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1 Introduction
The quasilinear operator (p, q)-Laplacian has been used to model steady-state solutions
of reaction–diffusion problems arising in biophysics, in plasma physics and in the study of
chemical reactions. These problems appear, for example, in a general reaction–diffusion
system:

ut = – div
[
D(u)∇u

]
+ h(x, u),

where D(u) = |∇u|p–2 + |∇u|q–2 is the diffusion coefficient, the function u describes a con-
centration and the reaction term h(x, u) has a polynomial form with respect to the concen-
tration u. The differential operator �p + �q is known as the (p, q)-Laplacian operator, if
p �= q, where �j, j > 1 denotes the j-Laplacian and is defined by �ju := div(|∇u|j–2∇u). It is
not homogeneous, thus some technical difficulties arise in applying the usual methods of
the theory of elliptic equations, for further details see [1, 6, 11, 12]. When p = q, we obtain
the p-Laplacian operator that was extensively studied by many authors; see [8, 14, 21–
26, 28, 33–37]. Moreover, Marano et al. [27] studied the existence of solutions for the
nonlinear elliptic problem of (p, q)-Laplacian type

⎧
⎨

⎩
–�pu – μ�qu = f (x, u), x ∈ �,

u = 0, x ∈ ∂�,
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where � ⊂ R
N (N ≥ 1) is a bounded domain with boundary of class C2, 1 < q ≤ p < N ,

μ ∈R
+
0 .

Recently, a great attention has been focused on the study of problems involving frac-
tional operators of elliptic type, both in pure mathematical research and applications in
real world, such as optimization, finance, population dynamics, minimal surfaces, water
waves, game theory and so on. The literature on fractional operators and their applica-
tions to partially differential equations is quite large; for more details, see [3, 29, 35, 42]. In
[5] authors study a new fractional Sobolev space and applications to nonlocal variational
problems with variable exponent.

Using the Leray–Schauder nonlinear alternative, Qiu et al. [30] proved the existence of
solutions for the fractional p-Laplacian problem

⎧
⎨

⎩
(–�)r

pu = f (x, u), x ∈ �,

u = 0, x ∈R
N \ �,

where � is an open bounded domain in R
N with the Lipschitz boundary, 1 < p < N

r , 0 <
r < 1 and f : � × R → R is a Carathéodory function. Also, (–�)r

p is a nonlocal nonlinear
operator known as the fractional p-Laplacian problem and is defined for u smooth enough
by

(–�)r
pu(x) = 2 lim

ε↘0

∫

RN \Bε (x)

|u(x) – u(y)|p–2(u(x) – u(y))
|x – y|N+rp dy,

for every x ∈ R
N , where Bε(x) is the ball in R

N centered at x ∈ R
N and with radius ε > 0.

We refer to [10] for the details and history of this operator. For more details on nonlocal
operators we refer to [39], where many properties of these operators are investigated. In
[13] existence and multiplicity results for fractional (p, q)-Laplacian type equations in R

N

have been studied. Very recently, Bhakta et al. [7] studied the existence of infinitely many
nontrivial weak solutions of the following fractional (p, q)-Laplacian equation:

⎧
⎨

⎩
(–�)r

pu + (–�)s
qu = θV (x)|u|m–2u + |u|p∗

r –2u + λf (x, u), x ∈ �,

u = 0, x ∈R
N \ �,

where � ⊂ R
N is a smooth bounded domain, λ, θ > 0, 0 < s < r < 1 < m < q < p < N

r , the
fractional critical exponent p∗

r is defined by

p∗
r :=

⎧
⎨

⎩

Np
N–rp if rp < N ,

∞ if rp ≥ N .

Moreover, the functions V and f satisfy in the following conditions:
(A1) V ∈ L∞(�) and there exist σ ,η > 0 such that V (x) > σ > 0 for every x ∈ � and

∫
�

V (x)|u|m dx ≤ η‖u‖m
s,m.

(A2) |f (x, t)| ≤ a1|t|α–1 + a2|t|β–1 for all x ∈ �, t ∈ R, a1, a2 > 0 and 1 < α,β < p∗
r .

