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Abstract
In this paper we study the self-improving property of the obstacle problem related to
the singular porous medium equation by using the method developed by Gianazza
and Schwarzacher (J. Funct. Anal. 277(12):1–57, 2019). We establish a local higher
integrability result for the spatial gradient of themth power of nonnegative weak
solutions, under some suitable regularity assumptions on the obstacle function. In
comparison to the work by Cho and Scheven (J. Math. Anal. Appl. 491(2):1–44, 2020),
our approach provides some new aspects in the estimations of the nonnegative weak
solution of the obstacle problem.

MSC: 35K65; 35K67; 35K92; 35B45

Keywords: Obstacle problem; Porous medium equation; Quasilinear parabolic
equation; Self-improving property

1 Introduction
Kinnunen and Lewis [12, 13] proved the higher integrability of weak solutions to parabolic
systems of p-Laplacian type by using an intrinsic scaling method. The method of intrinsic
scaling is also applied to the study of regularity problems of porous medium type equations
of the form

∂tu – �um = 0, m > 0,

where u = u(x, t) and (x, t) ∈ R
n+1. There are two different approaches to the study of

higher integrability of weak solutions to porous medium equations, one is the approach
developed by Gianazza and Schwarzacher [9, 10], the other is the approach developed by
Bögelein et al. [1, 2]. In fact, the second method can also be used to study the vector-valued
weak solutions of porous medium system.

It is of interest to compare these two approaches and we restrict ourselves to the singu-
lar case (n–2)+

n+2 < m < 1 in the discussion. In [7] the authors introduced a certain intrinsic
cylinders of the form

Qr,θr2 (z0) = Br(x0) × (
t0 – θr2, t0 + θr2), θ ≈ u1–m, (1.1)
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and used this kind of cylinders to study the boundedness, the Hölder continuity and the
Harnack inequality of nonnegative weak solutions to porous medium equations. The in-
trinsic scaling method in [10] is very close to this kind of idea and the intrinsic cylinder
takes the form

Qr,θr2 (z0) = Br(x0) × (
t0 – θr2, t0 + θr2), θ ≈

(
––
∫∫

Qr,θr2 (z0)
um+1 dx dt

) 1–m
1+m

. (1.2)

In fact, if we use a dimensional analysis, then the relation in (1.2) actually implies [θ ] =
[u]1–m, which is similar to (1.1). This enables us to use some ideas from [7] in this ap-
proach. Motivated by the proof of [7, Proposition B.4.1], Gianazza and Schwarzacher ob-
tained a mean value result for nonnegative weak solutions [10, Proposition 5.2], which is
a key ingredient in the proof of the reverse Hölder inequality in the degenerate regime.
Therefore, the approach in [10] relies heavily on the regularity of the solution and this is
the weak point in the study of the higher integrability. In fact, the intrinsic cylinder (1.2)
shows no information for the spatial gradient. Heuristically, the intrinsic cylinder should
be modified so that the factor θ should be related to the spatial gradient of um. To this end,
we apply the dimensional analysis again. We first note that the dimensional relation

[
Dum]

=
[um]
[r]

holds. From (1.2), we obtain the dimensional relation for the time direction as follows:

[u]1–m[r]2 =
[um] 1–m

m

[r] 1–m
m

[r]
m+1

m =
[
Dum] 1–m

m [r]
m+1

m .

Heuristically, the modified intrinsic cylinder should be taken in the following form:

Q
r,θ1–mr

m+1
m

(z0) = Br(x0) × (
t0 – θ1–mr

m+1
m , t0 + θ1–mr

m+1
m

)
, [θ ] =

[um] 1
m

[r] 1
m

=
[
Dum] 1

m .

However, the disadvantage of using this kind of cylinders lies in the fact that we cannot
treat Q

r,θ1–mr
m+1

m
(z0) locally. In fact, if [Dum] → +∞, then |�

θ1–mr
m+1

m
(t0)| = 2θ1–mr m+1

m →
+∞ for any fixed r > 0. To this end, we set �

m+1
m = θ1–mr m+1

m and consider the cylinders of
the form

Q
θ

m(m–1)
m+1 �,�

m+1
m

(z0) = B
θ

m(m–1)
m+1 �

(x0) × (
t0 – �

m+1
m , t0 + �

m+1
m

)
,

[θ ]2m =
[u]m+1

[�] m+1
m

, [θ ] =
[
Dum] 1

m .
(1.3)

This kind of cylinders should be the correct form for the study of higher integrability of
singular porous medium equations. This idea was also used in [14] to study the higher
integrability of singular parabolic systems with non-standard growth. In [2] the authors
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considered the intrinsic cylinders of the form

Q(θ )
� (z0) = B

θ
m(m–1)

m+1 �
(x0) × (

t0 – �
m+1

m , t0 + �
m+1

m
)
,

θ2m ≈ ––
∫∫

Q(θ )
� (z0)

|u|m+1

�
m+1

m
dx dt, θ2m ≈ ––

∫∫

Q(θ )
� (z0)

∣
∣Dum∣

∣2 dx dt,
(1.4)

which are compatible with (1.3). On the other hand, a key ingredient in the approach [1, 2]
is an application of the properties of the boundary term

b
[
um, am]

=
m

m + 1
(|a|m+1 – |u|m+1) – u

(
am – um)

, (1.5)

which was first introduced by Bögelein et al. [3]. In summary, there are some differences
between these two approaches and the second approach has more advantages.

Recently, Cho and Scheven [5, 6] proved the higher integrability of weak solutions to
obstacle problems related to the porous medium equation and their proofs followed the
approach in [1, 2]. In [6] the authors used the boundary term (1.5) to establish an energy
estimate and a gluing lemma for weak solutions of the obstacle problem. Moreover, the
intrinsic cylinders in [6] takes the form (1.4). Admittedly, the approach in [2] is effective
in treating the higher integrability of obstacle problem for the singular porous medium
equation, but it is natural to try to use the old idea in [10] to study the same problem.
To this end, the present work is intended as an attempt to follow the approach in [10] to
establish a self-improving result for the obstacle problem. In this paper, we shall use the
intrinsic cylinder of the type (1.2) and we will not make any use of boundary term (1.5)
which is a basic tool in [1, 2, 5, 6]. The result of this paper was first announced in [15].

The present paper is built up as follows. In Sect. 2, we set up notations and state the
main result. Section 3 presents some preliminaries and we explain the construction of the
sub-intrinsic cylinders. In Sect. 4, we establish the energy estimates, while in Sect. 5 we
prove a gluing lemma which describes the difference of two spatial averages. In Sect. 6, we
establish the intrinsic reverse Hölder inequalities for the gradient on intrinsic cylinders.
Finally the proof of the main result is presented in Sect. 7. Throughout this paper, we also
compare our arguments with [2, 6, 10].

2 Statement of the main result
In the present section, we introduce the notations and give the statement of the main
result. Throughout the paper, we assume that � is a bounded domain in R

n with n ≥ 2. For
T > 0, let �T denote the space-time cylinder � × (0, T). Given a point z0 = (x0, t0) ∈ R

n+1

and two parameters r, s > 0, we set Br(x0) = {x ∈ R
n : |x – x0| < r}, �s(t0) = (t0 – s, t0 + s) and

Qr,s(z0) = Br(x0) × �s(t0). If the reference point z0 is the origin, then we simply write Br ,
�s and Qr,s for Br(0), �s(0) and Qr,s(0). In this work we study obstacle problems related to
the quasilinear parabolic equations of the form

∂tu – div A
(
x, t, u, Dum)

= 0. (2.1)

Here, the vector field A is only assumed to be measurable and satisfies
⎧
⎨

⎩
A(x, t, u, ζ ) · ζ ≥ ν0|ζ |2,

|A(x, t, u, ζ )| ≤ ν1|ζ |,
(2.2)
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where ν0 and ν1 are fixed positive constants. Throughout the work, we only consider the
singular case m ∈ ( (n–2)+

n+2 , 1). The obstacle problem for the porous medium type equation
(2.1)–(2.2) can be formulated as follows. Given an obstacle function ψ : �T → R+ with
Dψm ∈ L2(�T ) and ∂tψ

m ∈ L m+1
m (�T ), we define the function classes

Kψ =
{

v ∈ C0([0, T]; Lm+1(�)
)

: vm ∈ L2(0, T ; H1(�)
)
, v ≥ ψ a.e. in �T

}

and K ′
ψ = {v ∈ Kψ : ∂tvm ∈ L m+1

m (�T )}. Let α ∈ W 1,∞
0 ([0, T],R+) be a cut-off function in

time and η ∈ W 1,∞
0 (�,R+) be a cut-off function in space. We define

〈〈
∂tu,αη

(
vm – um)〉〉

=
∫∫

�T

η

[
α′

(
1

m + 1
um+1 – uvm

)
– αu∂tvm

]
dx dt.

The definition of weak solutions to the obstacle problems related to the porous medium
equation was first introduced by Bögelein et al. [3]. Cho and Scheven [4] later extended
the definition to the general quasilinear structure. In this paper, we adopt the definition
from [4].

Definition 2.1 ([4]) A nonnegative function u ∈ Kψ is a local weak solution to the ob-
stacle problem related to the porous medium type equation (2.1)–(2.2) if and only if the
variational inequality

〈〈
∂tu,αη

(
vm – um)〉〉

+
∫∫

�T

αA
(
x, t, u, Dum) · D

(
η
(
vm – um))

dx dt ≥ 0 (2.3)

holds true for any v ∈ K ′
ψ , any cut-off function in time α ∈ W 1,∞

0 ([0, T],R+) and any cut-off
function in space η ∈ W 1,∞

0 (�,R+).

In this work, we shall make two regularity assumptions on the obstacle function un-
der consideration. More precisely, we assume that the obstacle function ψ satisfies the
following regularity properties:

(1) The function ψm is locally Lipschitz continuous in �T .
(2) The time derivative ∂tψ

1–m is locally bounded in �T .
The first assumption will be needed for the proof of Lemma 6.2 in Sect. 6, and the second
assumption will be used to simplify estimating the weighted spatial averages from Sect. 5.
We emphasize that the second assumption can be removed, but the proof is too long to
give here. We refer the interested reader to Remark 5.4, which explains the idea of the
proof.

According to [4], the assumption (1) implies that the weak solution u is locally bounded
and Hölder continuous in �T . There is no loss of generality in assuming

0 ≤ u(x, t) ≤ 1 (2.4)

for all (x, t) ∈ �T . For simplicity of notation, we write  = ψm+1 + |∂tψ
m| m+1

m + |Dψm|2. We
are now in a position to state our main theorem.
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Theorem 2.2 Let z0 ∈ �T be a fixed point, and let R < 1 be a fixed positive number such
that Q8R,64R2 (z0) ⊂ �T . Assume that there exists a constant M0 > 0 such that

sup
Q8R,64R2 (z0)

(


1
m+1 +

∣∣∂tψ
1–m∣∣

1
1–m

) ≤ M0. (2.5)

Let u be a nonnegative weak solution to the obstacle problem in the sense of Definition 2.1
that satisfies (2.4). Then there exists a constant ε = ε(n, m,ν0,ν1) > 0 such that

––
∫∫

QR,R2 (z0)

∣∣Dum∣∣2(1+ε) dx dt ≤ γ

(
––
∫∫

Q4R,16R2 (z0)

∣∣Dum∣∣2 dx dt
)1+ε

+ γ
(
M2

0 + R–2 + 1
)1+ε , (2.6)

where the constant γ depends only upon n, m, ν0 and ν1.

Remark 2.3 Contrary to [6], our assumption (2.5) is much stronger than [6, (2.9)]. How-
ever, the Lipschitz continuity of ψm will be used to establish a mean value result for the
nonnegative weak solutions and this condition seems to be optimal for the study of the
obstacle problem if we follow the approach in [10].

Remark 2.4 Contrary to [10, Theorem 7.4], which established a Calderón–Zygmund type
estimate for the porous medium equation, we only derive the reverse Hölder inequality
for the obstacle problem. Finally, for the proof of Theorem 2.2, we will write z0 = (0, 0) for
simplicity of presentation.

3 Preliminary material
In this section, we provide some preliminary lemmas. All the materials in this section are
stated without proof. We first note that the weak solution to the obstacle problem may
not be differentiable in the time variable. In order to handle the problem with the time
derivative, we will use the following time mollification. For a fixed h > 0, we set

[[v]]h(x, t) =
1
h

∫ t

0
e

s–t
h v(x, s) ds,

where v ∈ L1(�T ). Next, we recall the inequalities which were obtained from [10, Propo-
sition 2.1].

