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Abstract
We consider the following coupled fractional Schrödinger system:

{
(–�)su + λ1u =μ1|u|2p–2u + β|v|p|u|p–2u,
(–�)sv + λ2v =μ2|v|2p–2v + β|u|p|v|p–2v in R

N ,

with 0 < s < 1, 2s < N ≤ 4s and 1 + 2s
N < p < N

N–2s , under the following constraint:

∫
RN

|u|2 dx = a21 and
∫
RN

|v|2 dx = a22.

Assuming that the parameters μ1, μ2, a1, a2 are fixed quantities, we prove the
existence of normalized solution for different ranges of the coupling parameter β > 0.
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1 Introduction
In this paper, we consider the following fractional Schrödinger system with 1 + 2s

N < p <
N

N–2s and2s < N ≤ 4s:

⎧⎨
⎩(–�)su + λ1u = μ1|u|2p–2u + β|v|p|u|p–2u,

(–�)sv + λ2v = μ2|v|2p–2v + β|u|p|v|p–2v
in R

N , (1)

under the constraint∫
RN

|u|2 dx = a2
1 and

∫
RN

|v|2 dx = a2
2. (2)

The parameters μ1 > 0, μ2 > 0 and β > 0.
More precisely, we analyze the existence of solutions (λ1,λ2, u, v) ∈ R

2 × Hs(RN ) ×
Hs(RN ) to the system (1) satisfying the additional condition (2) for different ranges of the
coupling parameter β > 0.
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Condition (2) is called the normalization condition, which imposes a normalization on
the L2-masses of u and v. The solutions to the system (1) under the constraint (2) are
usually referred as normalized solutions. In order to obtain the solution to the system (1)
satisfying the normalization condition (2), one need to consider the critical point with
the Ha (see (4)). Then λ1 and λ2 appear as Lagrange multipliers with respect to the mass
constraint, which cannot be determined a priori, but are part of the unknown.

The normalized solutions of nonlinear Schrödinger equations and systems have gradu-
ally attracted the attention of a large number of researchers in recent years, both for the
pure mathematical research and in view of its very important applications in many phys-
ical problems; see for more details [1–4].

On the one hand, for the nonlinear Schrödinger equation with s = 1, in [5], the author
studied existence and properties of ground states for the nonlinear Schrödinger equation
with combined power nonlinearities p, q which satisfy 2 < q ≤ 2 + 4

N ≤ p, p �= q. In [6], the
author studied existence and properties of ground states for the nonlinear Schrödinger
equation with combined power nonlinearities q, 2∗.

On the other hand, for the nonlinear Schrödinger system with s = 1, Thomas et al. [3] re-
cently proved the existence of positive solutions for the system with any arbitrary number
of components in three-dimensional space. In [7], the authors considered the existence of
multiple positive solutions to the nonlinear Schrödinger systems set on H1(RN )×H1(RN ).
In [8], the authors proved the existence of solutions (λ1,λ2, u, v) ∈ R

2 × H1(R3) × H1(R3)
to systems of coupled Schrödinger equations.

The fractional Schrödinger equation is introduced by Laskin [9, 10] through expanding
the Feynman path integral from Brownian-like to Lévy-like mechanical paths. The path
integral over the Lévy-like quantum-mechanical paths allows one to develop the gener-
alization of the quantum mechanics. The existence of normalized solution for fractional
Schrödinger system is an interesting problem.

The fractional Laplacian (–�)s with s ∈ (0, 1) of a function f : RN → R is expressed by
the formula

(–�)sf (x) = CN ,s P.V.
∫
RN

f (x) – f (z)
|x – z|N+2s dz,

where P.V. stands for the Cauchy principal value, and CN ,s is a normalization constant.
It can also be defined as a pseudo-differential operator

F
(
(–�)sf

)
(ξ ) = |ξ |2sF (f )(ξ ) = |ξ |2sf̂ (ξ ),

where F is the Fourier transform. For more details about the fractional Laplacian we refer
to [11–15] and the references therein. The nature function space associated with (–�)s in
N dimension is

Hs(
R

N)
:=

{
u

∣∣∣ ∫
R2N

|u(x) – u(z)|2
|x – z|N+2s dx dz < +∞ and

∫
RN

∣∣u(x)
∣∣2 dx < +∞

}
,

equipped with the norm

‖u‖Hs(RN ) =
(∫

RN

∣∣(–�)
s
2 u

∣∣2 dx +
∫
RN

|u|2 dx
) 1

2
,
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where, by the Fourier transform,

∫
RN

∣∣(–�)
s
2 u

∣∣2 dx =
∫
RN

|ξ |2sû(ξ )2dξ =
∫
RN

(–�)su · u dx

= CN ,s

∫
RN

∫
RN

(u(x) – u(z))u(x)
|x – z|N+2s dz dx

=
CN ,s

2

∫
R2N

|u(x) – u(z)|2
|x – z|N+2s dz dx.