(A3) There exist a3 > 0 and l ∈ (1, p) such that f (x, t)t – p∗
r F(x, t) ≥ –a3|t|l , for all x ∈ �,

t ∈R where F(x, t) =
∫ t

0 f (x, τ ) dτ .
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(A4) f (x, t) > 0 for all x ∈ �, t ∈R
+ and f (x, t) = –f (x, –t) for all x ∈ �, t ∈R.

Notice that, since f is odd in t, the energy functional I is even. It is worth noticing that
without any symmetry assumption multiplicity results for some problems are not known,
for example consider the following problem:

⎧
⎨

⎩
–�u = λu – g(u) in �,

u = 0 on ∂�,
(1.1)

where � ⊂ R
N is a bounded domain, λ ∈ R, g : R → R is a continuous function and 0 <

λ1 < λ2 < · · · denote the eigenvalues of –�. If g is odd function, then for λk < λ < λk+1

problem (1.1) has at least k pairs of distinct nontrivial solutions. If g is not odd, multiplicity
results fail (see [41, page 147]).

However, Dancer [15] showed that in general even for large enough λ one can expect no
more than four nontrivial solutions. If λ = 1, for odd nonlinearities Ambrosetti and Rabi-
nowitz [2] and Rabinowitz [31] studied this kind of problems. In this work, the methods
depend on the use of Lusternik–Schnirelman theory or rather on the concept of the genus
for symmetric sets. Hence, the fact that energy functional is even is essential for applying
these techniques. A natural and open question is to know whether the infinitely many so-
lutions hold under perturbations of the odd equation. For more details of perturbations,
we refer the interested reader to [4].

In this paper, we study a quasilinear problem, that is, a fractional (p, q)-Laplacian elliptic
problem as

⎧
⎨

⎩
(–�)r

pu + γ (–�)s
qu = λ|u|p–2u + f (x, u), x ∈ �,

u = 0, x ∈R
N \ �,

(1.2)

where � ⊂ R
N is a bounded Lipschitz domain with N ≥ 2, 0 < s < r < 1, 1 < q < p < N

r , γ > 0,
λ < λ1 where the value of λ1 is given in Sect. 3. In addition, f : �×R →R is a Carathéodory
function with regularity assumptions on �. Due to nonlocality of the operator (–�)r

p, in
this kind of problems, Dirichlet boundary condition u = 0 given in R

N \ � and not simply
on ∂�. In this case, more careful analysis is needed.

This paper is motivated by results of Servadei et al. [39], where they proved the existence
of mountain pass type solutions in a Hilbert space for

⎧
⎨

⎩
Lku = λu + f (x, u), x ∈ �,

u = 0, x ∈R
N \ �,

where λ ∈ R, Lk is a nonlocal operator and f satisfies superlinear and subcritical growth
conditions at zero and at infinity.

Here, we prove that problem (1.2) has a mountain pass type solution in the fractional
Sobolev space which is not a Hilbert space. To this aim, some definitions and propositions
are recalled in the sequel.

The norm in Lp(RN ) is

‖u‖Lp(RN ) =
(∫

RN

∣
∣u(x)

∣
∣p dx

) 1
p

.
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By [16], for any p ∈ (1,∞) and r ∈ (0, 1), the fractional Sobolev space W r,p(RN ) can be
defined as

W r,p(RN )

:=
{

u ∈ Lp(
R

N)
: u is measurable and

∫

R2N

|u(x) – u(y)|p
|x – y|N+rp dx dy < ∞

}
,

with the norm

‖u‖W r,p(RN ) :=
(∫

RN

∣
∣u(x)

∣
∣p dx +

∫

R2N

|u(x) – u(y)|p
|x – y|N+rp dx dy

) 1
p

,

where 1
|x–y|N+rp is the so-called singular kernel. Let � ⊂R

N be a bounded Lipschitz domain
with N ≥ 2. We consider the standard fractional Sobolev space

W r,p(�) :=
{

u ∈ Lp(�) :
|u(x) – u(y)|
|x – y| N

p +r
∈ Lp(� × �)

}
,

with respect to the localized norm

‖u‖W r,p(�) :=
(∫

�

∣
∣u(x)

∣
∣p dx +

∫

�×�

|u(x) – u(y)|p
|x – y|N+rp dx dy

) 1
p

.