Lemma 3.1 ([10, Proposition 2.1]) Suppose that u, c ≥ 0 and 0 < m < 1, we have

1
2

(u – c)
(
um – cm) ≤

∫ u

c

(
ym – cm)

dy ≤ (u – c)
(
um – cm)

if u ≥ c, (3.1)

m
2

(c – u)
(
cm – um) ≤

∫ c

u

(
cm – ym)

dy ≤ (c – u)
(
cm – um)

if u < c. (3.2)

As mentioned earlier, we will not make use of the boundary term (1.5). Instead, we will
use Lemma 3.1 to establish the energy estimates and a gluing lemma for the nonnegative
weak solutions to the obstacle problem. Furthermore, we recall the definitions of intrinsic
and sub-intrinsic cylinders which were introduced from [10, Sect. 3].
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Definition 3.2 ([10]) Let z0 ∈ �T be a fixed point, and let r, θ > 0 such that Qr,θr2 (z0) ⊂ �T .
We say that Qr,θr2 (z0) is a sub-intrinsic cylinder if and only if the following inequality holds:

––
∫∫

Qr,θr2 (z0)
um+1 dx dt ≤ K1θ

m+1
1–m ,

where the constant K1 ≥ 1. Moreover, we say that Qr,θr2 (z0) is an intrinsic cylinder if and
only if

K–1
2 θ

m+1
1–m ≤ ––

∫∫

Qr,θr2 (z0)
um+1 dx dt ≤ K2θ

m+1
1–m

holds for some constant K2 ≥ 1.

At this point, we follow the idea in [10] to construct the sub-intrinsic cylinders which
will be used in the covering argument in Sect. 7. Let z0 = (x0, t0) ∈ �T be a point such that
QR,R2 (z0) ⊂ �T . For any s ∈ (0, R2], we denote by r̃(s) the quantity

r̃(s) = sup

{
r < R :

(∫ t0+s

t0–s

∫

Br(x0)
um+1 dx dt

)1–m

r2(m+1)|Br|m–1 ≤ s2
}

. (3.3)

Let b0 = (n + 2)(m + 1) – 2n and let b̂ ∈ (0, min{b0, 1
2 }). According to the proof of [10,

Lemma 3.1], the function r̃(s) is continuous and this enables us to introduce the radius

r(s) = r(s, z0) = min
s≤t≤R2

(
s
t

)b̂

r̃(t) (3.4)

for any s ∈ (0, R2]. Subsequently, we write Qs(z0) = Qr(s),s(z0) and denote by θs(z0) the quan-
tity

θs(z0) =
s

r(s)2 . (3.5)

If z0 = (0, 0), then we abbreviate Qs := Qs((0, 0)) and θs := θs((0, 0)). We now summarize the
results obtained from [10] for this kind of cylinder as follows.

Lemma 3.3 ([10]) Fix a point z0 ∈ �T and assume that QR,R2 (z0) ⊂ �T . Let s ∈ (0, R2] and
r(s) be the radius constructed via (3.3)–(3.4). Then the cylinder Qs(z0) is sub-intrinsic and
satisfies the following property:

(1) ––
∫∫

Qs(z0) um+1 dx dt ≤ θs(z0) m+1
1–m .

For s,σ ∈ (0, R2] and s < σ , we have the properties for the concentric cylinders Qs(z0) and
Qσ (z0) as follows:

(2) r(s) ≤ ( s
σ

)b̂r(σ ) and r(s) → 0 as s ↓ 0.
(3) If ––

∫∫
Qτ (z0) um+1 dx dt < θτ (z0) m+1

1–m holds for any τ ∈ (s,σ ), then

θτ (z0) ≤
(

τ

σ

)β

θσ (z0),

where β = 1 – 2b̂ > 0.
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(4) If σ = ks for some k ≥ 1, then we have

r(s) ≤ k–b̂r(ks) ≤ kâ–b̂r(s),

θks(z0) ≤ kβθs(z0) ≤ kβ+2âθks(z0),

where â = b̂ + 2
2(m+1)–(1–m)n .

(5) If σ = ks for some k ≥ 1 and Qs(z0) is intrinsic, then also the cylinder Qσ (z0) is
intrinsic.

Let z0 ∈ �T be a point such that Q8R,64R2 (z0) ⊂ �T and assume that, for some K ≥ 1,

––
∫∫

Q8R,64R2 (z0)
um+1 dx dt ≤ K

m+1
1–m .

Then, for any z ∈ Q4R,16R2 (z0), we have the following global estimate:
(6) 1 ≤ θR2 (z) ≤ cK2(m+1)ā, where ā = 1

2(m+1)+n(m–1) and c = c(n, m).
Furthermore, if y, z ∈ Q4R,16R2 (z0) and Qr(s,z),s(z)∩Qr(s,y),s(y) �= ∅, then there exists a constant
ĉ = ĉ(n, m, K) > 1 such that for any 0 < s ≤ R2

2ĉ we have
(7) Qr(s,z),s(z) ⊂ Qr(ĉs,y),ĉs(y) and Qr(s,y),s(y) ⊂ Qr(ĉs,z),ĉs(z).

In the applications, we can use the assumption (2.4) to deduce that

––
∫∫

Q8R,64R2

um+1 dx dt ≤ 1.

This enables us to take K = 1 when we apply Lemma 3.3(6) and (7). As indicated in [10],
the properties (4) and (7) imply the following Vitali-type covering property which will be
used only in Sect. 7.

Lemma 3.4 ([10]) Let V ⊂ Q4R,16R2 (z0) and let Qr(s,z),s(z) be the sub-intrinsic cylinder as
in Lemma 3.3. Let F = {Qr(s,z),s(z) : z ∈ V } be a covering of V . Then there exist a countable
family G = {Qr(si ,zi),si (zi)}∞i=1 of disjoint cylinders in F and a constant χ = χ (n, m) > 1 such
that

V ⊂
∞⋃

i=1

Qr(χsi ,zi),χsi (zi).

Remark 3.5 In the construction of the sub-intrinsic cylinder Qs(z0), we first determine
the radius r in terms of a fixed s > 0 and this determines the value of θs(z0) by (3.5). As
mentioned in the introduction, this kind of sub-intrinsic cylinders shows no information
for the spatial gradient. In contrast to [2, Sect. 7.1], the inequality in (3.3) is coincident
with

1
|Q�|

∫∫

Q(θ )
� (z0)

|u|m+1

�
m+1

m
dx dt ≤ θ

2m
d

which is the inequality in the definition of θ̃� in [2, Sect. 7.1]. In [2, Sect. 7.1] the authors
first determine the value of θz0;� in terms of a fixed � > 0 and a quantity λ0. This determines
a new type of sub-intrinsic cylinder Q(θz0;�)

� (z0) and this construction also establishes a
relationship between the factor θ� and the spatial gradient.
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4 Caccioppoli type inequalities
The aim of this section is to establish energy estimates for the weak solution of the obstacle
problem. Here, we state and prove the energy estimates on the condition that the function
 is locally integrable in �T . Our main result in this section states as follows.

Lemma 4.1 Let 0 < m < 1 and let u be a nonnegative weak solution to the obstacle prob-
lem in the sense of Definition 2.1. Let z0 = (x0, t0) ∈ �T be a point such that Qr1,s1 (z0) ⊂
Qr2,s2 (z0) ⊂ �T . Assume that φ ∈ C∞

0 (Br2 (x0)) and 0 ≤ φ ≤ 1. Then there exists a constant
γ = γ (m,ν0,ν1) > 0 such that for any c ≥ 0 we have

ess sup
t∈�s1 (t0)

∫

Br2 (x0)
φ2(u – c)+

(
um – cm)

+ dx

+
∫

�s1 (t0)

∫

Br2 (x0)

∣∣D
[(

um – cm)
+φ

]∣∣2 dx dt

≤ γ

s2 – s1

∫∫

Qr2,s2 (z0)
(u – c)+

(
um – cm)

+ dx dt

+ γ

∫∫

Qr2,s2 (z0)

(
um – cm)2

+|Dφ|2 dx dt

+ γ

∫∫

Qr2,s2 (z0)

(
ψm+1 +

∣
∣∂tψ

m∣
∣

m+1
m +

∣
∣Dψm∣

∣2)
χ{u>c} dx dt. (4.1)

Moreover, for any c ≥ 0 we have

ess sup
t∈�s1 (t0)

∫

Br1 (x0)
|u – c|∣∣um – cm∣

∣dx +
∫∫

Qr1,s1 (z0)

∣
∣Dum∣

∣2 dx dt

≤ γ

s2 – s1

∫∫

Qr2,s2 (z0)
|u – c|∣∣um – cm∣∣dx dt

+
γ

(r2 – r1)2

∫∫

Qr2,s2 (z0)

∣∣um – cm∣∣2 dx dt

+ γ

∫∫

Qr2,s2 (z0)

(
ψm+1 +

∣
∣∂tψ

m∣
∣

m+1
m +

∣
∣Dψm∣

∣2)dx dt, (4.2)

where the constant γ depends only upon ν0, ν1 and m.

Proof We begin with the proof of (4.1), which is the most difficult part of the proof. In the
variational inequality (2.3) we choose

vm =
[[

um]]
h –

([[
um]]

h – ψm
c

)
+ +

∥∥ψm –
[[
ψm]]

h

∥∥
L∞(�T ) (4.3)

as a comparison map, where the function ψc is defined by ψm
c = max{cm,ψm}. It is easy to

check that v ∈ K ′
ψ . We first remark that, since u ≥ ψ , the two superlevel sets {u ≥ c} and

{u ≥ ψc} are equal. More precisely, the relation

{
x ∈ Br2 (x0) : u(x, t) ≥ c

}
=

{
x ∈ Br2 (x0) : u(x, t) ≥ ψc

}
(4.4)
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holds true for any t ∈ �s2 (t0). Let η = φ2 and α ∈ W 1,∞
0 ([0, T],R+) be a fixed cut-off func-

tion which will be determined later.
We now proceed to establish an energy estimate from the variational inequality (2.3).

For the first term on the left-hand side of (2.3) we compute

〈〈
∂tu,αη

(
vm – um)〉〉

=
∫∫

�T

ηα′
(

1
m + 1

um+1

– u
[[

um]]
h + u

([[
um]]

h – ψm
c

)
+ – u

∥
∥ψm –

[[
ψm]]

h

∥
∥

L∞(�T )

)
dx dt

–
∫∫

�T

ηαu∂tvm dx dt. (4.5)

In view of (4.3), we deduce ∂tvm = ∂t[[um]]hχ{[[um]]h≤ψm
c } + ∂tψ

m
c χ{[[um]]h>ψm

c } and the second
term on the right-hand side of (4.5) is estimated above by

–
∫∫

�T

ηαu∂tvm dx dt

= –
∫∫

�T ∩{[[um]]h≤ψm
c }

ηαu∂t
[[

um]]
h dx dt –

∫∫

�T ∩{[[um]]h>ψm
c }

ηαu∂tψ
m
c dx dt

= –
∫∫

�T ∩{[[um]]h≤ψm
c }

ηα
(
u –

[[
um]] 1

m
h

)1
h
(
um –

[[
um]]

h

)
dx dt

–
∫∫

�T ∩{[[um]]h≤ψm
c }

ηα
[[

um]] 1
m
h ∂t

[[
um]]

h dx dt

–
∫∫

�T ∩{[[um]]h>ψm
c }

ηαu∂tψ
m
c dx dt

≤ –
∫∫

�T ∩{[[um]]h≤ψm
c }

ηα
[[

um]] 1
m
h ∂t

[[
um]]

h dx dt –
∫∫

�T ∩{[[um]]h>ψm
c }

ηαu∂tψ
m
c dx dt,

where we have used the identity ∂t[[um]]h = h–1(um – [[um]]h). Noting that

∫∫

�T

ηα
[[

um]] 1
m
h

[
∂t

[[
um]]

h – ∂t
([[

um]]
h – ψm

c
)

+

]
dx dt

=
∫∫

�T ∩{[[um]]h≤ψm
c }

ηα
[[

um]] 1
m
h ∂t

[[
um]]

h dx dt

+
∫∫

�T ∩{[[um]]h>ψm
c }

ηα
[[

um]] 1
m
h ∂tψ

m
c dx dt,

we have

–
∫∫

�T

ηαu∂tvm dx dt

≤ –
∫∫

�T

ηα
[[

um]] 1
m
h

[
∂t

[[
um]]

h – ∂t
([[

um]]
h – ψm

c
)

