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Abstract
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1 Introduction
In this paper, we study the following initial boundary value problem of nonlinear fractional
partial integro-differential equations of mixed type with non-instantaneous impulses:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂
∂t u(x, t)) =

∫ t
0

(t–s)α–2

�(α–1)
∂2

∂x2 u(x, s) ds + f (t, u(x, t),Gu(x, t),Su(x, t)),

t ∈ (sk , tk+1], k = 0, 1, . . . , m,

u(0, t) = u(π , t) = 0, t ∈ [0, b],

u(x, t) = lk(t, u(x, t)), t ∈ (tk , sk], k = 1, 2, . . . , m,

u(x, 0) = ϕ(x), x ∈ [0,π ],

(1.1)

where α ∈ (1, 2), f : [0, b] × R
3 → R, lk : [0, b] × R → R, k = 1, 2, . . . , m, ϕ ∈ L2([0,π ]), G

and S are defined by

Gu(x, t) =
∫ t

0
K

(
t, s, u(x, s)

)
ds, Su(x, t) =

∫ b

0
H

(
t, s, u(x, s)

)
ds, (1.2)

K : D×R→R+ andH : D0 ×R→ R+ are continuous and nonlinear functions, D = {(t, s) ∈
R

2 : 0 ≤ s ≤ t ≤ b}, D = {(t, s) ∈ R
2 : 0 ≤ t, s ≤ b}, R+ = [0, +∞). The pre-fixed numbers si
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and ti satisfy 0 = s0 < t1 ≤ s1 < t2 ≤ · · · < tm ≤ sm < tm+1 = b. The operator G is an inte-
gral with variable upper limit, the operator H is an ordinary definite integral. Therefore,
problem (1.1) is called the mixed type integro-differential equations.

The theory of differential equations with instantaneous impulses often describes some
processes which have a sudden change in their states at certain times, especially in biol-
ogy, dynamics, physics, engineering etc. In recent years, a lot of researchers have obtained
numerous good results about the fractional differential equations, for example, see [1–17]
and the references therein. In [1, 5], the authors studied the stability for impulsive systems;
in [2–4, 6, 13, 14], the authors studied the existence results for impulsive differential equa-
tions. Yan [7], Chen, Zhang, and Li [8, 11] studied the approximate controllability of the
fractional evolution equations.

Meanwhile, fractional differential equations with non-instantaneous impulsive effects
have been applied widely as mathematical models to consider many phenomena in bi-
ology, dynamics, physics, control model, etc., see [18–24] and the references therein. In
[18], Hernandez and O’Regan firstly studied the integer differential equations with non-
instantaneous impulses. In [19, 20], Chen, Zhang, and Li studied the non-autonomous
evolution equations with non-instantaneous impulses and obtained the main results of
the existence. In [21–24], the authors studied the controllability for the fractional differ-
ential systems with non-instantaneous impulses. In [25–27], the authors studied the ini-
tial boundary value problem for time fractional partial differential equations with delay
and discussed the existence and uniqueness of the mild solutions. In [28, 29], the authors
also studied the differential equations of mixed type. Guo [28] studied the existence and
uniqueness of the following integer nonlinear integro-differential equations of mixed type
in a Banach space E:

⎧
⎨

⎩

u′(t) = f (t, u(t),Gu(t),Su(t)), t ∈ (0, a],

u(0) = u0,
(1.3)

where

Gu(x, t) =
∫ t

0
K(t, s)u(x, s) ds, Su(x, t) =

∫ a

0
H(t, s)u(x, s) ds, (1.4)

the kernels K and H are linear functions. Chen, Zhang, and Li [19] studied the existence
of the following fractional non-autonomous integro-differential evolution equations of
mixed type:

⎧
⎨

⎩

cDα
t (t) + A(t)u(t) = f (t, u(t),Gu(t),Su(t)), t ∈ (0, a],

u(0) = A–1(0)u0,
(1.5)

where the operators G and S are the same as in (1.4), and the kernels K and H are also
linear functions.