The closure of C∞
0 (�) in W r,p(�) is denoted by W r,p

0 (�).

Remark 1.1 Notice that C∞
0 (�) is dense in W r,p

0 (�). Specially, restriction to � of any func-
tion in W r,p

0 (�) belongs to the closure of C∞
0 (�) in W r,p(�). From [8], if rp ≤ 1 for the

seminorm localized on � × � Poincaré inequality with
∫
�

|u(x)|p dx is not true.

We set Q := R
2N \ (�c × �c), where �c = R

N \ � and define

Xr,p(�)

:=
{

u : RN →R measurable : u|� ∈ Lp(�) and
∫

Q

|u(x) – u(y)|p
|x – y|N+rp dx dy < ∞

}
.

The space Xr,p(�) is endowed with the following norm:

‖u‖Xr,p(�) :=
(∫

�

∣
∣u(x)

∣
∣p dx +

∫

Q

|u(x) – u(y)|p
|x – y|N+rp dx dy

) 1
p

.

It is worth noticing that in general W r,p(�) is not the same as Xr,p(�) as � × � is strictly
contained in Q. Now, we define

Xr,p
0 (�) =

{
u ∈ Xr,p(�) : u(x) = 0 a.e. in R

N \ �
}

, (1.3)
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or equivalently as C∞
0 (�)

Xr,p(�)
. Since u = 0 in R

N \ �, the Gagliardo norm can be defined
as follows:

‖u‖Xr,p
0 (�) :=

(∫

R2N

|u(y) – u(x)|p
|y – x|N+rp dx dy

) 1
p

=
(∫

R2N

|u(x + h) – u(x)|p
|h|N+rp dx dh

) 1
p

,

for all measurable functions u : RN −→ R. Fractional Sobolev-type spaces are also called
Aronszajn, Gagliardo or Slobodeckij spaces, by the names of the ones who first introduced
them [40].

Notations: For simplicity of notations, we set ‖ · ‖p := ‖ · ‖Lp(�), X := Xr,p
0 (�), ‖ · ‖r,p :=

‖ · ‖Xr,p
0 (�) and X∗ := X–r,p′

0 (�) the dual space of X, where 1
p + 1

p′ = 1.
The natural function space to study fractional (p, q)-Laplacian problems in the nonlocal

framework is fractional Sobolev space X. It is easy to check that (X,‖ · ‖r,p) is a uniformly
convex Banach space.

Proposition 1.1 ([7, Lemma 2.2]) Let 1 < q ≤ p ≤ ∞ and 0 < s < r < 1. Assume � is a
smooth bounded domain in R

N , where N > rp. Then

‖u‖s,q ≤ C‖u‖r,p, for all u ∈ Xr,p
0 (�),

for some suitable constant C = C(|�|, N , r, s, p, q) > 0. In particular,

Xr,p
0 (�) ⊆ Xs,q

0 (�).

Here we consider the following problem:

∫

R2N

(|u(x) – u(y)|p–2(u(x) – u(y)))(v(x) – v(y))
|x – y|N+rp dx dy

+ γ

∫

R2N

(|u(x) – u(y)|q–2(u(x) – u(y)))(v(x) – v(y))
|x – y|N+sq dx dy

= λ

∫

�

∣∣u(x)
∣∣p–2u(x)v(x) dx +

∫

�

f
(
x, u(x)

)
v(x) dx, (1.4)

for all u, v ∈ X. It is clear that (1.4) is the weak formulation of (1.2). The function F is the
primitive of f and it is defined as follows:

F(x, ξ ) :=
∫ ξ

0
f (x, t) dt, (1.5)

for every (x, ξ ) ∈ � × R, then the energy functional Iλ : X → R associated with (1.2) is
defined by

Iλ(u) :=
1
p
‖u‖p

r,p +
γ

q
‖u‖q

s,q –
λ

p

∫

�

∣∣u(x)
∣∣p dx –

∫

�

F
(
x, u(x)

)
dx,

for all u ∈ X. Also we assume that the Carathéodory function f : � ×R → R satisfies the
following conditions:



Behboudi et al. Boundary Value Problems        (2020) 2020:149 Page 6 of 14

(f1) |f (x, t)| ≤ a1 + a2|t|b–1, a.e. x ∈ �, t ∈R, where a1, a2 > 0 and b ∈ (p, p∗
r ).