+

]
dx dt

+
∫∫

�T ∩{[[um]]h>ψm
c }

ηα
[[

um]] 1
m
h ∂tψ

m
c dx dt –

∫∫

�T ∩{[[um]]h>ψm
c }

ηαu∂tψ
m
c dx dt.
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Integrating by parts, we obtain

–
∫∫

�T

ηαu∂tvm dx dt

≤
∫∫

�T

ηα′ m
m + 1

[[
um]] m+1

m
h dx dt –

∫∫

�T

ηα′[[um]] 1
m
h

([[
um]]

h – ψm
c

)
+ dx dt

+
∫∫

�T ∩{[[um]]h>ψm
c }

ηα
[[

um]] 1
m
h ∂tψ

m
c dx dt –

∫∫

�T ∩{[[um]]h>ψm
c }

ηαu∂tψ
m
c dx dt

–
∫∫

�T

ηα∂t
([[

um]] 1
m
h

)([[
um]]

h – ψm
c

)
+ dx dt. (4.6)

Combining (4.6) with (4.5), we infer that

〈〈
∂tu,αη

(
vm – um)〉〉

≤
∫∫

�T

ηα′
(

m
m + 1

[[
um]] m+1

m
h +

1
m + 1

um+1 – u
[[

um]]
h

)
dx dt

+
∫∫

�T

ηα′(u –
[[

um]] 1
m
h

)([[
um]]

h – ψm
c

)
+ dx dt

–
∫∫

�T

ηα′∥∥ψm –
[[
ψm]]

h

∥
∥

L∞(�T ) dx dt

+
∫∫

�T ∩{[[um]]h>ψm
c }

ηα
([[

um]] 1
m
h – u

)
∂tψ

m
c dx dt

+
∫∫

�T

(–1)ηα∂t
([[

um]] 1
m
h

)([[
um]]

h – ψm
c

)
+ dx dt

=: I + II – III + IV + V , (4.7)

with the obvious meaning of I , II , III , IV and V . Observe that [[ψm]]h → ψm and [[um]]h →
um uniformly in �T as h ↓ 0, since ψ and u are locally continuous. We apply Lebesgue’s
dominated convergence theorem to obtain I + II + III + IV → 0 as h ↓ 0. It remains to treat
the term V .

Noting that

∂

∂t

[∫ [[um]]
1
m
h

ψc

(
ym – ψm

c
)

+ dy
]

= ∂t
([[

um]] 1
m
h

)([[
um]]

h – ψm
c

)
+ – ∂tψ

m
c

([[
um]] 1

m
h – ψc

)
+,

we use integration by parts to get

V =
∫∫

�T

ηα′
∫ [[um]]

1
m
h

ψc

(
ym – ψm

c
)

+ dy dx dt –
∫∫

�T

ηα∂tψ
m
c

([[
um]] 1

m
h – ψc

)
+ dx dt

= : V1 + V2,

with the obvious meaning of V1 and V2. We first observe that

V2 → –
∫∫

�T

ηα∂tψ
m
c (u – ψc)+ dx dt as h ↓ 0,
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since [[um]]h → um uniformly in �T as h ↓ 0. Our next aim is to obtain lower and upper
bounds for V1. To this end, we need to determine the cut-off function in time α(t). For a
fixed time level t1 ∈ �s1 (t0) ⊂ (0, T), we define

α(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, for t ∈ (0, t0 – s2],

1 – 1
s2–s1

(t0 – s1 – t), for t ∈ (t0 – s2, t0 – s1],

1, for t ∈ (t0 – s1, t1 – ε],

1 – 1
ε
(t – t1 + ε), for t ∈ (t1 – ε, t1],

0, for t ∈ (t1, T),

(4.8)

where 0 < ε � 1. We now turn our attention to the estimate of V1. From (3.1), we find
that

V1 =
∫∫

�T ∩{[[um]]h≥ψm
c }

φ2α′
∫ [[um]]

1
m
h

ψc

(
ym – ψm

c
)

dy dx dt

≤ 1
s2 – s1

∫ t0–s1

t0–s2

∫

Br2 (x0)∩{[[um]]h(·,t)≥ψm
c (·,t)}

([[
um]] 1

m
h – ψc

)([[
um]]

h – ψm
c

)
dx dt

–
1

2ε

∫ t1

t1–ε

∫

Br2 (x0)∩{[[um]]h(·,t)≥ψm
c (·,t)}

φ2([[um]] 1
m
h – ψc

)([[
um]]

h – ψm
c

)
dx dt.

Applying Lebesgue’s dominated convergence theorem, we pass to the limit h ↓ 0 on the
right-hand side and conclude that

lim sup
ε↓0

lim sup
h↓0

V1 ≤ 1
s2 – s1

∫ t0–s1

t0–s2

∫

Br2 (x0)∩{u(·,t)≥ψc(·,t)}
(u – ψc)

(
um – ψm

c
)

dx dt

–
1
2

∫

Br2 (x0)∩{u(·,t1)≥ψc(·,t1)}
φ2(·)(u – ψc)(·, t1)

(
um – ψm

c
)
(·, t1) dx.

From the preceding arguments, we infer from (4.7) that, for any t1 ∈ �s1 (t0), we have

lim sup
ε↓0

lim sup
h↓0

〈〈
∂tu,αη

(
vm – um)〉〉

≤ 1
s2 – s1

∫ t0–s1

t0–s2

∫

Br2 (x0)∩{u(·,t)≥ψc(·,t)}
(u – ψc)

(
um – ψm

c
)

dx dt

+
∫∫

Qr2,s2 (z0)

∣
∣∂tψ

m
c

∣
∣(u – ψc)+ dx dt

–
1
2

∫

Br2 (x0)∩{u(·,t1)≥ψc(·,t1)}
φ2(u – ψc)(·, t1)

(
um – ψm

c
)
(·, t1) dx

=: VI + VII – VIII, (4.9)
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with the obvious meaning of VI , VII and VIII . To estimate VI , we note that u – ψc ≤ u – c
on the set {u ≥ ψc}. From this inequality and (4.4), we conclude that

VI ≤ 1
s2 – s1

∫∫

Qr2,s2 (z0)∩{u≥ψc}
(u – c)

(
um – cm)

dx dt

=
1

s2 – s1

∫∫

Qr2,s2 (z0)
(u – c)+

(
um – cm)

+ dx dt. (4.10)

We now come to the estimate of VII . We first observe that {ψ > c} ⊂ {u > c}, ∂tψc =
∂t(ψm – cm)+ and u = (um) 1

m ≤ 2 1–m
m ((um – cm)

1
m
+ + c). From this inequality, we conclude

that

VII ≤ γ

∫∫

Qr2,s2 (z0)

∣
∣∂tψ

m∣
∣

m+1
m χ{u>c} dx dt + γ

∫∫

Qr2,s2 (z0)
ψm+1χ{u>c} dx dt

+
γ

s2 – s1

∫∫

Qr2,s2 (z0)
(u – c)+

(
um – cm)

+ dx dt, (4.11)

since (um – cm)
m+1

m
+ ≤ (u – c)+(um – cm)+. Our next aim is to find a lower bound for VIII .

We fix t1 ∈ �s1 (t0) and consider the superlevel set {Br2 (x0) : u(x, t1) ≥ ψc(x, t1)}. On this
set, u ≥ c and we have

(u – c)
(
um – cm) ≤ (u – ψc)

(
um – ψm

c
)

+ (ψ – c)+
(
ψm – cm)

+

+ (u – c)
(
ψm – cm)

+ + (ψ – c)+
(
um – cm)

. (4.12)

Denote L1 = (u – c)(ψm – cm)+ and L2 = (ψ – c)+(um – cm). To estimate L1, we first consider
the easy case (ψm – cm)+ ≤ 4–1(um – cm). In this case, we get

L1 ≤ 1
4

(u – c)
(
um – cm)

. (4.13)

While in the case (ψm – cm)+ > 4–1(um – cm), we have ψ ≥ c and um < 4ψm – 3cm ≤ 4ψm.
Since 1

m > 1, we find that

u – c =
∣∣(um) 1

m –
(
cm) 1

m
∣∣

≤ γ
(
ψ1–m + c1–m)(

ψm – cm)

≤ γ
((

ψm) 1
m –

(
cm) 1

m
)

= γ (ψ – c) = γ (ψ – c)+,

where the constant γ depends only on m. Combining this estimate with (4.13), we ob-
tain

L1 ≤ 1
4

(u – c)
(
um – cm)

+ γ (ψ – c)+
(
ψm – cm)

+. (4.14)

Next, we consider the estimate of L2. In the case (ψ – c)+ ≤ 4–1(u – c), we have

L2 ≤ 1
4

(u – c)
(
um – cm)

. (4.15)
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In the case (ψ – c)+ > 4–1(u – c), we see that ψ ≥ c and u < 4ψ – 3c. Furthermore, we
conclude that there exists γ = γ (m) such that

um – cm ≤ (4ψ – 3c)m – cm

≤ 4γ
[
(4ψ – 3c) + c

]m–1(ψ – c)

≤ γ (ψ + c)m–1(ψ – c) ≤ γ
(
ψm – cm)

.

Combining this estimate with (4.15), we have shown that the estimate

L2 ≤ 1
4

(u – c)
(
um – cm)

+ γ (ψ – c)+
(
ψm – cm)

+ (4.16)

holds in any case. Therefore, we conclude from (4.12), (4.14) and (4.16) that the inequal-
ity

(u – c)(x, t1)
(
um – cm)

(x, t1) ≤ 2(u – ψc)(x, t1)
(
um – ψm

c
)
(x, t1)

+ 4γ (ψ – c)+(x, t1)
(
ψm – cm)

+(x, t1)

holds for any x ∈ {Br2 (x0) : u(x, t1) ≥ ψc(x, t1)}. We now turn our attention to the estimate
of VIII . It follows from (4.4) that

∫

Br2 (x0)∩{u≥c}
φ2(u – c)(x, t1)

(
um – cm)

(x, t1) dx

≤ 2
∫

Br2 (x0)∩{u≥ψc}
φ2(u – ψc)(x, t1)

(
um – ψm

c
)
(x, t1) dx

+ 4γ

∫

Br2 (x0)
(ψ – c)+(x, t1)

(
ψm – cm)

+(x, t1) dx, (4.17)

since φ ≤ 1. It remains to treat the second term on the right-hand side of (4.17). For
t1 ∈ �s1 (t0), we obtain

∫

Br2 (x0)
(ψ – c)+(x, t1)

(
ψm – cm)

+(x, t1) dx

≤ 1
s2 – s1

∫∫

Qr2,s2

(u – c)+
(
um – cm)

+ dx dt

+ γ

∫∫

Qr2,s2

∣∣∂tψ
m∣∣

m+1
m χ{u>c} dx dt + γ

∫∫

Qr2,s2

ψm+1χ{u>c} dx dt.

Furthermore, we deduce from (4.17) the estimate

1
4

∫

Br2 (x0)∩{u≥c}
φ2(u – c)(x, t1)

(
um – cm)

(x, t1) dx

≤ VIII +
1

s2 – s1

∫∫

Qr2,s2

(u – c)+
(
um – cm)

+ dx dt

+ γ

∫∫

Qr2,s2

∣∣∂tψ
m∣∣

m+1
m χ{u>c} dx dt + γ

∫∫

Qr2,s2

ψm+1χ{u>c} dx dt. (4.18)
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From (4.9)–(4.11) and (4.18), we are led to the conclusion that there exists a constant
γ = γ (m) such that

lim sup
ε↓0

lim sup
h↓0

〈〈
∂tu,αη

(
vm – um)〉〉

≤ γ

∫∫

Qr2,s2 (z0)

∣
∣∂tψ

m∣
∣

m+1
m χ{u>c} dx dt + γ

∫∫

Qr2,s2 (z0)
ψm+1χ{u>c} dx dt

+
γ

s2 – s1

∫∫

Qr2,s2 (z0)
(u – c)+

(
um – cm)

+ dx dt

–
1
4

∫

Br2 (x0)∩{u≥c}
φ2(u – c)(x, t1)

(
um – cm)

(x, t1) dx. (4.19)

Another step in the proof of (4.1) is to find an estimate for diffusion term in (2.3). We first
note that

lim sup
ε↓0

lim sup
h↓0

∫∫

�T

αA
(
x, t, u, Dum) · D

(
η
(
vm – um))

dx dt

= –
∫∫

�T ∩{u>ψc}
2φζA

(
x, t, u, Dum) · (um – ψm

c
)
Dφ dx dt

–
∫∫

�T ∩{u>ψc}
φ2ζA

(
x, t, u, Dum) · D

(
um – ψm

c
)

dx dt, (4.20)

where

ζ (t) =

⎧
⎪⎪⎨

⎪⎪⎩

0, for t ∈ (0, t0 – s2],

1 – 1
s2–s1

(t0 – s1 – t), for t ∈ (t0 – s2, t0 – s1],

1, for t ∈ (t0 – s1, t1].

