), and there exist C1 > 0, δ ∈ (0,Λ0) (Λ0 := min{Λ1,Λ2}),
σ ∈ (0, 1) and k ∈ (1, 2/(1 – σ )] such that

|∇W (t, x)|
|x| ≥ Λ0 – δ implies

( |∇W (t, x)|
|x|σ

)k

≤ C1W̃ (t, x).

Our main result reads as follows.

Theorem 1.1 Assume that (L) and (W1)–(W4) are satisfied. Then system (1.1) has at least
one nontrivial homoclinic solution.

Remark 1.1 (i) Comparing with the results of [2, 3, 10, 24], one advantage of Theorem 1.1
is that the globally superquadratic condition (cf. (AR) or (S1)) is replaced by the local one
(W3). Thus our result applies to more general situations. Typical examples, which match
our assumptions (W1)–(W4), but satisfying none of (AR), (S1), (S2) and (S3), are the fol-
lowing:

W (t, x) =
(

sin
2π t
T

+
∣
∣
∣
∣
sin

2π t
T

∣
∣
∣
∣

)
(

2
(|x|2 – 1

)

ln
(

1 + |x|) + |x|(2 – |x|)) (1.2)

and

W (t, x) = |x|2+α(t)
[

1 –
1

ln(e + |x|2)

]

, (1.3)

where α ∈ C(R,R), F ⊂ R is a closed set such that α(t) = 0 for t ∈ F and α(t) ∈ (0, 2) for
t ∈R\F . One can easily check this fact for (1.2) by noting that

∇W (t, x) =
(

sin
2π t
T

+
∣
∣
∣
∣
sin

2π t
T

∣
∣
∣
∣

)

4x ln
(

1 + |x|),

W̃ (t, x) =
(

sin
2π t
T

+
∣
∣
∣
∣
sin

2π t
T

∣
∣
∣
∣

)
(|x|2 + 2 ln

(

1 + |x|) – 2|x|),

and for (1.3) by noting that

∇W (t, x) =
(

2 + α(t)
)|x|α(t)x

[

1 –
1

ln(e + |x|2)

]

+
2|x|2+α(t)x

(e + |x|2)[ln(e + |x|2)]2 ,

W̃ (t, x) =
α(t)

2
|x|α(t)+2

[

1 –
1

ln(e + |x|2)

]

+
|x|4+α(t)

(e + |x|2)[ln(e + |x|2)]2 .

In addition, we point out that the function of (1.3) is asymptotically quadratic for t ∈ F
and superquadratic for t ∈R\F .

(ii) Another advantage of this paper is that our argument is simpler. In [3], Chen dis-
cusses a family of perturbed functions

ϕλ(u) =
1
2
∥
∥u+∥

∥
2 – λ

(
1
2
∥
∥u–∥

∥
2 +

∫

R

W (t, x) dt
)

, λ ∈ [1, 2]

and apply a variant generalized weak linking theorem for strongly indefinite functionals
developed by Schechter and Zou (see [16]). This approach is not very satisfactory, since
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working with a family of perturbed functionals makes things unnecessary complicated.
In the present paper we will prove Theorem 1.1 by directly applying the usual variational
method to the energy functional ϕ. The key point in our proof is that, although ϕ may has
unbounded (PS) sequences, we can prove that all Cerami sequences of ϕ are bounded (see
Lemma 2.4 below), and hence Theorem 1.1 follows directly from the generalized linking
theorem (see [11]).

(iii) Homoclinics for locally superquadratic Hamiltonian systems has been studied in
Wang [22] for periodic case. However, this paper only deals with the definite case, which
is much simpler than the strongly indefinite case considered in the present paper.

Notation: “→’ and “⇀”, respectively, denote the strong convergence and the weak con-
vergence. C and Ci (i = 1, 2, . . .) denote various positive constants which may vary from
place to place.

2 Proof of Theorem 1.1
Let A := –d2/dt2 +L(t). Then A is self-adjoint in L2(R,RN ) with domain D(A) = H2(R,RN ).
Let {E(λ) : –∞ ≤ λ ≤ +∞}, |A| and |A|1/2, respectively, be the spectral family, the absolute
value of A and the square root of |A|. Take U := id – E(0) – E(0–). Then U commutes with
A, |A| and |A|1/2, and A = U|A| is the polar decomposition of A (see [9, Theorem IV 3.3]).
Set

E = D
(|A|1/2), E– = E(0–)E and E+ =

[

id – E(0)
]

E.