(f2) lim|t|→0
f (x,t)
|t|p–1 = 0 uniformly in x ∈ �.

(f3) 0 < μF(x, t) ≤ tf (x, t), a.e. x ∈ �, t ∈ R, |t| ≥ ρ , where μ > p and ρ > 0.
Here is the main result of this paper.

Theorem 1.1 Let � be an open bounded set of RN with Lipschitz boundary, 0 < s < r <
1 < q < p < N

r and λ < λ1, where the value of λ1 is given in Sect. 3. Consider the following
equation:

∫

R2N

(|u(x) – u(y)|p–2(u(x) – u(y)))(v(x) – v(y))
|x – y|N+rp dx dy

+ γ

∫

R2N

(|u(x) – u(y)|q–2(u(x) – u(y)))(v(x) – v(y))
|x – y|N+sq dx dy

= λ

∫

�

∣
∣u(x)

∣
∣p–2u(x)v(x) dx +

∫

�

f
(
x, u(x)

)
v(x) dx, (1.6)

for any v ∈ X. If f is a Carathéodory function verifying (f1)–(f3), then for every γ > 0 problem
(1.6) admits a mountain pass type solution u ∈ X which is not identically zero.

The paper is organized as follows: Sect. 2, is devoted to proving some regularities on the
space X and the function f . In Sect. 3, we recall some properties of fractional eigenvalue
problems. Finally, in Sect. 4, we show by some propositions that the conditions of the
mountain pass theorem hold and we prove the existence of a solution of problem (1.2).

2 Preliminaries
In this section, we start with some preliminary lemmas and results on X and the func-
tional f .

Lemma 2.1 ([16, Theorem 6.5]) Let r ∈ (0, 1) and p ∈ [1, +∞) be such that rp < N . Then
for every W r,p(RN )

‖u‖p
Lp∗r (RN )

≤ c
∫

R2N

|u(x) – u(y)|p
|x – y|N+rp dx dy,

where c = c(N , r, p) > 0. Consequently, W r,p(RN ) is continuously embedded in Lk(RN ) for
any k ∈ [p, p∗

r ] and the embedding W r,p(RN ) into Lk(RN ) is compact for every k ∈ [p, p∗
r [.

Remark 2.1 [19, page 159] Let 0 < r < 1 and p > 1. Then the embedding X ↪→ Lk(�) is
continuous for any k ∈ [1, p∗

r ] if N > rp, for any k ∈ [1,∞[ if N = rp and into L∞(�) if
N < rp. The embedding is compact for any k ∈ [1, p∗

r [ if N ≥ rp and into L∞(�) if N < rp.

Now, we study some properties of functional f (see Lemmas 2.2 and 2.3). The proofs of
Lemma 2.2 and Lemma 2.3 are similar to [38, Lemma 3 and Lemma 4], respectively.

Lemma 2.2 Let f : � × R → R be a Carathéodory function such that conditions (f1) and
(f2) hold. Then for any ε > 0 there exists δ = δ(ε) such that a.e. x ∈ � and for any t ∈R

∣∣f (x, t)
∣∣ ≤ pε|t|p–1 + bδ(ε)|t|b–1, (2.1)
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and hence, integrating (2.1) we get

∣∣F(x, t)
∣∣ ≤ ε|t|p + δ(ε)|t|b. (2.2)

Lemma 2.3 Suppose f : � × R → R is a Carathéodory function such that condition (f3)
holds. Then there exist two positive measurable functions m = m(x) and M = M(x) such
that a.e. x ∈ � and for any t ∈R

F(x, t) ≥ m(x)|t|μ – M(x), (2.3)

where F is defined as (1.5). Moreover, if the function f satisfies conditions (f1) and (f2), then
the functions m, M ∈ L∞(�).