To the best of our knowledge, we have not found the relevant results that study the initial
boundary value problem for the fractional partial integro-differential equations of mixed
type with non-instantaneous impulses. Therefore, motivated by the above-mentioned pa-
pers, we study the existence of PC-mild solutions for problem (1.1). In this paper, the ker-
nels K and H of the operators G and S are nonlinear functions. The nonlinear term f
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satisfies the Lipschitz condition, where the Lipschitz coefficients are Lebesgue integrable
functions. In the proof of the main results by the general Banach contraction mapping
principle, we do not need extra conditions to ensure the contraction coefficients less than
one. Our main results of this paper generalize and improve some corresponding results.

2 Preliminaries
Let E = L2([0,π ]) be a Banach space, J = [0, b], C(J , E) = {u : J → E is continuous},
PC(J , E) = {u : J → E : u ∈ C((sk , tk+1], E), and there exist u(t+

k ) and u(t–
k ) with u(t–

k ) =
u(tk), k = 1, 2, . . . , m} with the PC-norm ‖u‖PC = sup{‖u(t)‖ : t ∈ J}. A : D(A) ⊂ E → E de-
fined by Au = ∂2

∂x2 u with the domain D(A) = {u ∈ E : u′′ ∈ E, u(0) = u(π ) = 0}, then A is a
sectorial operator of type μ. Let u(x, t) = u(·, t),

f
(
t, u(x, t),Gu(x, t),Su(x, t)

)
= f

(
t, u(·, t),Gu(·, t),Su(·, t)

)
, t ∈ J ,

u0 = ϕ(·),

then problem (1.1) can be rewritten as the following abstract form (2.1):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d
dt u(t)) =

∫ t
0

(t–s)α–2

�(α–1) Au(s) ds + f (t, u(t),Gu(t),Su(t)),

t ∈ (sk , tk+1], k = 0, 1, . . . , m,

u(t) = lk(t, u(t)), t ∈ (tk , sk], k = 1, 2, . . . , m,

u(0) = u0.

(2.1)

If there exist constant 0 < θ < π/2, M̃ > 0, μ ∈ R such that its resolvent exists outside the
sector

μ + Tθ :=
{
μ + s : λ ∈C,

∣
∣arg(–λ)

∣
∣ < θ

}
,

∥
∥(λ – A)–1∥∥ ≤ M̃

|λ – μ| , λ /∈ μ + Tθ ,

then the operator A is called sectorial operator of type μ, where the linear operator A in
problem (2.1) is sectorial of type μ with 0 < θ < π (1 – α/2).

Definition 2.1 ([30]) Let A be a closed and linear operator with domain D(A) defined
on a Banach space E. If there exist a real number μ and a strongly continuous function
Tα : R+ →L(E) such that

{
λα : Reλ > μ

} ⊂ ρ(A)

and

λα–1(λα – A
)–1u =

∫ ∞

0
e–λtTα(t)u dt, Re(λ) > μ, u ∈ E,

where L(E) means the space of bounded linear operators from E to E, then Tα(t) is called
the α-order solution operator generated by A.
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Definition 2.2 A function u ∈ PC(J , E) is called a PC-mild solution of Eqs. (2.1), if u(0) =
u0, and

u(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Tα(t)u0 +
∫ t

0 Tα(t – s)f (s, u(s),Gu(s),Su(s)) ds, t ∈ [0, t1],

lk(t, u(t)), t ∈ (tk , sk], k = 1, 2, . . . , m,

Tα(t – sk)lk(sk , u(sk)) +
∫ t

sk
Tα(t – s)f (s, u(s),Gu(s),Su(s)) ds,

t ∈ (sk , tk+1], k = 1, 2, . . . , m.

(2.2)

Lemma 2.1 ([31, 32]) Let 0 < 
 < 1, γ > 0,

S = 
n + C1
n


n–1γ +
C2

n

n–2γ 2

2!
+ · · · +

γ n

n!
, n ∈N.

Then, for all constant 0 < ξ < 1 and all real number s > 1, we get

S ≤ O
(

ξn
√

n

)

+ o
(

1
ns

)

= o
(

1
ns

)

, n → +∞.