By Young’s inequality and the growth assumption of the vector field A, we obtain the
estimate for the first term on the right-hand side

∣
∣∣
∣

∫∫

�T ∩{u>ψc}
2φζA

(
x, t, u, Dum) · (um – ψm

c
)
Dφ dx dt

∣
∣∣
∣

≤ ν0

4

∫∫

�T ∩{u>ψc}
φ2ζ

∣∣Dum∣∣2 dx dt + γ

∫∫

Qr2,s2 (z0)

(
um – cm)2

+|Dφ|2 dx dt, (4.21)

where the constant γ depends only upon ν0 and ν1. Next, we consider the second term
on the right-hand side of (4.20). Using Young’s inequality and the ellipticity assumption
of the vector field A, we deduce

–
∫∫

�T ∩{u>ψc}
φ2ζA

(
x, t, u, Dum) · D

(
um – ψm

c
)

dx dt

≤ –ν0

∫∫

�T ∩{u>ψc}
φ2ζ

∣∣Dum∣∣2 dx dt + ν1

∫∫

�T ∩{u>ψc}
φ2ζ

∣∣Dum∣∣∣∣Dψm
c

∣∣dx dt

≤ –
ν0

2

∫∫

�T ∩{u>ψc}
φ2ζ

∣∣Dum∣∣2 dx dt +
ν2

1
2ν0

∫∫

Qr2,s2 (z0)

∣∣Dψm∣∣2
χ{u>c} dx dt. (4.22)
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Furthermore, we need to consider the estimate of the gradient on the superlevel set {u > c}.
Since u ≥ ψ , we have

{
z ∈ �T : c < u(z) ≤ ψc

}
=

{
z ∈ �T : u(z) > c

} ∩ {
z ∈ �T : u(z) = ψ(z)

}

and therefore Dum = Dψm a.e. on {z ∈ �T : c < u(z) ≤ ψc}. This implies that
∫∫

�T

φ2ζ
∣
∣D

(
um – cm)

+

∣
∣2 dx dt

=
∫∫

�T ∩{u>c}
φ2ζ

∣∣Dum∣∣2 dx dt

=
∫∫

�T ∩{u>ψc}
φ2ζ

∣
∣Dum∣

∣2 dx dt +
∫∫

�T ∩{u>c}∩{u=ψ}
φ2ζ

∣
∣Dψm∣

∣2 dx dt

≤
∫∫

�T ∩{u>ψc}
φ2ζ

∣∣Dum∣∣2 dx dt +
∫∫

Qr2,s2 (z0)

∣∣Dψm∣∣2
χ{u>c} dx dt. (4.23)

Combining the estimates (4.20)–(4.23), we conclude that

lim sup
ε↓0

lim sup
h↓0

∫∫

�T

αA
(
x, t, u, Dum) · D

(
η
(
vm – um))

dx dt

≤ –
ν0

4

∫∫

�T

φ2ζ
∣
∣D

(
um – cm)

+

∣
∣2 dx dt + γ

∫∫

Qr2,s2 (z0)

(
um – cm)2

+|Dφ|2 dx dt

+ γ

∫∫

Qr2,s2 (z0)

∣
∣Dψm∣

∣2
χ{u>c} dx dt.

This estimate together with (4.19) yield

∫

Br2 (x0)
φ2(u – c)+(x, t1)

(
um – cm)

+(x, t1) dx +
∫ t1

t0–s1

∫

Br2 (x0)
φ2∣∣D

(
um – cm)

+

∣∣2 dx dt

≤ γ

s2 – s1

∫∫

Qr2,s2 (z0)
(u – c)+

(
um – cm)

+ dx dt

+ γ

∫∫

Qr2,s2 (z0)

(
um – cm)2

+|Dφ|2 dx dt

+ γ

∫∫

Qr2,s2 (z0)

(
ψm+1 +

∣∣∂tψ
m∣∣

m+1
m +

∣∣Dψm∣∣2)
χ{u>c} dx dt

for any t1 ∈ �s1 (t0). This proves the desired estimate (4.1) by taking the supremum over
t1 ∈ �s1 (t0) in the first term and t1 = t0 + s1 in the second one.

Finally, we address the proof of (4.2). This result will be proved if we can show that the
estimate

∫

Br2 (x0)
φ2(u – c)–(x, t1)

(
um – cm)

–(x, t1) dx +
∫ t1

t0–s1

∫

Br2 (x0)
φ2∣∣D

(
um – cm)

–

∣∣2 dx dt

≤ γ

s2 – s1

∫∫

Qr2,s2 (z0)
(u – c)–

(
um – cm)

– dx dt

+ γ

∫∫

Qr2,s2 (z0)

(
um – cm)2

–|Dφ|2 dx dt, (4.24)
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holds for any t1 ∈ �s1 (t0). In order to prove this estimate, we will work on the sublevel set
{u < c} and the argument is similar in spirit to [4, Lemma 3.1 (ii)] and [10, Lemma 4.1].

According to the proof of [4, Lemma 3.1 (ii)], we set

vm =
[[

um]]
h +

([[
um]]

h – cm)
– +

∥∥ψm –
[[
ψm]]

h

∥∥
L∞(�T )

as a comparison map and obtain

–
∫∫

�T

ηαu∂tvm dx dt

≤
∫∫

�T

ηα′ m
m + 1

[[
um]] m+1

m
h dx dt +

∫∫

�T

ηα′[[um]] 1
m
h

([[
um]]

h – cm)
– dx dt

+
∫∫

�T

ηα′
∫ c

[[um]]
1
m
h

(
cm – ym)

+ dy dx dt,

where the cut-off function α is defined in (4.8) and η = φ2. To estimate the third term on
the right-hand side, we infer from (3.2) that

m
2

([[
um]] 1

m
h – c

)
–

([[
um]]

h – cm)
– ≤

∫ c

[[um]]
1
m
h

(
cm – ym)

+ dy

≤ ([[
um]] 1

m
h – c

)
–

([[
um]]

h – cm)
–.

At this point, the desired estimate (4.24) follows from a standard argument (see for in-
stance [10, page 26-28] and [4, page 12]) and we omit the details. The proof of the lemma
is now complete. �

Remark 4.2 In contrast to [6, Lemma 4.1], the inequality (4.2) is indeed a special case of
[6, (4.1)]. Here, we set f ∼ g if γ –1g ≤ f ≤ γ g holds for some γ = γ (m) > 0. From [6, (4.6)],
we have

|u – c|∣∣um – cm∣∣ ∼ ((|u| + |c|) m–1
2 |u – c|)2 ∼ ∣∣u

m+1
2 – c

m+1
2

∣∣2.

The main novelty with respect to [6, Lemma 4.1] is that we have also established an energy
estimate (4.1) for the truncated function (u – c)+(um – cm)+ by using (4.3) as a comparison
map. This inequality will be used to prove a boundedness result for the nonnegative weak
solutions in Sect. 6. Our proof of (4.2) also encompasses the use of the boundary term
(1.5) which is the basic tool in the proof of [6, Lemma 4.1].

5 Estimates on the spatial average
This section is devoted to the study of a gluing Lemma, which concerns weighted mean
values of the weak solution on different time slices. We first state and prove the gluing
lemma on the condition that the functions  and ∂tψ

1–m are locally integrable. Let B be
an open ball in � ⊂R

n and let η ≥ 0 be a smooth function supported in the compact set B̄.
Here and subsequently, we define

(
u(t)

)η

B =
1

∫
B η dx

∫

B
u(x, t)η(x) dx.

The following lemma is our main result in this section.
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Lemma 5.1 Let u be a nonnegative weak solution to the obstacle problem in the sense of
Definition 2.1. Fix a point z0 = (x0, t0) ∈ �T and assume that Qr1,s(z0) ⊂ Qr2,s(z0) ⊂ �T . Let
ξ ∈ C∞

0 (Br2 (x0)), 0 ≤ ξ ≤ 1 in Br2 (x0), ξ ≡ 1 in Br1 (x0) and |Dξ | ≤ 2(r2 – r1)–1. Let 1 be
the quantity

1 =
[(

––
∫∫

Qr2,s(z0)
 dx dt

) 1
m+1

+
(

––
∫∫

Qr2,s(z0)

∣
∣∂tψ

1–m∣
∣dx dt

) 1
1–m

]
.

Then, for any t1, t2 ∈ �s(t0), we have

∣∣(u(t1)
)ξ

Br2 (x0) –
(
u(t2)

)ξ

Br2 (x0)

∣∣

≤ γ

(
s

r2 – r1

)
––
∫∫

Qr2,s(z0)

∣
∣Dum∣

∣dx dt + γ

(
s

r2 – r1

)
1

+ γ

(
s

r2 – r1

)m(
––
∫∫

Qr2,s(z0)
ψ1–m dx dt

)(
––
∫∫

Qr2,s(z0)
 dx dt

) m
m+1

+ γ s
(

r2 – r1

s

)m(
––
∫∫

Qr2,s(z0)
 dx dt

) 1
m+1

(5.1)

and

∣∣(u(t1)
)ξ

Br2 (x0) –
(
u(t2)

)ξ

Br2 (x0)

∣∣

≤ γ

(
s

r2 – r1

)
––
∫∫

Qr2,s(z0)

∣
∣Dum∣

∣dx dt + γ

(
s

r2 – r1

)
1

+ γ r2

(
––
∫∫

Qr2,s(z0)
ψ1–m dx dt

)(
––
∫∫

Qr2,s(z0)
 dx dt

) m
m+1

+ γ r
1
m
2

(
––
∫∫

Qr2,s(z0)
 dx dt

) 1
m+1

, (5.2)

where the constant γ depends only upon ν0, ν1 and m.

Remark 5.2 Before we address the proof of Lemma 5.1, we first note that the proof of this
lemma can be achieved along the lines of the proof of [6, Lemma 4.2]. However, since we
are dealing with the nonnegative weak solutions, we give here a much simpler proof based
on the inequality (3.2). Our proof makes no use of the boundary term (1.5) which plays a
crucial role in the proof of [6, Lemma 4.2].

Proof of Lemma 5.1 Our proof is in the spirit of [5, Lemma 3.2, Lemma 4.1]. Without loss
of generality, we may assume that t1 < t2. In the variational inequality (2.3) we choose η = ξ
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as a cut-off function in space and, motivated by the proof of [5, Lemma 3.2], we choose

α(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, for t ∈ (0, t1 – ε),

1 + 1
ε
(t – t1), for t ∈ [t1 – ε, t1),

1, for t ∈ [t1, t2],

1 – 1
ε
(t – t2), for t ∈ (t2, t2 + ε],

0, for t ∈ (t2 + ε, T),

as a cut-off function in time, where 0 < ε � 1. According to the argument in [5, page 19], it
suffices to prove the lemma in the case (u(t1))ξBr2 (x0) < (u(t2))ξBr2 (x0). Let μ be a fixed positive
constant, which will be determined later. We follow the argument in [5, page 14-15] to
deduce

〈〈
∂tu,αη

(
vm – um)〉〉 ≤ Ih + μm

∫∫

�T

ξα′u dx dt + L,

where we abbreviated

L = –
∫∫

�T

ξα′u
(
ψm + μm –

[[
um]]

h

)
+ dx dt

+
∫∫

�T ∩{[[um]]h≤ψm+μm}
ξα

[[
um]] 1

m
h

(
∂t

[[
um]]

h – ∂tψ
m)

dx dt

and the term Ih tends to zero as h ↓ 0. To estimate L, we use integration by parts to obtain

L =
∫∫

�T

ξα′([[um]] 1
m
h – u

)(
ψm + μm –

[[
um]]

h

)
+ dx dt

+
∫∫

�T

ξα∂t
([[

um]] 1
m
h

)(
ψm + μm –

[[
um]]

h

)
+ dx dt

=: L1 + L2,

with the obvious meaning of L1 and L2. By Lebesgue’s dominated convergence theorem,
we see that L1 tends to zero as h ↓ 0. Next, we consider the estimate for L2. To this end,
we use integration by parts to obtain

L2 =
∫∫

�T

ξα′
∫ (μm+ψm)

1
m

[[um]]
1
m
h

(
μm + ψm – ym)

+ dy dx dt

+
∫∫

�T

ξα∂tψ
m((

μm + ψm) 1
m –

[[
um]] 1

m
h

)
+ dx dt

=: L3 + L4,

with the obvious meaning of L3 and L4. From Lemma 3.1 (3.2), there exists a constant
γ = γ (m) such that

lim sup
ε↓0

lim sup
h↓0

L3 ≤
∫

Br2 (x0)
ξ (x)

((
μm + ψm) 1

m – u
)

+(x, t1)
(
μm + ψm – um)

+(x, t1) dx

≤ γμ2m
∫

Br2 (x0)
ξ (x)ψ(x, t1)1–mdx + γμm+1,
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since

((
μm + ψm) 1

m – u
)

+ ≤ (
μm + ψm + um) 1

m –1(
μm + ψm – um)

+

≤ γμm(
μ1–m + ψ1–m)

. (5.3)

Moreover, we note that

∫

Br2 (x0)
ξ (x)ψ(x, t1)1–m dx ≤

∫∫

Qr2,s(z0)

∣
∣∂tψ

1–m∣
∣dx dt

+
∣∣Br2 (x0)

∣∣––
∫∫

Qr2,s(z0)
ψ1–m dx dt (5.4)

and this implies

lim sup
ε↓0

lim sup
h↓0

L3 ≤ γμ2m
∫∫

Qr2,s(z0)

∣∣∂tψ
1–m∣∣dx dt

+ γμ2m∣
∣Br2 (x0)

∣
∣––
∫∫

Qr2,s(z0)
ψ1–m dx dt + γμm+1.