For every u ∈ E, we see that

u– := E(0–)u ∈ E–, u+ :=
[

id – E(0)
]

u ∈ E+, u = u– + u+ (2.1)

and

Au– = –|A|u–, Au+ = |A|u+. (2.2)

Define on E the inner product and the norm

(u, v) =
(|A|1/2u, |A|1/2v

)

L2 , ‖u‖ =
∥
∥|A|1/2u

∥
∥

2, (2.3)

where (·, ·)L2 and ‖ · ‖s denote the inner product of L2(R,RN ) and the norm of Ls(R,RN )
(2 ≤ s ≤ +∞), respectively. Then E is a Hilbert space. By (L), E = H1(R,RN ) with equivalent
norms and E is continuously embedded in Ls(R,RN ) for 2 ≤ s ≤ +∞. It is easy to check
that E has the following decomposition E = E– ⊕E+ orthogonal with respect to both (·, ·)L2

and (·, ·). Furthermore, it follows from the definitions of Λ1, Λ2 and Λ0 that

Λ1
∥
∥u–∥

∥
2
2 ≤ ∥

∥u–∥
∥

2, Λ2
∥
∥u+∥

∥
2
2 ≤ ∥

∥u+∥
∥

2, Λ0‖u‖2
2 ≤ ‖u‖2 (2.4)

for all u ∈ E.
We shall apply the generalized linking theorem of Li and Szulkin to prove Theorem 1.1.

First we introduce some notations. Let E be a real Hilbert space with E = E– ⊕ E+ and
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E–⊥E+. For ϕ ∈ C1(E,RN ), ϕ is said to be weakly sequentially lower semi-continuous if
un ⇀ u implies ϕ(u) ≤ lim infn→∞ ϕ(un), and ϕ′ is said to be weakly sequentially continu-
ous if limn→∞〈ϕ′(un), v〉 = 〈ϕ′(u), v〉 for any v ∈ E.

Theorem 2.1 (see [11, Theorem 2.1]) Let (E,‖ ·‖) be a real Hilbert space with E = E– ⊕E+,
and let ϕ ∈ C1(E,R) of the form

ϕ(u) =
1
2
(∥
∥u+∥

∥
2 –

∥
∥u–∥

∥
2) – ψ(u),

where u = u– + u+ ∈ E– ⊕ E+. Suppose that
(i) ψ ∈ C1(E,R) is bounded from below, weakly sequentially lower semi-continuous and

ψ ′ is weakly sequentially continuous;
(ii) there exist e ∈ E+ with ‖e‖ = 1 and r > ρ > 0 such that α := infϕ(S+

ρ ) > supϕ(∂Q),
where S+

ρ = {u ∈ E+ : ‖u‖ = ρ} and Q = {v + se : v ∈ E–, s ≥ 0,‖v + se‖ ≤ r}.
Then, for some c > α, there is a sequence (un) ⊂ E such that

ϕ(un) → c,
∥
∥ϕ′(un)

∥
∥
(

1 + ‖un‖
) → 0.

Such a sequence is called a Cerami sequence on level c, or a (C)c sequence.

Now we define the functional ϕ : E →R by

ϕ(u) =
1
2

∫

R

[|u̇|2 +
(

L(t)u, u
)]

dt –
∫

R

W (t, u) dt. (2.5)

In view of (L) and (W1)–(W2), ϕ ∈ C1(E,R) and

〈

ϕ′(u), v
〉

=
∫

R

[

(u̇, v̇) +
(

L(t)u, v
)]

dt –
∫

R

(∇W (t, u), v
)

dt, u, v ∈ E.

Combining (2.1)–(2.3), we have

ϕ(u) =
1
2
(∥
∥u+∥

∥
2 –

∥
∥u–∥

∥
2) –

∫

R

W (t, u) dt (2.6)

and

〈

ϕ′(u), v
〉

=
(

u+, v
)

–
(

u–, v
)

–
∫

R

(∇W (t, u), v
)

dt, ∀u, v ∈ E.

A standard argument shows that the critical points of ϕ are homoclinic solutions of (1.1)
(see [5, 15]).

Let

ψ(u) =
∫

R

W (t, u) dt.