Lemma 2.2 (Krasnoselskii’s fixed point theorem) Let D be a bounded closed and convex
subset of a Banach space E, and let 
1, 
2 be maps of D into E such that 
1x + 
2y ∈ D
for all x, y ∈ D. If 
1 is a contraction and 
2 is completely continuous, then the operator

1 + 
2 has a fixed point on D.

3 Main results
We assume that there exists a constant M > 0 such that ‖Tα‖ ≤ M for all t ∈ J . Define an
operator 
 : PC(J ; E) → PC(J ; E) by

(
u)(t) = (
1u)(t) + (
2u)(t), (3.1)

where

(
1u)(t) =

⎧
⎪⎪⎨

⎪⎪⎩

Tα(t)u0, t ∈ [0, t1],

lk(t, u(t)), t ∈ (tk , sk], k = 1, 2, . . . , m,

Tα(t – sk)lk(sk , u(sk)), t ∈ (sk , tk+1], k = 1, 2, . . . , m,

(3.2)

(
2u)(t) =

⎧
⎪⎪⎨

⎪⎪⎩

∫ t
0 Tα(t – s)f (s, u(s),Gu(s),Su(s)) ds, t ∈ [0, t1],

0, t ∈ (tk , sk], k = 1, 2, . . . , m,
∫ t

sk
Tα(t – s)f (s, u(s),Gu(s),Su(s)) ds, t ∈ (sk , tk+1], k = 1, 2, . . . , m.

(3.3)

Firstly, we give the following hypotheses:
(H1) The function f : J × E3 → E is continuous and there exist nonnegative Lebesgue

integrable functions li ∈ L1(J ,R+) (i = 1, 2, 3) such that, for all t ∈ J , ui, vi ∈ E (i = 1, 2, 3),
we have

∥
∥f (t, u1, u2, u3) – f (t, v1, v2, v3)

∥
∥ ≤

3∑

i=1

li(t)‖ui – vi‖.
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(H ′
1) The function f : J ×E3 → E is continuous, for a constant r > 0, there exist a positive

constant 
, a Lebesgue integrable function ψ ∈ L1(J ,R+), and a continuous nondecreasing
function � : R+ → (0, +∞) such that, for any t ∈ J and ui ∈ E (i = 1, 2, 3), we have

‖ui‖ ≤ r,
∥
∥f (t, u1, u2, u3)

∥
∥ ≤ ψ(t)�(r), lim inf

r→+∞
�(r)

r
:= 
 < +∞.

(H2) The functions lk : J × E → E are continuous and there exist nonnegative constants
llk such that, for all t ∈ J , u, v ∈ E, we have

∥
∥lk(t, u) – lk(t, u)

∥
∥ ≤ llk ‖u – v‖, k = 1, 2, . . . , m.

(H3) The functions K : J × J × E → E and H : J × J × E → E are continuous, and there
exist nonnegative constants lK, lH such that, for all t, s ∈ J , u, v ∈ E, we have

∥
∥K(t, s, u) – K(t, s, v)

∥
∥ ≤ lK‖u – v‖,

∥
∥H(t, s, u) – H(t, s, v)

∥
∥ ≤ lH‖u – v‖.

Theorem 3.1 If hypotheses (H1)–(H3) hold and 0 ≤ τ < 1 (τ = max{llk , Mllk }), then prob-
lem (2.1) has a unique PC-mild solution u∗ ∈ PC(J , E), which means that problem (1.1) has
a unique PC-mild solution.

Proof For any u, v ∈ PC(J , E), by (3.2) we have

∥
∥(
1u)(t) – (
1v)(t)

∥
∥ ≤

⎧
⎪⎪⎨

⎪⎪⎩

0, t ∈ [0, t1],

τ‖u – v‖PC , t ∈ (tk , sk], k = 1, 2, . . . , m,

τ‖u – v‖PC , t ∈ (sk , tk+1], k = 1, 2, . . . , m,

(3.4)

which means

∥
∥(
1u)(t) – (
1v)(t)

∥
∥ ≤ τ‖u – v‖PC ,

where t ∈ [0, t1] ∪ (tk , sk] ∪ (sk , tk+1], k = 1, 2, . . . , m. Then we obtain

∥
∥
(

2

1u
)
(t) –

(

2

1v
)
(t)