3 Fractional eigenvalue problems
In this section, we consider the generalized eigenvalue problem as follows:

⎧
⎨

⎩
(–�)r

pu + γ (–�)s
qu = λ|u|j–2u, x ∈ �,

u = 0, x ∈R
N \ �,

(3.1)

where � ⊂ R
N is a smooth bounded domain, λ ∈ R, 0 < s < r < 1 < q < p, γ > 0 and j ∈

{p, q}.

Proposition 3.1 Problem

⎧
⎨

⎩
(–�)r

pu = λ|u|p–2u, x ∈ �,

u = 0, x ∈R
N \ �,

where λ ∈R, admits the first eigenvalue λ1(r, p) given by

λ1(r, p) := inf
u∈C∞

0 (�)\{0}
‖u‖p

r,p∫
�

|u|p dx
.

Notice that for every u ∈ X we get ‖u‖p
r,p ≥ λ1(r, p)

∫
�

|u|p dx and λ1(r, p) may be normal-
ized by

∫
�

|u|p dx = 1 as λ1(r, p) := infu∈C∞
0 (�)\{0} ‖u‖p

r,p. Also u is the (r, p)-eigenfunction of
λ1(r, p).

Finally, we define the concept of eigenfunction.

Definition 3.1 We say that u �= 0, u ∈ X, is a (r, p)-eigenfunction of λ1(r, p), if for all func-
tions v ∈ X

∫

R2N

(|u(x) – u(y)|p–2(u(x) – u(y)))(v(x) – v(y))
|x – y|N+rp dx dy

= λ1(r, p)
∫

�

∣∣u(x)
∣∣p–2u(x)v(x) dx.

The real number λ1(r, p) is called the (r, p)-eigenvalue.
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Set

λ1 := λ1(i, j) =

⎧
⎨

⎩
λ1(r, p) if i = r, j = p,

λ1(s, q) if i = s, j = q,

and

η1 := η1(j) = inf
u∈C∞

0 (�)\{0}

⎧
⎪⎨

⎪⎩

1
p ‖u‖p

r,p+ γ
q ‖u‖q

s,q
1
p

∫
� |u|p dx

if j = p,
1
p ‖u‖p

r,p+ γ
q ‖u‖q

s,q
1
q

∫
� |u|q dx

if j = q.
(3.2)

The number η1 is called the first generalized eigenvalue of (3.1). Notice that eigenvalues are
positive numbers. One can prove the following proposition by almost the same argument
as [17, Proposition 1].

Proposition 3.2 λ1 = η1 and the infimum of η1 in (3.2) is not attained.

Proposition 3.3 Assume that λ < λ1. Then there exist mλ, Mλ > 0 depending on λ such
that, for every u ∈ X,

mλ

(
1
p
‖u‖p

r,p +
γ

q
‖u‖q

s,q

)
≤ 1

p
‖u‖p

r,p +
γ

q
‖u‖q

s,q –
λ

p

∫

�

∣∣u(x)
∣∣p dx

≤ Mλ

(
1
p
‖u‖p

r,p +
γ

q
‖u‖q

s,q

)
, (3.3)

where the constants mλ and Mλ are mλ := min{1, 1 – λ
λ1

} and Mλ := max{1, 1 – λ
λ1

}, respec-
tively.

Proof The proof is similar to [39, Lemma 10] and it is omitted. �

4 A mountain pass type solution
Here, we study the existence of a mountain pass type solution of (1.2). Notice that problem
(1.2) has a variational structure and the functional Iλ is Fréchet differentiable for u ∈ X and
every v ∈ X,

I ′
λ(u)v =

∫

R2N

(|u(x) – u(y)|p–2(u(x) – u(y)))(v(x) – v(y))
|x – y|N+rp dx dy

+ γ

∫

R2N

(|u(x) – u(y)|q–2(u(x) – u(y)))(v(x) – v(y))
|x – y|N+sq dx dy

– λ

∫

�

∣∣u(x)
∣∣p–2u(x)v(x) dx –

∫

�

f
(
x, u(x)

)
v(x) dx.