The energy functional associated with (1) is

E(u, v) =
1
2

∫
RN

(∣∣(–�)
s
2 u

∣∣2 +
∣∣(–�)

s
2 v

∣∣2)dx

–
1

2p

∫
RN

(
μ1|u|2p + 2β|u|p|v|p + μ2|v|2p)dx

(3)

on the constraint Ha1 × Ha2 . For a ∈R
+, we define

Ha :=
{

u ∈ Hs(
R

N)
:
∫
RN

|u|2 dx = a2
}

. (4)

We prove the existence of normalized solution for different ranges of the coupling pa-
rameter β > 0. Our first main theorem, which is the generalization of the corresponding
result (s = 1, N = 3, p = 2) given in [3], it stated as follows.

Theorem 1.1 Assume 0 < s < 1, 2s < N ≤ 4s and 1 + 2s
N < p < N

N–2s . Let a1, a2, μ1 and μ2 > 0
be fixed, and let β1 > 0 be defined by

max

{
1

a
4ps–2(p–1)N

(p–1)N–2s
1 μ

2s
(p–1)N–2s
1

,
1

a
4ps–2(p–1)N

(p–1)N–2s
2 μ

2s
(p–1)N–2s
2

}

=
1

a
4ps–2(p–1)N

(p–1)N–2s
1 (μ1 + β1)

2s
(p–1)N–2s

+
1

a
4ps–2(p–1)N

(p–1)N–2s
2 (μ2 + β1)

2s
(p–1)N–2s

.
(5)

If 0 < β < β1, then (1) has a solution (λ̃1, λ̃2, ũ, ṽ) with (ũ, ṽ) on the constraint Ha1 × Ha2 ,
such that λ̃1, λ̃2 > 0 and ũ and ṽ are both positive and radial.

For the next result, we introduce a Pohozaev-type constraint as follows:

F :=
{

(u, v) ∈ Ha1 × Ha2 : G(u, v) = 0
}

, (6)

where

G(u, v) =
∫
RN

(∣∣(–�)
s
2 u

∣∣2 +
∣∣(–�)

s
2 v

∣∣2)dx

–
(p – 1)N

2ps

∫
RN

(
μ1|u|2p + 2β|u|p|v|p + μ2|v|2p)dx.

(7)
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We define a Rayleigh-type quotient as

R(u, v) :=
R0(

∫
RN (|(–�) s

2 u|2 + |(–�) s
2 v|2) dx)

(p–1)N
(p–1)N–2s

(
∫
RN (μ1|u|2p + 2β|u|p|v|p + μ2|v|2p) dx)

2s
(p–1)N–2s

, (8)

where

R0 =
(p – 1)N – 2s

2(p – 1)N

(
2ps

(p – 1)N

) 2s
(p–1)N–2s

. (9)

Theorem 1.2 Assume 0 < s < 1, 2s < N ≤ 4s and 1 + 2s
N < p < N

N–2s . Let a1, a2, μ1 and μ2 > 0
be fixed, and let β2 > 0 be defined by

min

{
1

a
4ps–2(p–1)N

(p–1)N–2s
1 μ

2s
(p–1)N–2s
1

,
1

a
4ps–2(p–1)N

(p–1)N–2s
2 μ

2s
(p–1)N–2s
2

}

=
(a2

1 + a2
2)

(p–1)N
(p–1)N–2s

(μ1a2p
1 + 2β2ap

1ap
2 + μ2a2p

2 )
2s

(p–1)N–2s
.

(10)

If β > β2, then (1) has a solution (λ̄1, λ̄2, ū, v̄) with (ū, v̄) on the constraint Ha1 × Ha2 , such
that λ̄1, λ̄2 > 0 and ū and v̄ are both positive and radial. Moreover, (λ̄1, λ̄2, ū, v̄) is a solution
in the sense that

E(ū, v̄) = inf
{

E(u, v) : (u, v) ∈ F
}

= inf
(u,v)∈Ha1 ×Ha2

R(u, v)

holds.

Remark 1.1 In the system (1) with prescribed L2 constraint, the problem appears to be
more complicated as the Lagrange multipliers λi are also need to be determined simulta-
neously. The exponent 2p ∈ (2 + 4s

N , 2N
N–2s ) brings another difficulty as it is L2-supercritical

and E(u, v) is unbounded from below on the L2 constraint. To overcome these difficulties,
the idea introduced by Jeanjean in [3, 16] can be adopted to our system: A minimax ar-
gument can be applied to E, allowing one to construct a Palais–Smale sequence on the
constraint satisfying the Pohozaev identity in limit sense. This leads to the boundedness
of the Palais–Smale sequence. Some a priori estimates on λi and a Liouville-type result
for the fractional Laplacian (Lemma 2.7) ensure Hs-convergence of the Palais–Smale se-
quence.