∥
∥ ≤ τ 2‖u – v‖PC ,

where t ∈ [0, t1] ∪ (tk , sk] ∪ (sk , tk+1], k = 1, 2, . . . , m. It is clear that we have

∥
∥
(

n

1u
)
(t) –

(

n

1v
)
(t)

∥
∥ ≤ τ n‖u – v‖PC , (3.5)

where t ∈ [0, t1] ∪ (tk , sk] ∪ (sk , tk+1], k = 1, 2, . . . , m.
For any real number 0 < ε < 1, there exists a continuous function φ(s) such that

∫ b
0 |l(s) –

φ(s)|ds < ε, where l(s) = M(l1(s) + blKl2(s) + blHl3(s)) is a Lebesgue integrable function. For
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any t ∈ [0, t1], u, v ∈ PC(J ; E), by hypotheses H1, H3 and formula (3.3), we have

∥
∥(
2u)(t) – (
2v)(t)

∥
∥

≤
∫ t

0
Tα(t – s)‖f (s, u(s),Su

(
(s)V

)
– f (s, v(s),Gv(s),Sv

(
(s)

)‖ds

≤
∫ t

0
M

(
l1(s) + blKl2(s) + blHl3(s)

)∥
∥u(s) – v(s)

∥
∥ds

≤
∫ t

0
l(s) ds‖u – v‖PC

≤
(∫ t

0

∣
∣l(s) – φ(s)

∣
∣ds +

∫ t

0

∣
∣φ(s)

∣
∣ds

)

‖u – v‖PC

≤ (ε + νt)‖u – v‖PC

=
(

C0
1ε

1 + C1
1

(νt)1

1!

)

‖u – v‖PC ,

(3.6)

where maxt∈J |φ(t)| = ν . Assume that, for any natural number k, we have

∥
∥
(

k

2u
)
(t) –

(

k

2v
)
(t)

∥
∥ ≤

(

C0
kε

k + C1
kε

k–1 (νt)1

1!
+ · · · + Ck

k ε
k–k (νt)k

k!

)

‖u – v‖PC . (3.7)

By the formula Cm
k+1 = Cm

k + Cm–1
k and (3.7), we get

∥
∥
(

k+1

2 u
)
(t) –

(

k+1

2 v
)
(t)

∥
∥

≤
∫ t

0
M

∥
∥f

(
s,

(

k

2u
)
(s),G

(

k

2u
)
(s),S

(

k

2u
)
(s)

)

– f
(
s,

(

k

2v
)
(s),G

(

k

2v
)
(s),S

(

k

2v
)
(s)

)∥
∥ds

≤
∫ t

0
M

(
l1(s) + blKl2(s) + blHl3(s)

)∥
∥
(

k

2u
)
(s) –

(

k

2v
)
(s)

∥
∥ds

=
∫ t

0
l(s)

∥
∥
(

k

2u
)
(s) –

(

k

2v
)
(s)

∥
∥ds

≤
(∫ t

0

∣
∣l(s) – φ(s)

∣
∣

(

C0
kε

k + C1
kε

k–1 (νs)1

1!
+ · · · + Ck

k ε
k–k (νs)k

k!

)

ds
)

‖u – v‖PC

+
(∫ t

0

∣
∣φ(s)

∣
∣

(

C0
kε

k + C1
kε

k–1 (νs)1

1!
+ · · · + Ck

k ε
k–k (νs)k

k!

)

ds
)

‖u – v‖PC

≤ ε

(

C0
kε

k + C1
kε

k–1 (νt)1

1!
+ · · · + Ck

k ε
k–k (νt)k

k!

)

‖u – v‖PC

+ ν

∫ t

0

(

C0
kε

k + C1
kε

k–1 (νs)1

1!
+ · · · + Ck

k ε
k–k (νs)k

k!

)

ds‖u – v‖PC

≤
(

C0
k+1ε

k+1 + C1
k+1ε

k (νt)1

1!
+ · · · + Ck+1

k+1ε
(k+1)–(k+1) (νt)k+1

(k + 1)!