Next, we consider the estimate for L4. From (5.3) and Hölder’s inequality, we deduce

lim sup
ε↓0

lim sup
h↓0

L4 ≤
∫∫

Qr2,s(z0)
μ

∣∣∂tψ
m∣∣dx dt + 2sμm∣∣Br2 (x0)

∣∣
(

––
∫∫

Qr2,s(z0)
 dx dt

) 1
m+1

.

To estimate the diffusion term, we infer from the argument in [5, page 17] that

lim sup
ε↓0

lim sup
h↓0

∫∫

�T

αA
(
x, t, u, Dum) · D

(
η
(
vm – um))

dx dt

≤ γμm 1
r2 – r1

∫∫

Qr2,s(z0)

∣∣Dum∣∣dx dt + γ

∫∫

Qr2,s(z0)

∣∣Dψm∣∣2 dx dt.

Combining the estimates above, we apply Young’s inequality to conclude that

(
u(t2)

)ξ

Br2 (x0) –
(
u(t1)

)ξ

Br2 (x0)

≤ γμ + γμm––
∫∫

Qr2,s(z0)
ψ1–m dx dt

+ 2s
(

––
∫∫

Qr2,s(z0)

∣∣∂tψ
1–m∣∣dx dt

) 1
1–m

+ 2s
(

––
∫∫

Qr2,s(z0)
 dx dt

) 1
m+1

+ γ
s

r2 – r1
––
∫∫

Qr2,s(z0)

∣
∣Dum∣

∣dx dt + γ
s

μm
––
∫∫

Qr2,s(z0)

∣
∣Dψm∣

∣2 dx dt (5.5)

holds for any μ > 0. At this stage, we set 0 < δ � 1. In the estimate (5.5) we choose

μ =
s

r2 – r1

(
––
∫∫

Qr2,s(z0)

(
δ + ψm+1 +

∣∣∂tψ
m∣∣

m+1
m +

∣∣Dψm∣∣2)dx dt
) 1

m+1
. (5.6)
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This concludes the estimate (5.1) by passing to the limit δ ↓ 0. Finally, if we choose

μ = r
1
m
2

(
––
∫∫

Qr2,s(z0)

(
δ + ψm+1 +

∣∣∂tψ
m∣∣

m+1
m +

∣∣Dψm∣∣2)dx dt
) 1

m+1
, (5.7)

then the desired estimate (5.2) follows by passing to the limit δ ↓ 0. This finishes the proof
of the lemma. �

Moreover, if ψm is locally Lipschitz continuous and ∂tψ
1–m is locally bounded, then we

can rewrite the estimates (5.1) and (5.2) in the following ready-to-use form.

Corollary 5.3 Suppose that

sup
Qr2,s(z0)

(


1
m+1 +

∣
∣∂tψ

1–m∣
∣

1
1–m

) ≤ M0

for some M0 > 1. Then, for any t1, t2 ∈ �s(t0), we have

∣∣(u(t1)
)ξ

Br2 (x0) –
(
u(t2)

)ξ

Br2 (x0)

∣∣

≤ γ

(
s

r2 – r1

)(
––
∫∫

Qr2,s(z0)

∣
∣Dum∣

∣dx dt + M0

)

+ γ

(
s

r2 – r1

)m(
––
∫∫

Qr2,s(z0)
ψ1–m dx dt

)
Mm

0 + γ s
(

r2 – r1

s

)m

M0 (5.8)

and

∣
∣(u(t1)

)ξ

Br2 (x0) –
(
u(t2)

)ξ

Br2 (x0)

∣
∣ ≤ γ

(
s

r2 – r1

)(
––
∫∫

Qr2,s(z0)

∣
∣Dum∣

∣dx dt + M0

)

+ γ r2

(
––
∫∫

Qr2,s(z0)
ψ1–m dx dt

)
Mm

0 + γ r
1
m
2 M0, (5.9)

where the constant γ depends only on ν0, ν1 and m.

This corollary is a direct consequence of Lemma 5.1 and the proof is omitted. For the
applications, we shall use (5.8) and (5.9) to the analysis of degenerate and non-degenerate
regimes in Sect. 6, respectively. The purpose of [6, Lemma 4.2] is to establish a Sobolev–
Poincaré type inequality [6, Lemma 4.3] for the obstacle problem which is similar to [2,
Lemma 5.1]. The quantity μ in [6] is also determined in two alternatives, which are [6,
(4.35)] and [6, (4.36)]. It is easy to check that our choice of μ in (5.7) is coincident with
the choice of μ in [6, page 27] but (5.6) is different from [6, page 30]. Compared with [6,
Lemma 4.3], our concepts of degenerate and non-degenerate regimes have no concern
with the spatial gradient.

Remark 5.4 Motivated by the proof of [6, Lemma 4.2], we can remove the assumption that
supQ8R,64R2 (z0) |∂tψ

1–m| < +∞. To this end, it is sufficient to improve the estimate (5.4). In
the case m ≤ 1

3 , we have |∂tψ
1–m| = 1–m

m |ψ1–2m∂tψ
m| ≤ 1–m

m |∂tψ
m|, since ψ ≤ u ≤ 1. From
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(5.4), we deduce

μm–
∫

Br2 (x0)
ξ (x)ψ(x, t1)1–mdx ≤ γμm

∫

�s(t0)
–
∫

Br2 (x0)

∣∣∂tψ
m∣∣dx dt

+ μm––
∫∫

Qr2,s(z0)
ψ1–m dx dt.

In the case m > 1
3 , we use Hölder’s inequality and the energy estimate (4.1) to deduce

μm–
∫

Br2 (x0)
ξ (x)ψ(x, t1)1–m dx ≤ μm

(
–
∫

Br2 (x0)
ξ (x)2u(x, t1)m+1 dx

) 1–m
m+1

≤ γμm
(

––
∫∫

Qr2,2s(z0)
um+1 dx dt

) 1–m
m+1

+ γμm
(

s
(r2 – r1)2

––
∫∫

Qr2,2s(z0)
u2m dx dt

) 1–m
m+1

+ γμm
(

s––
∫∫

Qr2,2s(z0)
 dx dt

) 1–m
m+1

. (5.10)

In the analysis of the non-degenerate regime, we could use (5.10) for the choice of μ as in
(5.7). For the treatment of the degenerate regime, we use Young’s inequality to obtain

μm–
∫

Br2 (x0)
ξ (x)ψ(x, t1)1–m dx ≤ γμ + γμm

(
––
∫∫

Qr2,2s(z0)
um+1 dx dt

) 1–m
m+1

+
(

s
(r2 – r1)2

––
∫∫

Qr2,2s(z0)
u2m dx dt

) 1
m+1

+ γμm
(

s––
∫∫

Qr2,2s(z0)
 dx dt

) 1–m
m+1

,

and the quantity μ can be determined by (5.6). The proofs are left to the reader.

6 Reverse Hölder-type inequalities
The proof of the reverse Hölder inequalities on intrinsic cylinders follows from the analysis
of two complementary cases. Following [10], we give the definitions of degenerate and
non-degenerate regimes.

Definition 6.1 ([10]) Fix a point z0 ∈ �T and suppose that QR,R2 (z0) ⊂ �T . Let ε > 0 be
a fixed number and let Qs(z0) be an intrinsic cylinder constructed in Sect. 3. We call a
cylinder Qs(z0) degenerate if and only if

(
––
∫∫

Qs(z0)

∣
∣um –

(
um)

Qs(z0)

∣
∣

m+1
m dx dt

) 1
m+1 ≥ ε

(
––
∫∫

Qs(z0)
um+1 dx dt

) 1
m+1

(6.1)
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holds true. Moreover, we call a cylinder Qs(z0) non-degenerate if and only if the following
inequality holds:

(
––
∫∫

Qs(z0)

∣
∣um –

(
um)

Qs(z0)

∣
∣

m+1
m dx dt

) 1
m+1 ≤ ε

(
––
∫∫

Qs(z0)
um+1 dx dt

) 1
m+1

. (6.2)

Next, we consider separately the degenerate and non-degenerate case. In contrast to [2,
Sect. 6], our assumptions (6.1)–(6.2) show no information for the spatial gradient of the
solution and the intrinsic cylinder under consideration takes the form (1.2). Our approach
relies heavily on the regularity of the solution.

6.1 The degenerate alternative
This subsection deals with the degenerate case. We first establish a boundedness result
analogue to [10, Proposition 5.2]. The local boundedness for weak solutions to the singular
parabolic obstacle problems was first proved by Cho and Scheven [4]. Here, we present a
mean value type estimate and our proof is in the spirit of [10, Proposition 5.2].

Lemma 6.2 Let u be a nonnegative weak solution to the obstacle problem in the sense of
Definition 2.1. Fix a point z0 ∈ �T and suppose that QR,R2 (z0) ⊂ �T . Let 0 < s ≤ 1

2 R2 and
r(2s) makes sense. Assume that the cylinder Qs(z0) is intrinsic and

sup
Q2s(z0)

 ≤ θs(z0) m+1
1–m

s
. (6.3)

Then there exists a constant γ = γ (n, m,ν0,ν1) such that

sup
Qs(z0)

u ≤ γ

(
––
∫∫

Q2s(z0)
um+1 dx dt

) 1
m+1

. (6.4)

Proof There is no loss of generality in assuming z0 = (x0, t0) = (0, 0). For j = 0, 1, 2, . . . , set
sj = s + 2–js, rj = r(sj), Bj = Brj and Qj = Qrj ,sj . We define a sequence of numbers km

j = km –
2–jkm, where k > 0 is to be determined. Let ζj = ζj(x) be a smooth function such that ζj ∈
C∞

0 (Bj), 0 ≤ ζj ≤ 1, ζj ≡ 1 in Bj+1 and |Dζj| ≤ 2(rj – rj+1)–1. We now apply the Caccioppoli
estimate (4.1) with (c,φ, Qr1,s1 , Qr2,s2 ) replaced by (kj+1, ζj, Qj+1, Qj) to obtain

ess sup
–tj+1<t<tj+1

∫

Bj

[(
um – km

j+1
)

+ζj
] m+1

m (x, t) dx +
∫ tj+1

–tj+1

∫

Bj

∣
∣D

[(
um – km

j+1
)

+ζj
]∣∣2 dx dt

≤ γ

sj – sj+1

∫∫

Qj

um+1χ{u>kj+1} dx dt

+
γ

(rj – rj+1)2

∫∫

Qj

(
um – km

j+1
)2

+ dx dt + γ

∫∫

Qj

χ{u>kj+1} dx dt.
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We first observe from Lemma 3.3(5) that all the cylinders Qj are intrinsic. Moreover, from
Lemma 3.3(4) and the assumption (6.3), we deduce

∫∫

Qj

χ{u>kj+1} dx dt ≤ sup
Qj


∣
∣{u > kj+1} ∩ Qj

∣
∣

≤ γ
2j m+1

m

s

(
θ2s

k1–m

) m+1
1–m

∫∫

Qj

(
um – km

j
) m+1

m
+ dx dt.