We do not know if the results are still true in high dimensions. Since u ∈ Hs(RN ), when
the Liouville-type result is applied, we require that 2 ≤ N

N–2s to get our results. It should
be interesting to consider the problem in high dimension, even in the Laplacian case.

Remark 1.2 The quantities β1 given in (5) and β2 given in (10) are complicated, however,
when N = 3, s = 1, p = 2, the condition (5) becomes

max

{
1

a2
1μ

2
1

,
1

a2
2μ

2
2

}
=

1
a2

1(μ1 + β1)2 +
1

a2
2(μ2 + β1)2 ,
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and (10) becomes

(a2
1 + a2

2)3

(μ1a4
1 + 2βa2

1a2
2 + μ2a4

2)2 = min

{
1

a2
1μ

2
1

,
1

a2
2μ

2
2

}
,

which are the conditions given in [3].

The paper is organized as follows. In Sect. 2, we introduce some important lemmas. In
Sect. 3, we prove Theorem 1.1 and in Sect. 4, the proof of Theorem 1.2 is given.

2 Preliminaries
In this section, we will show some facts about the fractional NLS equation, which are used
later. First, we need the fractional Gagliardo–Nirenberg–Sobolev inequality, which can be
found in [12, 13]. For the reader’s convenience, we give the proof here.

Lemma 2.1 (The fractional Gagliardo–Nirenberg–Sobolev inequality)

∫
RN

|u|α+2 dx ≤ Copt

(∫
RN

∣∣(–�)
s
2 u

∣∣2 dx
) Nα

4s
(∫

RN
|u|2 dx

) α(2s–N)
4s +1

. (11)

Here N > 2s, 0 < α < 4s
N–2s and Copt > 0 denotes the sharp constant (depending on α, N and

s).

Proof We consider the “Weinstein functional” given by

J(u) =
(
∫
RN |(–�) s

2 u|2 dx) Nα
4s (

∫
RN |u|2 dx)

α(2s–N)
4s +1∫

RN |u|α+2 dx

defined for u ∈ Hs(RN ) with u �≡ 0. Set uλ,μ = μu(λx), then we can obtain

J
(
uλ,μ)

= J(u),
∥∥uλ,μ∥∥2

2 = λ–Nμ2‖u‖2
2,

∥∥(–�)
s
2 uλ,μ∥∥2

2 = λ2s–Nμ2∥∥(–�)
s
2 u

∥∥2
2.

Since J(u) > 0, there exists a minimizing sequence {un}∞n=1 ⊂ Hs(RN ) ∩ Lα+2(RN ). There-
fore, it follows that 0 ≤ η = infu∈Hs(RN )\{0} J(u) = limn→∞ J(un) < ∞. Since

∫
RN |(–�) s

2 ×
|u||2 dx ≤ ∫

RN |(–�) s
2 u|2 dx, we may assume that un ≥ 0. By Schwarz symmetrization, we

may also assume that un = un(|x|). If we take λn = ( ‖un‖2
2

‖(–�)
s
2 un‖2

2
) 1

2s , μn = (‖u‖2)
2s
N –1

(‖(–�)
s
2 un‖2)

2s
N

, then
we can obtain a sequence vn = uλn ,μn satisfying

0 ≤ vn = vn
(|x|) ∈ Hs(

R
N)

, ‖vn‖2
2 = 1,∥∥(–�)vn

∥∥2
2 = 1, J(vn) ↓ η as n → ∞.

Since {vn} is bounded in Hs(RN ), there exists a v such that vn ⇀ v weakly in Hs(RN ). Be-
cause of the radial symmetry of vn, by Sobolev embedding, we can obtain vn → v strongly
in Lα+2(RN ). By weak convergence, we have ‖v‖2

2 ≤ 1 and ‖(–�) s
2 v‖2

2 ≤ 1. Hence

η ≤ J(v) ≤ 1∫
RN |v|α+2 = lim

n→∞ J(vn) = η.
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Therefore ‖v‖2
2 = ‖(–�) s

2 v‖2
2 = 1, hence vn → v strongly in Hs(RN ), this also proves that

η > 0.
Since v minimizes the functional J , it follows that v satisfies the Euler–Lagrange equation

d
dε

∣∣∣∣
ε=0

J(v + εϕ) = 0 for all ϕ ∈ C∞
0

(
R

N)
.