)

‖u – v‖PC .



Zhu et al. Boundary Value Problems        (2020) 2020:154 Page 7 of 12

By mathematical methods of induction, for any natural number n, we get

∥
∥
n

2u – 
n
2v

∥
∥

PC ≤
(

C0
nε

n + C1
nε

n–1 ς1

1!
+ · · · + Cn

nεn–n ςn

n!

)

‖u – v‖PC , (3.8)

where ς = νb. By Lemma 2.1, we have

∥
∥
n

2u – 
n
2v

∥
∥

PC ≤
[

O
(

ηn
√

n

)

+ o
(

1
hλ

)]

‖u – v‖PC

= o
(

1
nλ

)

‖u – v‖PC , (n → +∞),
(3.9)

where 0 < η < 1, λ > 1. It is easy to see that the above Eq. (3.9) holds for t ∈ (sk , tk+1], k =
1, 2, . . . , m. By (3.5) and (3.9), we obtain

∥
∥
nu – 
nv

∥
∥

PC ≤
(

τ n + o
(

1
nλ

))

‖u – v‖PC , ∀n > n0.

Thus, for any fixed constant λ > 1, we can find a positive integer n0 such that, for any
n > n0, we get 0 < τ n + 1

nλ < 1. Therefore, for any u, v ∈ PC(J , E), we have

∥
∥
nu – 
nv

∥
∥

PC ≤
(

τ n +
1

nλ

)

‖u – v‖PC ≤ ‖u – v‖PC , ∀n > n0.

By the general Banach contraction mapping principle, we get that the operator 
 defined
by (3.1) has a unique fixed point u∗ ∈ PC(J , E), which means that problem (1.1) has a
unique PC-mild solution. �

Remark 3.1 In Theorem 3.1, we prove the existence and uniqueness of the PC-mild so-
lutions for problem (1.1) using the general Banach contraction mapping principle. Note
that we do not need extra conditions to ensure the contraction constant 0 < k < 1 for the
operator 
2. Therefore, Theorem 3.1 improves some results that have been studied by the
Banach contraction mapping principle.

Theorem 3.2 Assume that the solution operator Tα(t) (t ∈ J) generated by A is compact
and functions lk (k = 1, 2, . . . , m) are bounded. If hypotheses (H ′

1), (H2), and (H3) hold, then
problem (2.1) has at least one PC-mild solution u∗ ∈ PC(J , E), which means that problem
(1.1) has at least one PC-mild solution provided that

� (
� + L) < 1, (3.10)

where

� = max{1, M}, L = max
k=1,2,...,m

llk , � = max
k=0,1,...m

‖ψ‖L1([sk ,tk+1],R+).

Proof Step 1. We prove that there exists a positive constant R such that the operator

(BR) ⊂ BR. If the judgment is not right, then for any positive constant r, there would
exist ur ∈ Br and tr ∈ J such that ‖(
ur)‖ > r.
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If tr ∈ [0, t1], then by (3.1) and (H ′
1), we have

∥
∥(
ur)(tr)

∥
∥ ≤ ∥

∥Tα(tr)u0
∥
∥ +

∥
∥
∥
∥

∫ tr

0
Tα(tr – s)f

(
s, u(s),Gu(s),Su(s)

)
ds

∥
∥
∥
∥

≤ M‖u0‖ + M
∫ tr

o
�(r)ψ(s) ds

≤ M(‖u0‖ + �(r)‖ψ‖L1([0,t)1],R+).