Hence, weak solutions of (1.2) are critical points of the functional Iλ. Thus one can seek
weak solutions as critical points by applying mountain pass theorem (see [2, 32]). In order
to apply mountain pass theorem, we show that the functional Iλ satisfies in the Palais–
Smale compactness condition and has a particular geometric structure. For this purpose,
we start by proving that the functional Iλ satisfies the Palais–Smale compactness condi-
tion.
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Proposition 4.1 Suppose that λ < λ1 and f is a Carathéodory function satisfying (f1)–(f3).
Let c ∈ R and {un} be a sequence in X such that

Iλ(un) → c, (4.1)

and

sup
{∣∣≺I ′

λ(un), v�∣∣ : v ∈ X,‖v‖r,p = 1
} → 0, (4.2)

as n → +∞. Then {un} is bounded in X.

Proof Equations (4.1) and (4.2) imply there exists σ > 0 such that for any n

∣∣Iλ(un)
∣∣ ≤ σ (4.3)

and
∣
∣∣
∣≺I ′

λ(un),
un

‖un‖r,p
�

∣
∣∣
∣ ≤ σ . (4.4)

Now, by Lemma 2.2 and ε = 1 we get
∣∣∣
∣

∫

�∩{|un|≤ρ}

(
F
(
x, un(x)

)
–

1
μ

f
(
x, un(x)

)
un(x)

)
dx

∣∣∣
∣

≤
(

ρp + δ(1)ρb +
p
μ

ρp +
b
μ

δ(1)ρb
)

|�| := σ̂ . (4.5)

Applying Proposition 3.3, then by (f3) and (4.5) we have

Iλ(un) –
1
μ

≺I ′
λ(un), un� =

(
1
p

–
1
μ

)
(‖un‖p

r,p – λ‖un‖p
p
)

+ γ

(
1
q

–
1
μ

)
‖un‖q

s,q

–
1
μ

∫

�

(
μF

(
x, un(x)

)
– f

(
x, un(x)

)
un(x)

)
dx

≥
(

1
p

–
1
μ

)
mλ‖un‖p

r,p

–
∫

�∩{|un|≤ρ}

(
F
(
x, un(x)

)
–

1
μ

f
(
x, un(x)

)
un(x)

)
dx

≥
(

1
p

–
1
μ

)
mλ‖un‖p

r,p – σ̂ . (4.6)

From (4.3) and (4.4) one has

Iλ(un) –
1
μ

≺I ′
λ(un), un� ≤ σ

(
1 +

1
μ

‖un‖r,p

)
. (4.7)

By (4.6) and (4.7) for every n ∈N, we have

‖un‖p
r,p ≤ σ ∗

(
1 +

1
μ

‖un‖r,p

)
,

where σ ∗ is a suitable positive constant. Thus the proof is completed. �
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Now, we define the operator A : X → X∗ as follows:

≺A(u), v� :=
∫

R2N

(|u(x) – u(y)|p–2(u(x) – u(y)))(v(x) – v(y))
|x – y|N+rp dx dy

+ γ

∫

R2N

(|u(x) – u(y)|q–2(u(x) – u(y)))(v(x) – v(y))
|x – y|N+sq dx dy

= ≺Ap(u), v� + γ≺Aq(u), v�

for every u, v ∈ X. We know that the function u ∈ X is a weak solution of problem (1.2)
such that

≺A(u), v� = λ

∫

�

|u|p–2uv dx +
∫

�

f (x, u)v dx, for all u, v ∈ X.

By [20, 28] it is easy to observe that A verifies the compactness condition as follows:
(S) If {un} be a sequence in X such that un ⇀ u (weakly) in X and ≺A(un), un – u� → 0

as n → ∞, then un → u in X as n → ∞.
Now by property (S), one can prove the next result.