By applying ‖v‖2
2 = ‖(–�) s

2 v‖2
2 = 1, then we can derive that

Nα

2s

∫
RN

(–�)
s
2 v(–�)

s
2 ϕ dx +

(
α(2s – N)

2s
+ 2

)∫
RN

vϕ dx

– η(α + 2)
∫
RN

(|v|α+1ϕ
)

dx = 0,

for all ϕ ∈ C∞
0 (RN ). Therefore v satisfies

Nα

4s
(–�)sv +

(
α(2s – N)

4s
+ 1

)
v = η

(
α

2
+ 1

)
|v|α+1.

Taking v̂ = [η( α
2 + 1)]– 1

α v, it satisfies

Nα

4s
(–�)sv̂ +

(
α(2s – N)

4s
+ 1

)
v̂ = |v̂|α+1.

Let C–1
opt = infu�=0 J(u). Then the inequality is established. �

It is well known that, when N > 2s,

Hs(
R

N)
↪→ Lp(

R
N)

, for all 2 ≤ p ≤ 2N
N – 2s

. (12)

Consider the general fractional Laplacian equation

(–�)su = f (u) in R
N (13)

with f ∈ C2(R). Assume that u ∈ Hs(RN ) ∩ L∞(RN ) is a solution to (13), the Pohozaev
identity for (13) is proved in [17].

Theorem 2.2 ([17]) Let u ∈ Hs(RN ) ∩ L∞(RN ) be a solution to (13) and F(u) ∈ L1(RN ).
Then

(N – 2s)
∫
RN

uf (u) dx = 2N
∫
RN

F(u) dx, (14)

where F(u) =
∫ u

0 f (t) dt.

Let us consider the scalar problem

⎧⎪⎪⎨
⎪⎪⎩

(–�)sw + w = |w|2p–2w in R
N ,

w > 0 in R
N ,

w(0) = max w and w ∈ Hs(
R

N)
.

(15)
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It is shown in [13] that there is a unique positive radial solution w0 ∈ Hs(RN ) ∩ L∞(RN ) to
(15) for 1 < p < N

N–2s and N > 2s; see Proposition 3.1 in [13].
We set

C0 :=
∫
RN

|w0|2 dx and C1 :=
∫
RN

|w0|2p dx. (16)

By the Pohozaev identity for (15), we can get
∫
RN

∣∣(–�)
s
2 w0

∣∣2 dx =
(p – 1)N

2ps

∫
RN

|w0|2p dx =
(p – 1)NC1

2ps
. (17)

Remark 2.1 For the constant Copt in Gagliardo–Nirenberg–Sobolev inequality (11) with
α = 2p – 2, it can be evaluated by w0

1
Copt

= inf
u∈Hs\{0}

(
∫
RN |(–�) s

2 u|2 dx)
(p–1)N

2s (
∫
RN |u|2 dx)

2ps–(p–1)N
2s∫

RN |u|2p dx

=
(
∫
RN |(–�) s

2 w0|2 dx)
(p–1)N

2s C
2ps–(p–1)N

2s
0

C1

=
( (p–1)N

2ps C1)
(p–1)N

2s C
2ps–(p–1)N

2s
0

C1

=
C

2ps–(p–1)N
2s

0 C
(p–1)N–2s

2s
1

( 2ps
(p–1)N )

(p–1)N
2s

,

which implies that

Copt =
( 2ps

(p–1)N )
(p–1)N

2s

C
2ps–(p–1)N

2s
0 C

(p–1)N–2s
2s

1

. (18)

For a,μ > 0 fixed, we search for (λ, w) ∈R× Hs(RN ), with λ > 0 in R, solving

⎧⎪⎪⎨
⎪⎪⎩

(–�)sw + λw = μ|w|2p–2w in R
N ,

w > 0 in R
N ,

w(0) = max w and
∫
RN |w|2 dx = a2.

(19)

Solutions to (19) can be found as the critical points of Iμ : Hs(RN ) →R, defined by

Iμ(w) =
∫
RN

(
1
2
∣∣(–�)

s
2 w

∣∣2 –
μ

2p
|w|2p

)
dx, (20)

constrained on the L2-sphere Ha := {u ∈ Hs(RN ) :
∫
RN |u|2 = a2}, and λ appears as the La-

grange multiplier. It is well known that it can be obtained from w0 by scaling.