(3.11)

If tr ∈ (tk , sk], k = 1, 2, . . . , m, then by (3.1) and (H2), we have

∥
∥(
ur)(tr)

∥
∥ ≤ ∥

∥lk
(
tr , ur(tr)

)∥
∥ ≤ llk

∥
∥ur(tr)

∥
∥ +

∥
∥lk(tr , θ )

∥
∥ ≤ Lr + M∗, (3.12)

where M∗ = maxk=1,2,...,m supt∈J ‖lk(tr , θ )‖.
If tr ∈ (sk , tk+1], k = 1, 2, . . . , m, then by (3.1), (H ′

1), and (H2), we have

∥
∥(
ur)(tr)

∥
∥ ≤ ∥

∥Tα(tr – sk)lk
(
sk , ur(sk)

)∥
∥

+
∥
∥
∥
∥

∫ tr

sk

Tα(tr – s)f
(
s, ur(s),Gur(s),Sur(s)

)
ds

∥
∥
∥
∥

≤ M
(
llk

∥
∥ur(sk)

∥
∥ +

∥
∥lk(sk , θ )

∥
∥
)

+ M
∫ tr

sk

�(r)ψ(s) ds

≤ M(Lr + M∗ + �(r)‖ψ‖L1([0,t)1],R+).

(3.13)

We know that the inequality ‖(
ur)(tr)‖ > r holds, by (3.10)–(3.13), we get

r <
∥
∥(
ur)(tr)

∥
∥ ≤ �

(‖u0‖ + �(r)� + Lr + M∗), (3.14)

then

1 <
‖(
ur)(tr)‖

r
≤ � (‖u0‖ + �(r)� + Lr + M∗)

r
. (3.15)

Let r → +∞, we have � (
� + L) ≥ 1, which contradicts (3.10). Thus, we have that the
operator 
(BR) ⊂ BR.

Step 2. We prove that 
1 : BR → BR is a contraction map. For t ∈ [0, t1] and u, v ∈ BR, by
(3.2) we have

∥
∥(
1u)(t) – (
1v)(t)

∥
∥ = 0. (3.16)

For t ∈ (tk , sk], k = 1, 2, . . . , m, and u, v ∈ BR, by (3.2) and (H2), we have

∥
∥(
1u)(t) – (
1v)(t)

∥
∥ ≤ llk

∥
∥u(t) – v(t)

∥
∥ ≤ L‖u – v‖PC . (3.17)

For t ∈ (sk , tk+1], k = 1, 2, . . . , m, and u, v ∈ BR, by (3.2) and (H2), we have

∥
∥(
1u)(t) – (
1v)(t)

∥
∥ ≤ � llk

∥
∥u(t) – v(t)

∥
∥ ≤ �L‖u – v‖PC . (3.18)
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By (3.16)–(3.18), for any u, v ∈ BR, we have

‖
1u – 
1v‖PC ≤ �L‖u – v‖PC . (3.19)

From (3.10) we know that the operator 
1 : BR → BR is a contraction map.
Step 3. We prove that 
2 is a continuous operator in BR. Let {un}∞0 ⊂ BR, and un → u ∈

BR. By (H ′
1) and (H3), we have

f
(
s, un(s),Gun(s),Sun(s)

) → f
(
s, u(s),Gu(s),Su(s)

)
, n → ∞, s ∈ J . (3.20)

For any s ∈ J , by (H1), we get

∥
∥f

(
s, un(s),Gun(s),Sun(s)

)
– f

(
s, u(s),Gu(s),Su(s)

)∥
∥ ≤ 2ψR(s), n → ∞, s ∈ J , (3.21)

where the function 2ψR(s) is Lebesgue integrable for s ∈ [0, t1] and t ∈ (sk , tk+1], k =
1, 2, . . . , m. Using the Lebesgue dominated convergence theorem and (3.3), (3.20), (3.21),
for t ∈ [0, t1], we have

∥
∥(
2un)(t) – (
2u)(t)

∥
∥

≤ M
∫ t

0

∥
∥f

(
s, un(s),Gun(s),Sun(s)

)
– f

(
s, u(s),Gu(s),Su(s)

)∥
∥ds

→ 0 as n → ∞.

(3.22)

For t ∈ (sk , tk+1], k = 1, 2, . . . , m, we have

∥
∥(
2un)(t) – (
2u)(t)

∥
∥

≤ M
∫ t

sk

∥
∥f

(
s, un(s),Gun(s),Sun(s)

)
– f

(
s, u(s),Gu(s),Su(s)

)∥
∥ds

→ 0 as n → ∞.