Proposition 4.2 Let f be a Carathéodory function satisfying (f1)–(f3). Let {un} be a se-
quence in X such that {un} is bounded in X and (4.2) holds. Then there exists u ∈ X such
that, up to a subsequence, ‖un – u‖r,p → 0 as n → +∞.

Proof Since X is a reflexive space and {un} is bounded in X, up to a subsequence if neces-
sary, still denoted by {un}, there exists u ∈ X such that un ⇀ u in X. By Remark 2.1, up to
a subsequence

un → u in Lk(
R

N)
, un → u a.e. in R

N , (4.8)

as n → +∞ and there exists l ∈ Lk(RN ) such that

∣∣un(x)
∣∣ ≤ l(x) a.e. in R

N , for all n ∈N, (4.9)

where k ∈ [1, p∗
r [; for instance, see [9]. By (f1), (4.8), (4.9), the fact that the map t �→ f (·, t)

is continuous in t ∈R and the dominated convergence theorem one can obtain

∫

�

f
(
x, un(x)

)
un(x) dx →

∫

�

f
(
x, u(x)

)
u(x) dx

and
∫

�

f
(
x, un(x)

)
u(x) dx →

∫

�

f
(
x, u(x)

)
u(x) dx,

as n → +∞. These yield

lim
n→∞

∫

�

f (x, un)(un – u) dx = 0. (4.10)
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Now, we recall Simon’s inequality [18]: for any ζ ,η ∈R there exists Cm > 0 such that

Cm
(|ζ |m–2ζ – |η|m–2η

)
.(ζ – η) ≥

⎧
⎨

⎩
|ζ – η|m if m ≥ 2,

|ζ – η|2(|ζ |m + |η|m) m–2
m if 1 < m < 2.

(4.11)

From (4.11), it follows that the operator A is strictly monotone. Suppose Cp,q =
max{Cp, Cq}. By inequalities (4.11), if q ≥ 2, we get

‖un – u‖p
r,p ≤ ‖un – u‖p

r,p + γ ‖un – u‖q
s,q

≤ Cp≺Apun – Apu, un – u� + Cqγ≺Aqun – Aqu, un – u�
≤ Cp,q≺Aun – Au, un – u�. (4.12)

If 1 < q < p < 2, we obtain

Cp,q≺Aun – Au, un – u� ≥ Cp≺Apun – Apu, un – u�
+ Cqγ≺Aqun – Aqu, un – u�

≥ ‖un – u‖2
r,p

(‖un‖p
r,p + ‖u‖p

r,p
) p–2

p

+ γ ‖un – u‖2
s,q

(‖un‖q
s,q + ‖u‖q

s,q
) q–2

q

≥ ‖un – u‖2
r,p

(‖un‖p
r,p + ‖u‖p

r,p
) p–2

p . (4.13)

Hence, from (4.13), we get

‖un – u‖p
r,p ≤ C

p
2

p,q
(≺Aun – Au, un – u�) p

2
(‖un‖p

r,p + ‖u‖p
r,p

) 2–p
2

≤ C
(≺Aun – Au, un – u�) p

2 , (4.14)

where C > 0 is a suitable constant. If 1 < q < 2 ≤ p, we have

Cp,q≺Aun – Au, un – u� ≥ Cp≺Apun – Apu, un – u�
+ Cqγ≺Aqun – Aqu, un – u�

≥ ‖un – u‖p
r,p

+ γ ‖un – u‖2
s,q

(‖un‖q
s,q + ‖u‖q

s,q
) q–2

q

≥ ‖un – u‖p
r,p. (4.15)

Moreover, by (4.2), (4.8) and (4.10), we obtain

≺A(un), un – u� = ≺I ′
λ(un), un – u�

+ λ‖un – u‖p
p +

∫

�

f (x, un – u)(un – u) dx → 0.

Combining (4.12), (4.14) and (4.15), by property (S), one can conclude that un → u in
X as n → ∞. �
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Now, we investigate that the functional Iλ satisfies in the geometry of mountain pass
theorem. Here, we prove two next propositions in the same ways of [39, Propositions 11
and 12].