Lemma 2.3 Equation (19) has a unique positive solution (λa,μ, wa,μ) defined by

λa,μ :=
[

1
μ

(
C0

a2

)p–1] 2s
(p–1)N–2s

, wa,μ :=
(

C2s
0

μN a4s

) 1
2(p–1)N–4s

w0
(
λ

1
2s
a,μx

)
.
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Furthermore, wa,μ satisfies

∫
RN

∣∣(–�)
s
2 wa,μ

∣∣2 dx =
(p – 1)N

2ps
C1C

2ps–(p–1)N
(p–1)N–2s

0

μ
2s

(p–1)N–2s a
4ps–2(p–1)N

(p–1)N–2s
, (21)

∫
RN

|wa,μ|2p dx =
C1C

2ps–(p–1)N
(p–1)N–2s

0

μ
(p–1)N

(p–1)N–2s a
4ps–2(p–1)N

(p–1)N–2s
, (22)

Iμ(wa,μ) =
(p – 1)N – 2s

4ps
C1C

2ps–(p–1)N
(p–1)N–2s

0

μ
2s

(p–1)N–2s a
4ps–2(p–1)N

(p–1)N–2s
. (23)

Proof We can directly check that wa,μ satisfies the equation (19) with λ = λa,μ and wa,μ is
the unique positive radial solution of (19) by [13]. By direct calculation,

∫
RN

|wa,μ|2p dx =
C

2ps–(p–1)N
(p–1)N–2s

0

μ
(p–1)N

(p–1)N–2s a
4ps–2(p–1)N

(p–1)N–2s

∫
RN

|w0|2p dx,

we get (22). We have

∫
RN

∣∣(–�)
s
2 wa,μ

∣∣2 dx =
C

2ps–(p–1)N
(p–1)N–2s

0

μ
2s

(p–1)N–2s a
4ps–2(p–1)N

(p–1)N–2s

∫
RN

∣∣(–�)
s
2 w0

∣∣2 dx

and combined with (17), we get (21). Combining (21) and (22), we obtain (23). �

Let us introduce the set

P(a,μ) :=
{

w ∈ Ha :
∫
RN

∣∣(–�)
s
2 w

∣∣2 dx =
(p – 1)Nμ

2ps

∫
RN

|w|2p dx
}

. (24)

When 1 + 2s
N < p < N

N–2s , we have the following lemma.

Lemma 2.4 Assume that 1 + 2s
N < p < N

N–2s , if w is a solution of (19), then w ∈ P(a,μ). In
addition the positive solution of (19) minimizes Iμ on P(a,μ).

Proof Let (w,λ) ∈ Ha ×R be a solution of (19). By the Pohozaev identity (14),

(N – 2s)
∫
RN

∣∣(–�)
s
2 w

∣∣2 dx = 2N
(

–
λ

2

∫
RN

|w|2 dx +
μ

2p

∫
RN

|w|2p dx
)

,

and combined with∫
RN

∣∣(–�)
s
2 w

∣∣2 dx + λ

∫
RN

|w|2 dx = μ

∫
RN

|w|2p dx,

we get
∫
RN

∣∣(–�)
s
2 w

∣∣2 dx =
(p – 1)Nμ

2ps

∫
RN

|w|2p dx, (25)

thus, w ∈P(a,μ).
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In the following, we prove that the positive solution wa,μ of (19) minimizes Iμ onP(a,μ).
For any u ∈P(a,μ), by the Gagliardo–Nirenberg–Sobolev inequality (11) and the fact that
‖u‖L2 = a, we have

∫
RN

|u|2p dx ≤ Copta
2ps–(p–1)N

s

(∫
RN

∣∣(–�)
s
2 u

∣∣2 dx
) (p–1)N

2s
. (26)

Together with (24), we obtain

(∫
RN

∣∣(–�)
s
2 u

∣∣2 dx
) (p–1)N–2s

2s ≥ 2ps

(p – 1)NμCopta
2ps–(p–1)N

s
.

Therefore, for any u ∈P(a,μ),

Iμ(u) =
(p – 1)N – 2s

2(p – 1)N

∫
RN

∣∣(–�)
s
2 u

∣∣2 dx

≥ (p – 1)N – 2s
2(p – 1)N

(
2ps

(p – 1)NμCopta
2ps–(p–1)N

s

) 2s
(p–1)N–2s

.
(27)

It is clear that equality in (27) is obtained by wa,μ due to the Pohozaev identity (14) and
the fact that Copt is achieved by wa,μ (see [13]). Therefore

Iμ(wa,μ) = inf
u∈P(a,μ)

Iμ(u). �

Lemma 2.5 For 1 + 2s
N < p < N

N–2s , let u ∈ Ha be arbitrary but fixed. Define (l � u)(x) :=
e Nsl

2 u(eslx), then we have
(i) ‖(–�) s

2 (l � u)‖L2 → 0 and Iμ(l � u) → 0 as l → –∞,
(ii) ‖(–�) s

2 (l � u)‖L2 → +∞ and Iμ(l � u) → –∞ as l → +∞,
(iii) fu(l) = Iμ(l � u) reaches its unique maximum value at l(u) ∈R with

l(u) � u ∈P(a,μ).