Then we follow the argument in [10, page 33-34] to impose a condition k ≥ θ
1

1–m
2s and

obtain

ess sup
–tj+1<t<tj+1

∫

Bj

[(
um – km

j+1
)

+ζj
] m+1

m (x, t) dx +
∫ tj+1

–tj+1

∫

Bj

∣∣D
[(

um – km
j+1

)
+ζj

]∣∣2 dx dt

≤ γ 2j 3(m+1)
m

s

∫∫

Qj

(
um – km

j
) m+1

m
+ dx dt.

Consequently, we can apply the parabolic Sobolev inequality to (um – km
j+1)+ζj on the cylin-

der Bj × (–tj+1, tj+1), which gives

Yj+1 ≤ γ 2bj
( |Qj|

2m+2
nqm

s
2m+nm+n+2

nqm k(m+1)(1– m+1
qm )

)
Y

1+ 2m+2
nqm

j , (6.5)

where

b = 2
4(m+1)

m (2+ 2(m+1)
nqm ), q = 2

n + m+1
m

n
and Yj = ––

∫∫

Qj

(
um – km

j
) m+1

m
+ dx dt.

For more details on the proof of (6.5), we refer the reader to [10, page 34]. According to
the argument in [10, page 34], we obtain Yj → 0 as j → ∞, provided that

k = γ

(
––
∫∫

Q0

um+1 dx dt
) 1

m+1
,

where γ > 1 depends only upon n, ν0, ν1 and m. This proves (6.4) and the proof of
Lemma 6.2 is complete. �

We remark that the intrinsic condition for Qs(z0) is necessary in the proof of Lemma 6.2.
This restricts us to work with the intrinsic cylinders in the degenerate regime. With the
help of Lemma 6.2, we can now establish the reverse Hölder inequality for the degenerate
regime.

Proposition 6.3 Let u be a nonnegative weak solution to the obstacle problem in the sense
of Definition 2.1. Fix a point z0 ∈ �T and suppose that QR,R2 (z0) ⊂ �T . Let 0 < s ≤ 1

3 R2 and
r(3s) makes sense. Assume that the cylinder Qs(z0) is intrinsic and satisfies (6.1). Moreover,
assume that ψm is locally Lipschitz continuous and

sup
Q3s(z0)

(


1
m+1 +

∣∣∂tψ
1–m∣∣

1
1–m

) ≤ M0,
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for some M0 > 0. Then there exists q1 ∈ ( 1
2 , 1), depending only upon n and m, such that the

following holds:

––
∫∫

Qs(z0)

∣∣Dum∣∣2 dx dt ≤ cε

(
––
∫∫

Q3s(z0)

∣∣Dum∣∣2q1 dx dt
) 1

q1
+ cεM2

0 + 1. (6.6)

Proof For abbreviation, we assume that z0 = (x0, t0) = (0, 0). Initially, we use (4.2) from
Lemma 4.1 to obtain

1
s

ess sup
t∈�s

–
∫

Br(s)

um+1 dx + ––
∫∫

Qs

∣
∣Dum∣

∣2 dx dt

≤ γ

s
––
∫∫

Q2s

um+1 dx dt +
γ

(r(2s) – r(s))2
––
∫∫

Q2s

u2m dx dt + γ ––
∫∫

Q2s

 dx dt.

From Lemma 3.3(1), (2), (4) and Hölder’s inequality, we obtain

1
s

ess sup
t∈�s

–
∫

Br(s)

um+1 dx + ––
∫∫

Qs

∣
∣Dum∣

∣2 dx dt ≤ γ
θ

m+1
1–m

s

s
+ γ ––

∫∫

Q2s

 dx dt.

Before proceeding further, we distinguish between two cases:

θ
m+1
1–m

s

s
≤ sup

Q2s
 and sup

Q2s
 ≤ θ

m+1
1–m

s

s
.

Observe that the desired estimate (6.6) holds immediately in the first case. It remains to
treat the second case. We first note that

1
s

ess sup
t∈�s

–
∫

Br(s)

um+1 dx + ––
∫∫

Qs

∣
∣Dum∣

∣2 dx dt ≤ γ
θ

m+1
1–m

s

s
. (6.7)

Our next aim is to find an upper bound for s–1θ
m+1
1–m

s . Let η ∈ C∞
0 (Br(3s)), 0 ≤ η ≤ 1 in Br(3s),

η ≡ 1 in Br(2s) and |Dη| ≤ 2(r(3s) – r(2s))–1. We denote by λ0 the constant

λm
0 =

(
–
∫

�2s

(
u(t)

)η

Br(3s)
dt

)m

.

Since supQ2s  ≤ s–1θ
m+1
1–m

s , the assumptions of Lemma 6.2 are fulfilled. Applying (6.4) and
Hölder’s inequality, we obtain similar to [10, Corollary 5.4] that

θ
m

1–m
s ≤ c

(
––
∫∫

Q2s

u dx dt
)m

≤ cλm
0 . (6.8)

Next, we choose q1 ∈ ( 1
2 , 1) such that

m >
n – 2q1

(2q1 – 1)n + 2q1
. (6.9)
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By Sobolev inequality and Lemma 3.3(4), we deduce

–
∫

Br(3s)

∣∣um –
(
um(t)

)
Br(3s)

∣∣
m+1

m dx ≤ cr(s)
m+1

m

(
–
∫

Br(3s)

∣∣Dum∣∣2q1 dx
) m+1

2q1m
. (6.10)

Using a similar argument to the proof of [10, Proposition 6.2], we infer from (6.1), (6.7),
(6.8) and (6.10) that

(
θ

m+1
1–m

s

s

) α
q1 ≤ c

r(s)2

s
α

q1

(
––
∫∫

Q3s(z0)

∣
∣Dum∣

∣2q1 dx dt
) 1

q1

+
c

s
α

q1

(
–
∫

�s

θ
– m+1

m
s

∣∣(u(t)
)η

Br(3s)
– λ0

∣∣
m+1

m dt
) α

q1
, (6.11)

where α = 2q1m
m+1 . To estimate the second term on the right-hand side, we apply the estimate

(5.8) from Corollary 5.3 to deduce

∣∣(u(t)
)η

Br(3s)
– λ0

∣∣ = –
∫

�2s

∣∣(u(t)
)η

Br(3s)
–

(
u(t)

)η

Br(3s)

∣∣dτ

≤ γ

(
s

r(s)

)(
––
∫∫

Q3s

∣∣Dum∣∣dx dt + M0

)

+ γ

(
s

r(s)

)m(
––
∫∫

Q3s

ψ1–m dx dt
)

Mm
0 + γ s

(
r(s)

s

)m

M0,

where we have used Lemma 3.3(2), (4) for the last estimate. From this, we conclude that

c

s
α

q1

(
–
∫

�s

θ
– m+1

m
s

∣
∣(u(t)

)η

Br(3s)
– λ0

∣
∣

m+1
m dt

) α
q1

≤ γ
1

s
α

q1 θ2
s

(
s

r(s)

)2(
––
∫∫

Q3s

∣
∣Dum∣

∣dx dt + M0

)2

+ γ
1

s
α

q1 θ2
s

(
s

r(s)

)2m(
––
∫∫

Q3s

ψ1–m dx dt
)2

M2m
0 + γ

s2

s
α

q1 θ2
s

(
r(s)

s

)2m

M2
0

= γ
1

s
α

q1
–1

θs

(
––
∫∫

Q3s

∣∣Dum∣∣dx dt + M0

)2

+ γ
1

s
α

q1
–m

θ2–m
s

(
––
∫∫

Q3s

ψ1–m dx dt
)2

M2m
0 + γ

1

s
α

q1
–2+m

θ2+m
s

M2
0,

since s = θsr(s)2. We insert this inequality in (6.11) and this implies that

θ
m+1
1–m

s

s
=

(
θ

m+1
1–m

s

s

) α
q1 s

α
q1 θs

s

≤ γ

[(
––
∫∫

Q3s(z0)

∣∣Dum∣∣2q1 dx dt
) 1

q1
+ M2

0

]

+ γ
1

s1–mθ1–m
s

(
––
∫∫

Q3s

ψ1–m dx dt
)2

M2m
0 + γ

1
sm–1θ1+m

s
M2

0

=: L1 + L2 + L3,
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with the obvious meaning of L1, L2 and L3. We first consider the estimate for L2. Since
u ≥ ψ , we apply Lemma 3.3(1), (4) and Hölder’s inequality to deduce

––
∫∫

Q3s

ψ1–m dx dt ≤ ––
∫∫

Q3s

u1–m dx dt ≤
(

––
∫∫

Q3s

um+1 dx dt
) 1–m

m+1 ≤ θ3s ≤ cθs.

This implies that

L2 ≤ γ
θm+1

s
s1–m M2m

0 =
(

θ
m+1
1–m

s

s

)1–m

M2m
0 ≤ 1

2
θ

m+1
1–m

s

s
+ cM2

0.

Next, we rewrite L3 as follows:

L3 = γ
1

( θ

m+1
1–m

s
s )1–m

M2
0.

Combining the estimates above, we arrive at

θ
m+1
1–m

s

s
≤ γ

[(
––
∫∫

Q3s(z0)

∣∣Dum∣∣2q1 dx dt
) 1

q1
+ M2

0

]
+

1
2

θ
m+1
1–m

s

s
+ γ

1

( θ

m+1
1–m

s
s )1–m

M2
0.

Observe that we can reabsorb the second term 1
2

θ

m+1
1–m

s
s on the right-hand side into the left.

It follows that

θ
m+1
1–m

s

s
≤ γ

[(
––
∫∫

Q3s(z0)

∣
∣Dum∣

∣2q1 dx dt
) 1

q1
+ M2

0

]
+ γ

1

( θ

m+1
1–m

s
s )1–m

M2
0. (6.12)

At this point, we claim that

θ
m+1
1–m

s

s
≤ γ

(
––
∫∫

Q3s(z0)

∣
∣Dum∣

∣2q1 dx dt
) 1

q1
+ γ M2

0 + 1. (6.13)

In the case s–1θ
m+1
1–m

s ≤ 1, it is easy to see that (6.13) holds trivially. In the case s–1θ
m+1
1–m

s > 1,
the desired estimate (6.13) directly follows from (6.12). This proves (6.13) and the proof
of Proposition 6.3 is complete. �

6.2 The non-degenerate alternative
In this subsection, we prove the reverse Hölder inequality analogue to (6.6) for the non-
degenerate regime. The treatment for non-degenerate case is different from the degener-
ate case.

Proposition 6.4 Let u be a nonnegative weak solution to the obstacle problem in the sense
of Definition 2.1. Fix a point z0 ∈ �T and suppose that QR,R2 (z0) ⊂ �T . Let 0 < s ≤ R2 and
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suppose that the cylinder Qs(z0) is intrinsic and satisfies (6.2). Moreover, assume that ψm

is locally Lipschitz continuous and

sup
Qs(z0)

(


1
m+1 +

∣∣∂tψ
1–m∣∣

1
1–m

) ≤ M0,

for some M0 > 0. Then there exists q1 ∈ ( 1
2 , 1), depending only upon n and m, such that the

following holds:

––
∫∫

Q s
2

(z0)

∣∣Dum∣∣2 dx dt ≤ cε

(
––
∫∫

Qs(z0)

∣∣Dum∣∣2q1 dx dt
) 1

q1
+ cεM2

0 + 1. (6.14)

Proof For simplicity of presentation, we assume that z0 = (0, 0). Let us first construct a
smooth function η ∈ C∞

0 (Br(s)) satisfying 0 ≤ η ≤ 1 in Br(s), η ≡ 1 in Br(s/2) and |Dη| ≤
2(r(s) – r(s/2))–1. Define

λ = –
∫

�s

(
u(t)

)η

Br(s)
dt and λ(t) =

(
u(t)

)η

Br(s)
,

where t ∈ �s. Let σ1, σ2 ∈ [ 1
2 , 1] and σ1 < σ2. Applying a similar argument to the proof of

[10, Proposition 6.3], we infer from (6.2) that

c1θ
1

1–m
s ≤ λ ≤ c2θ

1
1–m

s . (6.15)

Furthermore, we apply the Caccioppoli estimate (4.2) with (c, Qr1,s1 , Qr2,s2 ) replaced by
(λ, Qσ1s, Qσ2s) to obtain

1
s

ess sup
t∈�σ1s

–
∫

Br(σ1s)

|u – λ|∣∣um – λm∣∣dx + ––
∫∫

Qσ1s

∣∣Dum∣∣2 dx dt

≤ γ

(σ2 – σ1)s
––
∫∫

Qσ2s

|u – λ|∣∣um – λm∣
∣dx dt

+
γ

(σ2 – σ1)2r(s)2
––
∫∫

Qσ2s

∣∣um – λm∣∣2 dx dt + γ ––
∫∫

Qs

 dx dt, (6.16)

since r(σ2s) – r(σ1s) ≥ c(σ2 – σ1)b̂r(s/2) ≥ c(σ2 – σ1)r(s). For any σ ∈ [ 1
2 , 1], we set

T1(σ ) =
1
s

ess sup
t∈�σ s

–
∫

Br(σ s)

|u – λ|∣∣um – λm∣∣dx and T2(σ ) = ––
∫∫

Qσ s

∣∣Dum∣∣2 dx dt.