(3.23)

From (3.22) and (3.23), for s ∈ [0, t1] and t ∈ (sk , tk+1], k = 1, 2, . . . , m, we have

‖
2un – 
2u‖PC → 0 as n → ∞.

Thus, 
2 is a continuous operator in BR.
Step 4. We prove that the operator 
2 : BR → BR is compact. Firstly, we prove that

{(
2u)(t) : u ∈ BR} is relatively compact in E for any t ∈ [0, t1] and t ∈ (sk , tk+1], k =
1, 2, . . . , m. For any fixed t (0 < t ≤ t1) and 0 < ε < t, let u ∈ BR and define

(
2,εu)(t) =
∫ t–ε

0
Tα(t – s)f

(
s, u(s),Gu(s),Su(s)

)
ds.
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Due to the compactness of Tα(t), the set {(Q2,εu)(t) : u ∈ BR} is relatively compact in E for
all ε (0 < ε < t). For any u ∈ BR, we get

∥
∥(
2u)(t) – (
2,εu)(t)

∥
∥ ≤

∥
∥
∥
∥

∫ t

t–ε

Tα(t – s)f
(
s, u(s),Gu(s),Su(s)

)
ds

∥
∥
∥
∥

≤ M
(R)
∫ t

t–ε

ψR(s) ds → 0 as ε → 0,

which means that the set {(
2u)(t) : u ∈ BR} is totally bounded. Therefore, the set
{(
2u)(t) : u ∈ BR} is relatively compact in E. Similar to the proof for t ∈ [0, t1], we can
prove that 
2(BR)(t) ⊂ E, t ∈ (sk , tk+1], k = 1, 2, . . . , m, is precompact.

Secondly, we prove that 
2(BR) is equicontinuous. Case 1. For [0, t1], let 0 ≤ τ1 < τ2 ≤ t1,
u ∈ BR,

∥
∥(
2u)(τ2) – (
2u)(τ1)

∥
∥ ≤

∥
∥
∥
∥

∫ τ1

0

(
Tα(τ2 – s) – Tα(τ1 – s)

)
f
(
s, u(s),Gu(s),Su(s)

)
ds

∥
∥
∥
∥

+
∥
∥
∥
∥

∫ τ2

τ1

Tα(τ2 – s)f
(
s, u(s),Gu(s),Su(s)

)
ds

∥
∥
∥
∥

≤ sup
s∈[0,t1]

∥
∥Tα(τ2 – s) – Tα(τ1 – s)

∥
∥�(R)

∫ τ1

0
ψR(s) ds

+ 2M�(R)
∫ τ2

τ1

ψR(s) ds.

The operator Tα(t) is compact, which means that the operator Tα(t) is continuous in the
sense of uniform operator topology. Thus, ‖(
2u)(τ2) – (
2u)(τ1)‖ → 0 as τ2 → τ1.

Case 2. For (sk , tk+1] (k = 1, 2, . . . , m), let sk ≤ τ1 < τ2 ≤ tk+1, u ∈ BR. Similar to the proof
for Case 1, we have ‖(
2u)(τ2) – (
2u)(τ1)‖ → 0 as τ2 → τ1. Thus, 
2(BR) is equicontin-
uous. By the Arzelá–Ascoli theorem, we get that 
2 : BR → BR is completely continuous.
Therefore, by Lemma 2.2 we get that the operator 
 has a fixed point u∗ in BR, which is
a PC- mild solution of problem (2.1). It implies that problem (1.1) has a PC-mild solution
on the interval [0, b]. �

4 Conclusion
In this paper, we turn the initial boundary value problem for the fractional partial integro-
differential equations of mixed type with non-instantaneous impulses into the abstract
form. The kernels K and H of the operators G and S are nonlinear functions. The nonlin-
ear term f satisfies the Lipschitz condition, where the Lipschitz coefficients are Lebesgue
integrable functions. The main results are obtained via general Banach contraction map-
ping principle, Krasnoselskii’s fixed point theorem, and α-order solution operator. In the
proof of the main results by the general Banach contraction mapping principle, we do
not need extra conditions to ensure the contraction coefficients less than one. Our main
results of this paper generalize and improve some corresponding results.
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