Proof By direct calculation, we have

‖l � u‖L2 = a and
∥∥(–�)

s
2 (l � u)

∥∥
L2 = es2l∥∥(–�)

s
2 u

∥∥
L2 ,

thus, ‖(–�) s
2 (l � u)‖L2 → 0 as l → –∞, and ‖(–�) s

2 (l � u)‖L2 → +∞ as l → +∞.
Now we compute fu(l),

fu(l) = Iμ(l � u) =
∫
RN

1
2
∣∣(–�)

s
2 (l � u)

∣∣2 –
μ

2p
|l � u|2p dx

=
e2s2l

2
∥∥(–�)

s
2 u

∥∥2
L2 –

e(p–1)Nsl

2p
μ‖u‖2p

L2p ,
(28)
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thus, Iμ(l � u) → 0 as l → –∞. Due to p > 1 + 2s
N , we have Iμ(l � u) → –∞ as l → +∞. (i),

(ii) are proved. To show the third claim, by (28), we have

f ′
u(l) = s2e2s2l∥∥(–�)

s
2 u

∥∥2
L2 –

(p – 1)Nsμ
2p

e(p–1)Nsl‖u‖2p
L2p

= s2∥∥(–�)
s
2 (l � u)

∥∥2
L2 –

(p – 1)Nsμ
2p

‖l � u‖2p
L2p .

(29)

Therefore f ′
u(l) = 0 is equivalent to

es[(p–1)N–2s]l =
‖(–�) s

2 u‖2
L2

(p–1)Nμ

2ps ‖u‖2p
L2p

. (30)

So there exists a unique l0 ∈ R such that f ′
u(l)|l=l0 = 0 and l0 � u ∈ P(a,μ). Furthermore,

we have

f ′′
u (l)|l=l0 =

(
2s4e2s2l∥∥(–�)

s
2 u

∥∥2
L2 –

(p – 1)2N2s2μ

2p
e(p–1)Nsl‖u‖2p

L2p

)∣∣∣∣
l=l0

=
(
2s – (p – 1)N

)e(p–1)Nsl0

2p
s2(p – 1)Nμ‖u‖2p

L2p

< 0.

Note that

f ′
u(l) =

⎧⎪⎪⎨
⎪⎪⎩

> 0 if l < l0,

= 0 if l = l0,

< 0 if l > l0.

This implies that fu(l) gets its unique maximum value at l0(u). If u ∈P(a,μ), then, by (30),
l0 = 0. �

When μ0 = (C0/a2)p–1 in (19), by Lemma 2.3, λa,μ0 = 1, i.e., wa,μ0 is the unique positive
solution of the following equation:

⎧⎨
⎩(–�)sw + w = μ0|w|2p–2w in R

N ,

w(0) = max w, and
∫
RN |w|2 dx = a2,

(31)

and hence is a minimizer of Iμ0 on P(a,μ0). Our next result shows that this level can also
be characterized as the infimum of a Rayleigh-type quotient.

Lemma 2.6

inf
u∈P(a,μ0)

Iμ0 (u) = inf
u∈Ha

R(u), (32)
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where

R(u) :=
R0(

∫
RN |(–�) s

2 u|2 dx)
(p–1)N

(p–1)N–2s

(μ0
∫
RN |u|2p dx)

2s
(p–1)N–2s

,

and R0 is defined in (9).

Proof If u ∈P(a,μ0), then

2ps
∫
RN |(–�) s

2 u|2 dx
(p – 1)Nμ0

∫
RN |u|2p dx

= 1 and Iμ0 (u) =
(

1
2

–
s

(p – 1)N

)∫
RN

∣∣(–�)
s
2 u

∣∣2 dx. (33)

Therefore,

Iμ0 (u) =
(

1
2

–
s

(p – 1)N

)∫
RN

∣∣(–�)
s
2 u

∣∣2 dx
( 2ps

∫
RN |(–�) s

2 u|2 dx
(p – 1)Nμ0

∫
RN |u|2p dx

) 2s
(p–1)N–2s

,

= R(u),

which proves that

inf
u∈P(a,μ0)

Iμ0 (u) ≥ inf
u∈Ha

R(u).

On the other hand, for all l ∈ R and u ∈ Ha, direct calculation shows that

R(u) = R(l � u).

By Lemma 2.5, we know that, for u ∈ Ha arbitrary but fixed, there exists a unique l0(u) ∈R

such that l0(u)�u ∈P(a,μ0), and Iμ0 (l�u) reaches its unique maximum at l0(u)�u. Hence,
for every u ∈ Ha, we have

R(u) = R
(
l0(u) � u

)
= Iμ0

(
l0(u) � u

) ≥ inf
v∈P(a,μ0)

Iμ0 (v),

which proves that

inf
u∈P(a,μ0)

Iμ0 (u) ≤ inf
u∈Ha

R(u). �

Next, we give a Liouville-type result for fractional Laplacian. A similar Liouville-type
result for Laplacian can be found in [18].