Obviously, ψ ≥ 0 and it follows from Fatou’s lemma that ψ is weakly sequentially lower
semi-continuous. By (W1) and (W2), for any ε > 0, there exists Cε > 0 such that

∣
∣∇W (t, x)

∣
∣ ≤ ε|x| + Cε|x|p–1,

∣
∣W (t, x)

∣
∣ ≤ ε|x|2 + Cε|x|p (2.7)
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for all (t, x) ∈R×R
N . Since un ⇀ u yields un → u in Ls

loc(R,RN ) for all s ∈ [1,∞], it is easy
to check that ψ ′ is weakly sequentially continuous. Thus (i) of Theorem 2.1 is satisfied.

Next we study the linking structure of ϕ. Without loss of generality, we may suppose
that J ⊂R is bounded. Choose e ∈ C∞

0 (J ,RN ) such that

∥
∥e+∥

∥
2 –

∥
∥e–∥

∥
2 =

∫

R

[|ė|2 +
(

L(t)e, e
)]

dt =
∫

J

[|ė|2 +
(

L(t)e, e
)]

dt ≥ 1. (2.8)

Lemma 2.1 Let (L) and (W1)–(W2) be satisfied. Then there is ρ > 0 such that α :=
infϕ(S+

ρ ) > 0, where S+
ρ = {u ∈ E+ : ‖u‖ = ρ}.

Proof Since, by (2.7) and the Sobolev embedding inequality,

ψ(u) ≤ ε‖u‖2
2 + Cε‖u‖p

p = o
(‖u‖2) as n → ∞,

the conclusion follows from the form of ϕ (see (2.6)). �

Lemma 2.2 Let (L) and (W2)–(W3) be satisfied. Then supϕ(E– ⊕R
+e+) < +∞ and there

exists Re > 0 such that

ϕ(u) ≤ 0, u ∈ E– ⊕R
+e+,‖u‖ ≥ Re.

Proof It is sufficient to show that ϕ(u) → –∞ as ‖u‖ → ∞, u ∈ E– ⊕R
+e+. Arguing indi-

rectly, assume that, for some sequence {vn + θne+} ⊂ E– ⊕R
+e+ with ‖vn + θne+‖ → ∞ as

n → ∞, there is C2 > 0 such that

ϕ
(

vn + θne+) ≥ –C2, ∀n ∈N. (2.9)

Let wn = (vn + θne+)/‖vn + θne+‖ = w–
n + sne+. Then ‖wn‖ = 1, and going if necessary to a

subsequence, we may assume that

sn → s0, w–
n ⇀ w– in E, w–

n(t) → w–(t) a.e. t ∈ R,

w–
n → w– in L2(J ,RN)

and ˙̂w–
n ⇀ ˙̂w– in L2(

R,RN)

.
(2.10)

By (2.9), we have

–
C2

‖vn + θne+‖2 ≤ ϕ(vn + θne+)
‖vn + θne+‖2 =

s2
n
2

∥
∥e+∥

∥
2 –

1
2
∥
∥w–

n
∥
∥

2 –
∫

R

W (t, vn + θne+)
‖vn + θne+‖2 dt. (2.11)

Since W ≥ 0, it follows that

1
2
∥
∥w–

n
∥
∥

2 ≤ s2
n
2

∥
∥e+∥

∥
2 + o(1),

and then

1
2

=
1
2
(∥
∥w–

n
∥
∥

2 + s2
n
∥
∥e+∥

∥
2) ≤ s2

n
∥
∥e+∥

∥
2 + o(1) = s2

0
∥
∥e+∥

∥
2 + o(1),
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which implies that s0 
= 0. We claim that

(

w– + s0e+)|J 
= 0. (2.12)

Otherwise (w– + s0e+)|J = 0. Hence, using the T-periodicity of L(t), (2.10) and Lebesgue
dominated convergence theorem, we obtain

∫

J

(

L(t)
(

w–
n + sne+)

,
(

w–
n + sne+))

dt =
∫

J

(

L(t)
(

w– + s0e+)

,
(

w– + s0e+))

dt + o(1)

= o(1) (2.13)

and
∫

J

∣
∣ ˙̂w–

n + sn
˙̂e+
∣
∣
2 dt =

∫

J

∣
∣ ˙̂w–

n + s0
˙̂e+
∣
∣
2 dt + o(1)

=
∫

J

∣
∣ ˙̂w–

n – ˙̂w–
∣
∣
2 dt + o(1)

=
∫

J

(∣
∣ ˙̂w–

n
∣
∣
2 –

∣
∣ ˙̂w–

∣
∣
2)dt + o(1). (2.14)