We now choose q1 ∈ ( 1
2 , 1) satisfying (6.9). According to the proof of [10, Proposition 6.3],

we infer from (6.16) that

T1(σ1) + T2(σ1) ≤ 1
2

T1(σ2) + γ ––
∫∫

Qs

 dx dt

+ γ
1

(σ2 – σ1) 2
α

(
––
∫∫

Qs

∣
∣Dum∣

∣2q1 dx dt
) 1

q1

+ γ
1

(σ2 – σ1) 2
α r(s)2

–
∫

�s

∣
∣λm – λ(t)m∣

∣2 dt, (6.17)
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where α = 2q1m
m+1 . It remains to treat the third term on the right-hand side of (6.17). We first

consider the case r(s) 1
m > s

r(s) . Since λ ≤ c2θ
1

1–m
s , we deduce

r(s)
1
m –1 > θs ≥ cm–1

2 λ1–m

and therefore r > c–m
2 λm. Recalling that λ(t) = (u(t))ηBr(s)

, we obtain λ(t)m+1 ≤ c(u(t)m+1)Br(s) .
Consequently, we deduce that

1
r(s)2

–
∫

�s

∣∣λm – λ(t)m∣∣2 dt ≤ 2
λ2m

r(s)2 +
2

r(s)2
–
∫

�s

λ(t)2m dt

≤ c + c
1

λ2m

(
–
∫

�s

λ(t)m+1 dt
) 2m

m+1

≤ c + c
1

λ2m

(
––
∫∫

Qs

um+1 dt
) 2m

m+1 ≤ c + c
θ

2m
1–m

s

λ2m ≤ c.

Next, we turn our attention to the case r(s) 1
m ≤ s

r(s) . We apply the inequality (5.9) from
Corollary 5.3 to obtain

1
r(s)2

–
∫

�s

∣
∣λm – λ(t)m∣

∣2 dt ≤ λ2(m–1)

r(s)2
–
∫

�s

∣
∣λ – λ(t)

∣
∣2 dt

=
λ2(m–1)

r(s)2
–
∫

�s

–
∫

�s

∣∣(u(t)
)η

Br(s)
–

(
u
(
t′))η

Br(s)

∣∣2 dt dt′

≤ γ
λ2(m–1)s2

r(s)4

(
––
∫∫

Qs

∣
∣Dum∣

∣dx dt + M0

)2

+ γ λ2(m–1)
(

––
∫∫

Qs

ψ1–m dx dt
)2

M2m
0 + γ

λ2(m–1)r(s) 2
m

r(s)2 M2
0

=: L1 + L2 + L3,

with the obvious meaning of L1, L2 and L3. We first consider the estimate for L1. From
(6.15), we get

L1 ≤ γ
s2

θ2
s r(s)4

(
––
∫∫

Qr2,s(z0)

∣
∣Dum∣

∣dx dt + M0

)2

≤ γ

(
––
∫∫

Qr2,s(z0)

∣
∣Dum∣

∣dx dt + M0

)2

.

To estimate L2, we recall that u ≥ ψ . From (6.15) and Hölder’s inequality, we obtain

L2 ≤ γ θ–2
s

(
––
∫∫

Qs

ψm+1 dx dt
) 2(1–m)

m+1
M2m

0 ≤ γ θ–2
s

(
––
∫∫

Qs

um+1 dx dt
) 2(1–m)

m+1
M2m

0

≤ γ θ–2
s θ2

s M2m
0 ≤ γ M2

0 + 1.

Finally, we address the estimate of L3. Recalling that r(s) 1
m ≤ s

r(s) , we have

L3 ≤ γ
s2

θ2
s r(s)4 M2

0 ≤ γ M2
0,
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since λ ≥ c1θ
1

1–m
s . Consequently, we arrive at

T1(σ1) + T2(σ1) ≤ 1
2

T1(σ2) + γ ––
∫∫

Qs

 dx dt

+ γ
1

(σ2 – σ1) 2
α

[(
––
∫∫

Qs

∣
∣Dum∣

∣2q1 dx dt
) 1

q1
+ M2

0 + 1
]

,

for any σ1,σ2 ∈ [ 1
2 , 1] and σ1 < σ2. Now, we apply the iteration result from [1, Lemma 2.1]

to reabsorb the first term on the right-hand side into the left. We have thus proved the
proposition. �

7 Proof of the main result
This section is devoted to the proof of Theorem 2.2. Our proof uses a certain stopping
time argument which was introduced by Gianazza and Schwarzacher [10]. However, in
the context of the obstacle problem, the argument is considerably more delicate. We first
point out that the scaling argument does not seem to work for the obstacle problem. On
the other hand, in order to use the reverse Hölder inequalities in Sect. 6, we introduce a
certain localized-centered maximal function. We adopt this kind of maximal function to
construct the superlevel sets of the gradient.

We now turn to the proof of Theorem 2.2. Recalling that we have assumed z0 = (0, 0). In
this case, the assumption (2.5) reads

sup
Q8R,64R2

(


1
m+1 +

∣∣∂tψ
1–m∣∣

1
1–m

) ≤ M0.

For simplicity of presentation, we abbreviate Q2R,4R2 to Q̂. For L � 1 to be fixed later, we
introduce a localized average function

Ts(f )(z) = ––
∫∫

Qs(z)
f χQ̂ dx dt, 0 < s ≤ L–1R2,

where f is a locally integrable function in �T . Moreover, for any f ∈ L1
loc(�T ), we define

the localized-centered maximal function as follows:

T∗(f )(z) = sup
0<s≤L–1R2

Ts(f )(z).

Next, we remark that this kind of one-parameter maximal function is different from the
Hardy–Littlewood maximal function and it is of interest to know whether f (z) ≤ T∗(f )(z)
for almost every z ∈ Q̂. This motivates us to establish the following lemma.

Lemma 7.1 For any f ≥ 0 with f ∈ L1
loc(�T ), we have

f (z) ≤ T∗(f )(z) (7.1)

for almost every z ∈ Q̂.
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Proof Our first goal is to establish the following weak type estimate:

∣∣{z ∈ Q̂ : T∗(f )(z) > λ
}∣∣ ≤ c′ ‖f ‖L1(Q̂)

λ
, (7.2)

where the constant c′ depends only on n and m. In order to prove (7.2), we note that for
any z ∈ Q̂ ∩ {T∗(f )(z) > λ} there exists sz ∈ (0, L–1R2] such that

––
∫∫

Qsz (z)
f χQ̂ dx dt >

λ

2
.

Moreover, the collection {Qsz (z) : z ∈ Q̂ ∩ {T∗(f )(z) > λ}} forms a covering of the set Q̂ ∩
{T∗(f )(z) > λ}. From Lemma 3.4, we find a countable subfamily {Qszi

(zi)}∞i=1 of pairwise
disjoint cylinders, such that

Q̂ ∩ {
T∗(f )(z) > λ

} ⊂
∞⋃

i=1

Qχszi
(zi),

where χ = χ (n, m) is the constant defined in Lemma 3.4. By Lemma 3.3(4), there exists a
constant c′ = c′(n, m) > 1 such that

∣∣{z ∈ Q̂ : T∗(f )(z) > λ
}∣∣ ≤

∞∑

i=1

∣∣Qχszi
(zi)

∣∣ ≤ c′
∞∑

i=1

∣∣Qszi
(zi)

∣∣

≤ c′

λ

∞∑

i=1

∫∫

Qszi (zi)
f χQ̂ dx dt ≤ c′ ‖f ‖L1(Q̂)

λ
,

which gives (7.2). Next, we define a sequence of localized average functions

Tj(f )(z) = ––
∫∫

Qsj (z)
f χQ̂ dx dt, j = 1, 2, . . . ,

where sj = 2–jL–1R2. Another step in the proof is to show that the sequence Tj(f ) converges
in measure on Q̂ to f . To this end, we fix ε0 > 0. For any ε > 0, we choose g ∈ C0(Q̂) such
that ‖g – f χQ̂‖L1(�T ) < 1

3c′ εε0. Furthermore, there exists an integer N0 = N0(ε0, ε, R) such
that for any j ≥ N0 we have

∣∣g(z) – g
(
z′)∣∣ ≤ 1

3
ε0 for all z′ ∈ Q

sb̂
j R1–2b̂ ,sj

(z).

From Lemma 3.3(2), we see that Qsj (z) ⊂ Q
sb̂
j R1–2b̂ ,sj

(z) and consequently

∣∣Tj(g)(z) – g(z)
∣∣ ≤ 1

3
ε0

holds for all j ≥ N0. It follows from (7.2) that for any j ≥ N0

∣∣{z ∈ Q̂ :
∣∣Tj(f )(z) – f (z)

∣∣ > ε0
}∣∣ ≤

∣
∣∣
∣

{
z ∈ Q̂ :

∣∣T∗(f – g)(z)
∣∣ >

1
3
ε0

}∣
∣∣
∣ +

3
ε0

‖f – g‖L1(Q̂)

≤ ε.
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This proves that Tj(f ) converges in measure to f . Then there exists a subsequence Tjk (f )
converging to f almost everywhere. It follows that, for almost every z ∈ Q̂,

f (z) = lim
k→∞

Tjk (f )(z) ≤ T∗(f )(z),

which completes the proof. �

Furthermore, for σ1,σ2 ∈ [1, 2] and σ1 < σ2, we define two concentric cylinders Q̂σ1 =
Qσ1R,σ 2

1 R2 and Q̂σ2 = Qσ2R,σ 2
2 R2 . We are interested in getting estimates on such concentric

cylinders. To this end, we first need the following lemma.

Lemma 7.2 Let z ∈ Q̂σ1 and L1 ≥ 1. If L1s ≤ R2 and QL1s(z) ∩ (Q̂σ2 )c �= ∅, then

––
∫∫

Qs(z)

∣∣Dum∣∣2
χQ̂ dx dt ≤ μσ1,σ2,L1 ,

where

μσ1,σ2,L1 =
γ

(σ2 – σ1)γ

(
1

R2 + ––
∫∫

Q4R,16R2

 dx dt
)

and the constant γ depends only on n, m, ν0, ν1 and L1.

The proof of Lemma 7.2 is quite similar to [10, Lemma 7.1] and so is omitted. The crucial
result in our proof of Theorem 2.2 will be the following proposition, which is analogue to
[10, Proposition 7.2].

Proposition 7.3 Fix a point z ∈ Q̂σ1 ∩ {T∗(|Dum|2)(z) > λ}. Suppose that λ ≥ λ0, where

λ0 = 3μσ1,σ2,L1 + ––
∫∫

Q4R,16R2

∣
∣Dum∣

∣2 dx dt

and L1 = 7χ . Then there exist q1 ∈ ( 1
2 , 1), L = L(n, m,ν0,ν1) > 10χ and sz ∈ (0, 2L–1R2] such

that the following holds:
(1) There exists a constant c1 = c1(n, m,ν0,ν1) such that

λ ≤ c1––
∫∫

Qsz (z)

∣∣Dum∣∣2 dx dt

≤ c1

(
––
∫∫

Q3sz (z)

∣
∣Dum∣

∣2q1 dx dt
) 1

q1
+ c1M2

0 + c1R–2 + 1. (7.3)

(2) We have 3χsz ≤ R2, Q3χsz (z) ⊂ Q̂σ2 and

––
∫∫

Q3χsz (z)

∣
∣Dum∣

∣2 dx dt ≤ c2λ, (7.4)

where the constant c2 depends only on n, m, ν0 and ν1.
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Proof The proof is adapted from [10, Proposition 7.2]. For any fixed point z ∈ Q̂σ1 ∩
{T∗(|Dum|2)(z) > λ}, we set

s′
z = sup

{
s : ––

∫∫

Qs(z)

∣∣Dum∣∣2
χQ̂ dx dt >

λ

2
, 0 < s ≤ L–1R2

}
.