Lemma 2.7 Let u ∈ Hs(RN ) with N > 2s,
(i) If u satisfies

⎧⎪⎪⎨
⎪⎪⎩

(–�)su ≥ 0 in R
N ,

u ∈ Lq(
R

N)
, q ∈ (0, N

N–2s ],

u ≥ 0,

then u ≡ 0.
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(ii) If u satisfies

⎧⎨
⎩(–�)su ≥ uq in R

N ,

u ≥ 0, and q ∈ (1, N
N–2s ],

then u ≡ 0.

Proof We prove (i) by contradiction. If u �≡ 0, by the maximum principle, we have u > 0 in
R

N . Let v(x) = 1
|x|N–2s u( x

|x|2 ), then v(x) > 0 in R
N \ {0}, and v(x) satisfies

(–�)sv(x) =
1

|x|N+2s (–�)su
(

x
|x|2

)
in R

N \ {0},

so (–�)sv ≥ 0 in the distribution sense. Since u ∈ Hs(RN ) ⊂ L2s(RN ), where

L2s
(
R

N)
=

{
w(x) : RN →R

∣∣∣ ∫
RN

|w(x)|
1 + |x|N+2s dx < +∞

}
,

we can see that v ∈ L2s(RN ). By Theorem 1 in [19], there exists a constant C > 0 such that

inf
|x|< 1

2

v(x) ≥ C.

Therefore, we obtain

u(x) ≥ C
|x|N–2s , |x| > 2.

For q ∈ (0, N
N–2s ], we can compute

∫
RN

uq dx ≥ C
∫

|x|>2

1
|x|(N–2s)q dx ≥ C

∫
|x|>2

1
|x|N dx = +∞,

which is a contradiction to u ∈ Lq(RN ). So u ≡ 0.
To prove (ii), let ϕ be the first eigenfunction of

⎧⎨
⎩(–�)sϕ = λ1ϕ in B1(0),

ϕ ≡ 0 in Bc
1(0),

where B1(0) is the unit ball in R
N , ϕ > 0 in B1(0) and λ1 > 0 is the first eigenvalue of (–�)s

in B1(0). For any R > 0 but fixed, let ϕR(x) = ϕ( x
R ), then

⎧⎨
⎩(–�)sϕR = R–2sλ1ϕR in BR(0),

ϕR ≡ 0 in Bc
R(0).
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We can compute

∫
BR(0)

uqϕR dx =
∫
RN

uqϕR dx ≤
∫
RN

(–�)suϕR dx

=
∫
RN

(–�)sϕRu dx =
∫

BR(0)
uR–2sλ1ϕR dx +

∫
Bc

R(0)
(–�)sϕRu dx

≤
∫

BR(0)
uR–2sλ1ϕR dx ≤ R–2sλ1

(∫
BR(0)

uqϕR dx
) 1

q
(∫

BR(0)
ϕR dx

)1– 1
q

,

in the above, we have use the fact that (–�)sϕR < 0 in Bc
R(0). Therefore

∫
BR(0)

uqϕR dx ≤ CR– 2sq
q–1

∫
RN

ϕR dx ≤ CR
N(q–1)–2sq

q–1 . (34)

When q ∈ (1, N
N–2s ), we have

min
B 1

2
(0)

ϕ ·
∫

B R
2

(0)
uq dx ≤

∫
RN

uqϕR dx ≤ CR
N(q–1)–2sq

q–1 → 0, as R → ∞.

So we have u ≡ 0.
When q = N

N–2s , we have

min
B 1

2
(0)

ϕ ·
∫

B R
2

(0)
uq dx ≤

∫
RN

uqϕR dx ≤ C for all R > 0,

with C independent of R by (34), so u ∈ Lq(RN ). By (i), we obtain u ≡ 0. �

3 Proof of Theorem 1.1
In this section, we give the proof of Theorem 1.1. We work in a radial setting. That is, we
find the critical point of the functional E constrained on Hrad

a1 × Hrad
a2 , where for any a > 0,

we define

Hrad
a := Ha ∩ Hs

r
(
R

N)
,

and Hs
r (RN ) is the subset of Hs(RN ) containing all the functions which are radial with

respect to the origin. We know that Hs
r (RN ) ↪→ Lp(RN ) is compact when 2 < p < 2N

N–2s .
Due to the Palais principle of symmetric criticality, the critical points of E constrained on
Hrad

a1 × Hrad
a2 are true critical points of E constrained in the full product Ha1 × Ha2 .

For a1, a2, μ1 and μ2 > 0, let β1 > 0 be defined by (5).