Similar to (2.13), we also obtain

∫

J

(

L(t)
(

w–
n – sne–)

,
(

w–
n – sne–))

dt =
∫

J

(

L(t)
(

w– – s0e–)

,
(

w– – s0e–))

dt + o(1). (2.15)

Now, combining (2.13)–(2.15), (2.11), (2.8) and using the fact e|R\J ≡ 0, we deduce that

0 ≤ 2
∫

R

W (t, vn + θne+)
‖vn + θne+‖2 dt

= s2
n
∥
∥e+∥

∥
2 –

∥
∥w–

n
∥
∥

2 +
2C2

‖vn + θne+‖2

=
∫

R

[∣
∣ ˙̂w–

n + sn
˙̂e+
∣
∣
2 +

(

L(t)
(

w–
n + sne+)

,
(

w–
n + sne+))]

dt + o(1)

=
∫

J

[∣
∣ ˙̂w–

n + sn
˙̂e+
∣
∣
2 +

(

L(t)
(

w–
n + sne+)

,
(

w–
n + sne+))]

dt

+
∫

R\J

[∣
∣ ˙̂w–

n + sn
˙̂e+
∣
∣
2 +

(

L(t)
(

w–
n + sne+)

,
(

w–
n + sne+))]

dt + o(1)

=
∫

J

(∣
∣ ˙̂w–

n
∣
∣
2 –

∣
∣ ˙̂w–

∣
∣
2)dt + o(1)

+
∫

R

[∣
∣ ˙̂w–

n – sn ˙̂e–
∣
∣
2 +

(

L(t)
(

w–
n – sne–)

,
(

w–
n – sne–))]

dt

–
∫

J

[∣
∣ ˙̂w–

n – sn ˙̂e–
∣
∣
2 +

(

L(t)
(

w–
n – sne–)

,
(

w–
n – sne–))]

dt

=
∫

J

(∣
∣ ˙̂w–

n
∣
∣
2 –

∣
∣ ˙̂w–

∣
∣
2)dt –

∥
∥w–

n – sne–∥
∥

2

–
∫

J

∣
∣ ˙̂w–

n – sn ˙̂e–
∣
∣
2 dt –

∫

J

(

L(t)
(

w– – s0e–)

,
(

w– – s0e–))

dt + o(1)
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= –
∥
∥w–

n – sne–∥
∥

2 –
∫

J

[∣
∣ ˙̂w– – s0 ˙̂e–

∣
∣
2 +

(

L(t)
(

w– – s0e–)

,
(

w– – s0e–))]

dt + o(1)

= –
∥
∥w–

n – sne–∥
∥

2 – s2
0

∫

J

[|ė|2 +
(

L(t)e, e
)]

dt + o(1)

≤ – s2
0 + o(1),

which is a contradiction. Consequently, it follows from (2.11), (2.12), (W2)–(W3) and Fa-
tou’s lemma that

0 ≤ lim sup
n→∞

[
s2

n
2

∥
∥e+∥

∥
2 –

1
2
∥
∥w–

n
∥
∥

2 –
∫

R

W (t, vn + θne+)
‖vn + θne+‖2 dt

]

≤ s2
0
2

∥
∥e+∥

∥
2 – lim inf

n→∞

∫

R

W (t, vn + θne+)
|vn + θne+|2

∣
∣w–

n + sne+∣
∣
2 dt

≤ s2
0
2

∥
∥e+∥

∥
2 –

∫

J
lim inf

n→∞
W (t, vn + θne+)

|vn + θne+|2
∣
∣w– + s0e+∣

∣
2 dt

= –∞,

a contradiction. �

Corollary 2.1 Let (L) and (W2)–(W3) be satisfied and ρ > 0 be given by Lemma 2.1. Then
there exists r > ρ such that supϕ(∂Q) < 0, where Q = {v + se+ : v ∈ E–, s ≥ 0,‖v + se+‖ ≤ r}.

Combining Lemma 2.1, Corollary 2.1 and Theorem 2.1, we have the following.

Lemma 2.3 Assume that (L) and (W1)–(W3) are satisfied. Then there exist a constant
c > 0 and a sequence (un) ⊂ E such that

ϕ(un) → c,
∥
∥ϕ′(un)

∥
∥
(

1 + ‖un‖
) → 0 as n → ∞. (2.16)

Lemma 2.4 Assume that (L) and (W1)–(W4) are satisfied. Then the sequence (un) ob-
tained in Lemma 2.3 is bounded.