It follows that

––
∫∫

Qs′z (z)

∣∣Dum∣∣2
χQ̂ dx dt ≥ λ

2
.

Therefore, by λ ≥ λ0 > 3μσ1,σ2,L1 and Lemma 7.2, we have QL1s′z (z) ⊂ Q̂σ2 . Let L2 > 4 be
a constant which will be chosen later, and assume that L ≥ 5L2 + 10χ . This implies that
(2s′

z, L2s′
z) ⊂ (0, R2].

In order to prove (7.3), we first consider the case that there exists s ∈ (2s′
z, L2s′

z) such that

––
∫∫

Qs(z)
um+1 dx dt = θs(z)

m+1
1–m .

By Lemma 3.3(5), we infer that Q2s′z (z) is intrinsic. If the cylinder Q2s′z (z) is degenerate, then
we choose sz = 2s′

z and (7.3) follows from Proposition 6.3. On the other hand, if the cylinder
Q2s′z (z) is non-degenerate, then we choose sz = s′

z and (7.3) follows from Proposition 6.4.
Next, we turn our attention to the case that the strict inequality

––
∫∫

Qs(z)
um+1 dx dt < θs(z)

m+1
1–m

holds for any s ∈ (2s′
z, L2s′

z). In this case, we set sz = s′
z and define

σz = inf

{
s : ––

∫∫

Qs(z)
um+1 dx dt = θs(z)

m+1
1–m , 2sz < s ≤ R2

}
.

By hypothesis, we see that σz ∈ [L2sz, R2] and let Qσz (z) be a sub-intrinsic cylinder con-
structed in Sect. 3. Since sz ≤ L–1

2 σz, we use Lemma 3.3(3) to obtain the decay estimate

θ2sz (z) m+1
1–m

2sz
≤

(
2
L2

) m+1
1–m β–1

θσz (z) m+1
1–m

σz
, (7.5)

where β = 1 – 2b̂ and m+1
1–mβ – 1 > 0. Next, we invoke Lemma 4.1, takes the form

λ < ––
∫∫

Qsz (z)

∣
∣Dum∣

∣2 dx dt ≤ γ
θ2sz (z) m+1

1–m

2sz
+ γ Mm+1

0 . (7.6)

In the case σz ∈ [ 1
12L R2, R2], we apply Lemma 3.3(4), (6) to obtain

θσz (z) m+1
1–m

σz
≤ 12L

R2

(
R2

σz

)2â m+1
1–m

θR2 (z)
m+1
1–m ≤ c

1
R2 .
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Combining this with (7.5) and (7.6) we find that

λ < ––
∫∫

Qsz (z)

∣
∣Dum∣

∣2 dx dt ≤ c
1

R2 + γ Mm+1
0 ,

which proves the estimate (7.3). Furthermore, we consider the case σz ∈ (L2sz, 1
12L R2). In

this case, the cylinder Qσz (z) is intrinsic and satisfies

––
∫∫

Qσz (z)
um+1 dx dt = θσs (z)

m+1
1–m .

It follows that

––
∫∫

Q σz
2

(z)
um+1 dx dt < θ σz

2
(z)

m+1
1–m ≤

(
1
2

)β m+1
1–m

θσz (z)
m+1
1–m =

(
1
2

)β m+1
1–m

––
∫∫

Qσz (z)
um+1 dx dt.

From [10, Lemma 2.4], we find that the cylinder Qσz (z) is degenerate. This enables us to
use (6.13) from the proof of Proposition 6.1. Then there exists a constant γ̂ = γ̂ (n, m,ν0,ν1)
such that

θσz (z) m+1
1–m

σz
≤ γ̂

(
––
∫∫

Q3σz (z)

∣
∣Dum∣

∣2q1 dx dt
) 1

q1
+ γ̂ M2

0 + 1 ≤ γ̂ λ + γ̂ M2
0 + 1,

since s′
z < 3σz < L–1R2. Combining this with (7.5) and (7.6) we finally arrive at

λ < ––
∫∫

Qsz (z)

∣∣Dum∣∣2 dx dt ≤ γ

(
2
L2

) m+1
1–m β–1

θσz (z) m+1
1–m

σz
+ γ Mm+1

0

≤ γ̂ γ

(
2
L2

) m+1
1–m β–1

λ + cM2
0 + 1. (7.7)

In (7.7) we choose L2 = 2(2γ γ̂ )
1

m+1
1–m β–1 and this determines the constant

L = 5L2 + 10χ = 10(2γ γ̂ )
1

m+1
1–m β–1 + 10χ .

Therefore, we can reabsorb the first term on the right-hand side of (7.7) into the left and
this proves the estimate (7.3).

On the other hand, for such a choice of L, we see immediately that

3χsz ≤ 6χs′
z ≤ 6χL–1R2 ≤ R2 and Q3χsz (z) ⊂ Q6χs′z (z) ⊂ QL1s′z (z) ⊂ Q̂σ2 .

Finally, we address the proof of (7.4). To this end, we have to distinguish two cases, whether
3χsz < L–1R2, or 3χsz ≥ L–1R2. In the case 3χsz < L–1R2, the inequality (7.4) follows directly
from the definition of s′

z. Next, we consider the second case. From Lemma 3.3(4), (6), we
obtain

θ3χsz ≤
(

R2

3χsz

)2â

θR2 ≤ cL2â and θ3χsz ≥
(

3χsz

R2

)β

θR2 ≥ L–β .
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This implies that

r(3χsz) =

√
3χsz

θ3χsz
≥ c– 1

2 L–â– 1
2 R

and consequently

––
∫∫

Q3χsz (z)

∣
∣Dum∣

∣2 dx dt ≤ c––
∫∫

Q4R,16R2

∣
∣Dum∣

∣2 dx dt ≤ cλ,

which gives (7.4). This finishes the proof of the proposition. �

With the help of Lemma 7.1 and Proposition 7.3, we are now in a position to prove the
main result. The proof follows in a similar manner as the proof of [10, Theorem 7.3] and
we just sketch the proof.

Proof of Theorem 2.2 Let λ ≥ λ′
0, where

λ′
0 = 3μσ1,σ2,L1 + ––

∫∫

Q4R,16R2

∣∣Dum∣∣2 dx dt + 16c1M2
0 + 16c1R–2 + 16 > λ0

and c1 be the constant in (7.3) from Proposition 7.3.
For any fixed z ∈ Q̂σ1 ∩ {T∗(|Dum|2)(z) > λ}, let sz be the positive number constructed in

Proposition 7.3. We note that the collection

F =
{

Q3sz (z) : z ∈ Q̂σ1 ∩ {
T∗(∣∣Dum∣

∣2)(z) > λ
}}

forms a covering of the superlevel set Q̂σ1 ∩ {T∗(|Dum|2)(z) > λ}. From Lemma 3.4, there
exists a countable subfamily {Q3szi

(zi)}∞i=1 ⊂F of pairwise disjoint sub-intrinsic cylinders,
such that {Q3χszi

(zi)}∞i=1 covers the superlevel set Q̂σ1 ∩{T∗(|Dum|2)(z) > λ}. We abbreviate
Qi = Qszi

(zi), Q∗
i = Q3szi

(zi) and Q∗∗
i = Q3χszi

(zi). Next, we choose η = (16c1)–1. Then, for
each i = 1, 2, . . . , we infer from Proposition 7.3(1) that

λq1 ≤ cq1
1

|Q∗
i |

∫∫

Q∗
i

∣∣Dum∣∣2q1
χ{|Dum|2>ηλ} dx dt +

1
2
λq1

and hence

λ
∣
∣Q∗

i
∣
∣ ≤ 2cq1

1 λ1–q1

∫∫

Q∗
i

∣
∣Dum∣

∣2q1
χ{|Dum|2>ηλ} dx dt. (7.8)

Recalling that {Q∗∗
i }∞i=1 is a covering of the set Q̂σ1 ∩ {T∗(|Dum|2)(z) > λ}, we infer from

Proposition 7.3(2), Lemma 3.3(4) and (7.8) that
∫∫

Q̂σ1 ∩{T∗(|Dum|2)(z)>λ}

∣∣Dum∣∣2 dx dt ≤ γ̄ cq1
1 λ1–q1

∫∫

Q̂σ2

∣∣Dum∣∣2q1
χ{|Dum|2>ηλ} dx dt, (7.9)

where the constant γ̄ depends only upon n, m, ν0 and ν1. Moreover, for some ε ∈ (0, 1) to
be specified later and k > λ′

0, we multiply both sides of (7.9) by λ–1+ε and integrate over
the interval (λ′

0, k) with respect to λ.



Li Boundary Value Problems        (2020) 2020:147 Page 35 of 36

To estimate a lower bound for the left-hand side of (7.9), we use the inequality (7.1)
from Lemma 7.1 to infer that Q̂σ1 ∩ {|Dum|2(z) > λ} ⊂ Q̂σ1 ∩ {T∗(|Dum|2)(z) > λ} and con-
sequently

∫ k

λ′
0

λ–1+ε

∫∫

Q̂σ1 ∩{T∗(|Dum|2)(z)>λ}

∣
∣Dum∣

∣2 dx dt dλ

≥
∫ k

λ′
0

λ–1+ε

∫∫

Q̂σ1 ∩{|Dum|2>λ}

∣∣Dum∣∣2 dx dt dλ

≥ 1
ε

∫∫

Q̂σ1

∣
∣Dum∣

∣2
min

{
k,

∣
∣Dum∣

∣2}ε dx dt –
1
ε

(
λ′

0
)ε

∫∫

Q̂σ2

∣
∣Dum∣

∣2 dx dt. (7.10)

Next, we address the estimate of the right-hand side of (7.9). We apply Fubini’s theorem
to obtain

γ̄ cq1
1

∫ k

λ′
0

λε–q1

∫∫

Q̂σ2

∣∣Dum∣∣2q1
χ{|Dum|2>ηλ} dx dt dλ

≤ γ̄ cq1
1

1 – q1
ηq1–2

∫∫

Q̂σ2

∣∣Dum∣∣2
min

{
k,

∣∣Dum∣∣2}ε dx dt. (7.11)

At this stage, we choose ε = 1–q1
2γ̄ cq1

1 ηq1–2 . Combining (7.9)–(7.11), we obtain the following
estimate:

––
∫∫

Q̂σ1

∣
∣Dum∣

∣2
min

{
k,

∣
∣Dum∣

∣2}ε dx dt

≤ 1
2

––
∫∫

Q̂σ2

∣∣Dum∣∣2
min

{
k,

∣∣Dum∣∣2}ε dx dt

+ γ

(
1

(σ2 – σ1)–γ

(
M2

0 + R–2 + 1
))ε

––
∫∫

Q4R,16R2

∣
∣Dum∣

∣2 dx dt

+ γ

(
––
∫∫

Q4R,16R2

∣∣Dum∣∣2 dx dt
)1+ε

.

Finally, we use the iteration result from [1, Lemma 2.1] to reabsorb the first term on the
right-hand side into the left, and the desired estimate (2.6) is proved by letting k → ∞.
This finishes the proof of Theorem 2.2. �

Remark 7.4 The method of the proof of higher integrability in [2, Sect. 7] has its origin in
[12]. However, unlike the case of parabolic p-Laplace equation, the sub-intrinsic cylinders
constructed for the porous medium equation are not associated with any fixed parabolic
metric. Therefore, we cannot simply use the classical results from [11] to treat this kind
of cylinders. In [2, Sect. 7.3] the authors illustrate that

lim
s↓0

––
∫∫

Q(θs)
s (z)

∣
∣Dum∣

∣2 + |F|2 dx dt =
∣
∣Dum(z)

∣
∣2 +

∣
∣F(z)

∣
∣2

holds for Ln+1-a.e. point z ∈R
n+1. But the proof of this claim relies on the techniques from

geometric measure theory (cf. [8, 2.9.1]). In the present section we only established the
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inequality (7.1) which is weaker than Lebesgue’s differentiation theorem and our approach
encompasses the proof of the existence of Lebesgue points.
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