Proposition 4.3 Assume that λ < λ1 and f is a Carathéodory function satisfying (f1) and
(f2). Then there exist ρ > 0 and α > 0 such that for any u ∈ X with ‖u‖r,p = ρ it implies that
Iλ(u) ≥ α.

Proof Let u be a function in X. From (2.2) and (3.3) for every ε > 0, we obtain

Iλ(u) ≥ 1
p
‖u‖p

r,p +
γ

q
‖u‖q

s,q –
λ

p

∫

�

∣
∣u(x)

∣
∣p dx – ε

∫

�

∣
∣u(x)

∣
∣p dx – δ(ε)

∫

�

∣
∣u(x)

∣
∣b dx

≥ mλ

p
‖u‖p

r,p – ε|�|
p∗r –p

p∗r ‖u‖p
p∗

r
– δ(ε)|�|

p∗r –b
p∗r ‖u‖b

p∗
r
. (4.16)

By the fact that Lp∗
r (�) ↪→ Lp(�) and Lp∗

r (�) ↪→ Lb(�) are continuous (max{p, b} = b < p∗
r )

and thanks to Remark 2.1, from (4.16) for every ε > 0, we get

Iλ(u) ≥mλ

p
‖u‖p

r,p – εc|�|
p∗r –p

p∗r ‖u‖p
r,p – δ(ε)c

b
p |�|

p∗r –b
p∗r ‖u‖b

r,p

=
(

mλ

p
– εc|�|

p∗r –p
p∗r

)
‖u‖p

r,p – δ(ε)c
b
p |�|

p∗r –b
p∗r ‖u‖b

r,p. (4.17)

Choosing ε > 0 such that mλ – pεc|�|
p∗r –p

p∗r > 0, from (4.17) one has

Iλ(u) ≥ β‖u‖p
r,p

(
1 – θ‖u‖b–p

r,p
)
,

for some positive constants β and θ . Let u in X such that ‖u‖r,p = ρ > 0. Since b > p, by
choosing ρ small enough, that is, choosing ρ such that 1 – θρb–p > 0, we get

inf
u∈X,‖u‖r,p=ρ

Iλ(u) ≥ βρp(1 – θρb–p) := α > 0.

Thus the proof is completed. �

Proposition 4.4 Suppose λ < λ1 and f is a Carathéodory function satisfying (f1)–(f3). Then
there exists e ∈ X such that e ≥ 0 a.e. in R

N with ‖e‖r,p > ρ and Iλ(e) < α, where ρ and α

are given in Proposition 4.3.

Proof Let u ∈ X be fixed such that ‖u‖r,p = 1 and u ≥ 0 a.e. in R
N . Also, suppose t > 0,

from Lemma 2.3 and Proposition 3.3, we get

Iλ(tu) =
1
p

∫

R2N

|tu(x) – tu(y)|p
|x – y|N+rp dx dy +

γ

q

∫

R2N

|tu(x) – tu(y)|q
|x – y|N+sq dx dy

–
λ

p

∫

�

∣
∣tu(x)

∣
∣p dx –

∫

�

F
(
x, tu(x)

)
dx

≤ Mλ

p
tp +

Mλ

q
γ tq‖u‖q

s,q – tμ

∫

�

m(x)
∣
∣u(x)

∣
∣μ dx +

∫

�

M(x) dx.
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Since μ > p, as t → +∞, we get Iλ(tu) → –∞. Thus we can conclude the assertion by
e = τu such that τ is enough large. �

Propositions 4.3 and 4.4 imply the geometry of the mountain pass theorem. Thus we are
ready to present the proof of Theorem 1.1.

Proof of Theorem 1.1 Since Propositions 4.1–4.4 hold, the mountain pass theorem admits
that there exists a critical point u ∈ X of Iλ. Moreover,

Iλ(u) ≥ α > 0 = Iλ(0),

so u �= 0. Then the existence of one weak solution u ∈ X (i.e. a mountain pass type solution)
is proved. �
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