Proof Arguing by contradiction, suppose that ‖un‖ → ∞ as n → ∞ and set wn = un/‖un‖.
Then ‖wn‖ = 1. By (2.16), we have

o(1) =
〈

ϕ′(un), u+
n
〉

=
∥
∥u+

n
∥
∥

2 –
∫

R

(∇W (t, un), u+
n
)

dt,

o(1) =
〈

ϕ′(un), u–
n
〉

= –
∥
∥u–

n
∥
∥

2 –
∫

R

(∇W (t, un), u–
n
)

dt.

Since ‖w+
n‖2 + ‖w–

n‖2 = ‖wn‖2 = 1, one has

1 + o(1) =
∫

R

(∇W (t, un), u+
n – u–

n)
‖un‖2 dt. (2.17)
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Letting Ωn = {t ∈R : |∇W (t, un)| ≤ (Λ0 – δ)|un|}, we obtain using the relation (w+, w–) = 0,
(2.4) and the Hölder inequality

∫

Ωn

|∇W (t, un)||u+
n – u–

n |
‖un‖2 dt ≤

∫

Ωn

|∇W (t, un)|
|un|

∣
∣w+

n – w–
n
∣
∣|wn|dt

≤ (Λ0 – δ)‖wn‖2
2

≤ (Λ0 – δ)
1

Λ0
‖wn‖2

≤ 1 –
δ

Λ0
. (2.18)

Moreover, it follows from (2.16) that

∫

R

W̃ (t, un) dt = ϕ(un) –
1
2
〈

ϕ′(un), un
〉 ≤ C, ∀n ∈N.

Combining this with (W4) and Hölder’s inequality, we deduce that

∣
∣
∣
∣

∫

R\Ωn

(∇W (t, un), u+
n – u–

n)
‖un‖2 dt

∣
∣
∣
∣

≤ 1
‖un‖1–σ

[∫

R\Ωn

( |∇W (t, un)|
|un|σ

)k

dt
] 1

k ∥
∥w+

n – w–
n
∥
∥ k(1+σ )

k–1
‖wn‖σ

k(1+σ )
k–1

≤ C
‖un‖1–σ

(∫

R\Ωn

W̃ (t, un) dt
) 1

k
= o(1). (2.19)

Hence, by (2.17), (2.18) and (2.19),

1 + o(1) =
∫

R

(∇W (t, un), u+
n – u–

n)
‖un‖2 dt ≤ 1 –

δ

Λ0
+ o(1),

a contradiction. �

Proof of Theorem 1.1 According to Lemmas 2.3 and 2.4, there is a bounded (C)c sequence
(un) with c > 0. Since (un) is bounded, there exists M > 0 such that

√

Λ0‖un‖2 ≤ ‖un‖ ≤ M, ∀n ∈N. (2.20)

By (2.7), for ε = cΛ0
2M2 , there is C3 > 0 such that

∣
∣W̃ (t, x)

∣
∣ ≤ cΛ0

2M2 |x|2 + C3|x|p, ∀(t, x) ∈R×R
N . (2.21)

If (un) is vanishing, that is, for each r > 0, limn→∞ supa∈R
∫ a+r

a–r |un|2 dt = 0, then, by [25,
Lemma 2.3], un → 0 in Ls(R,RN ) for 2 ≤ s ≤ +∞. Hence, using (2.20) and (2.21), we de-
duce that

c + o(1) = ϕ(un) –
1
2
〈

ϕ′(un), un
〉
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=
∫

R

W̃ (t, un) dt

≤ cΛ0

2M2

∫

R

|un|2 dt + C3

∫

R

|un|p dt

≤ c
2

+ o(1),

a contradiction.
Hence (un) is nonvanishing, i.e., there are r, σ > 0 and (an) ⊂ Z such that

lim inf
n→∞

∫ an+r

an–r
|un|2 dt ≥ σ

2
.

Setting ũn(t) = un(t + anT), we have

lim inf
n→∞

∫ r

–r
|ũn|2 dt ≥ σ

2
. (2.22)

Noticing L and W are T-periodic in t, we get ‖ũn‖ = ‖un‖, ϕ(ũn) → c and ‖ϕ′(ũn)‖(1 +
‖ũn‖) → 0 as n → ∞. Passing to a subsequence, we assume that ũn ⇀ ũ, ϕ′(ũ) = 0 and
ũ 
= 0 by (2.22). This completes the proof. �
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