Lemma 3.1 For 0 < β < β1,

inf
{

E(u1, u2) : (u1, u2) ∈P(a1,μ1 +β)×P(a2,μ2 +β)
}

> max
{

Iμ1 (wa1,μ1 ), Iμ2 (wa2,μ2 )
}

,

where Iμi (wai ,μ1 ), i = 1, 2 is defined by (23).
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Proof For (u1, u2) ∈P(a1,μ1 + β) ×P(a2,μ2 + β)}, we have

E(u1, u2) =
∫
RN

(
1
2
∣∣(–�)

s
2 u1

∣∣2 –
μ1

2p
|u1|2p

)
dx

+
∫
RN

(
1
2
∣∣(–�)

s
2 u2

∣∣2 –
μ2

2p
|u2|2p

)
dx –

β

p

∫
RN

|u1|p|u2|p dx

≥ Iμ1 (u1) + Iμ2 (u2) –
β

2p

∫
RN

|u1|2p dx –
β

2p

∫
RN

|u2|2p dx

= Iμ1+β (u1) + Iμ2+β (u2)

≥ inf
u∈P(a1,μ1+β)

Iμ1+β (u) + inf
v∈P(a1,μ1+β)

Iμ2+β (v)

= Iμ1+β (wa1,μ1+β ) + Iμ2+β (wa2,μ2+β ),

by Lemma 2.4. From (23) and (5), it is easy to get, when 0 < β < β1,

max
{

Iμ1 (wa1,μ1 ), Iμ2 (wa2,μ2 )
}

= max

{
(p – 1)N – 2s

4ps
C1C

2ps–(p–1)N
(p–1)N–2s

0

μ1
2s

(p–1)N–2s a
4ps–2(p–1)N

(p–1)N–2s
1

,
(p – 1)N – 2s

4ps
C1C

2ps–(p–1)N
(p–1)N–2s

0

μ2
2s

(p–1)N–2s a
4ps–2(p–1)N

(p–1)N–2s
2

}

< Iμ1+β (wa1,μ1+β ) + Iμ2+β (wa2,μ2+β ).

Therefore,

inf
{

E(u1, u2) : (u1, u2) ∈P(a1,μ1 + β) ×P(a2,μ2 + β)
}

> max
{

Iμ1 (wa1,μ1 ), Iμ2 (wa2,μ2 )
}

. �

Now we fix 0 < β < β1 and choose ε > 0 such that

inf
{

E(u1, u2) : (u1, u2) ∈P(a1,μ1 + β) ×P(a2,μ2 + β)
}

> max
{

Iμ1 (wa1,μ1 ), Iμ2 (wa2,μ2 )
}

+ ε.
(35)

Denote

w1 := wa1,μ1+β and w2 := wa2,μ2+β , (36)

and, for i = 1, 2,

ϕi(l) := Iμi (l � wi) and ϕ̃i(l) :=
∂

∂l
Iμi+β (l � wi). (37)

Lemma 3.2 For i = 1, 2, there exist ρi < 0 and Ri > 0, depending on ε and β , such that
(i) 0 < ϕi(ρi) < ε and ϕi(Ri) ≤ 0;

(ii) ϕ̃i(l) > 0 for any l < 0, ϕ̃i(0) = 0 and ϕ̃i(l) < 0 for any l > 0. In particular, ϕ̃i(ρi) > 0 and
ϕ̃i(Ri) < 0.
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Proof By Lemma 2.4 and Lemma 2.5, we have

ϕi(l) =
∫
RN

(
1
2
∣∣(–�)

s
2 (l � wi)

∣∣2 –
μi

2p
|l � wi|2p

)
dx

=
e2s2l

2
∥∥(–�)

s
2 wi

∥∥2
L2 –

e(p–1)Nsl

2p
μi‖wi‖2p

L2p

=
(

(p – 1)N(μi + β)
2ps

e2s2l

2
–

e(p–1)Nsl

2p
μi

)
‖wi‖2p

L2p ,

thus, ϕi(l) → 0+ as l → –∞, and ϕi(l) → –∞ as l → +∞. Therefore, there exist ρi < 0 and
Ri > 0, such that 0 < ϕi(ρi) < ε and ϕi(Ri) ≤ 0.

ϕ̃i(l) = s2e2s2l∥∥(–�)
s
2 wi

∥∥2
L2 –

e(p–1)Nsl(p – 1)N
2p

s(μi + β)
∫
RN

|wi|2p dx

=
(

(p – 1)N(μi + β)
2ps

s2e2s2l –
e(p–1)Nsl(p – 1)N

2p
s(μi + β)

)∫
RN

|wi|2p dx

=
(p – 1)N(μi + β)

2p
se(p–1)Nsl(e(2s–(p–1)N)sl – 1

)∫
RN

|wi|2p dx,

then

ϕ̃i(l) =

⎧⎪⎪⎨
⎪⎪⎩

> 0 if l < 0,

= 0 if l = 0,

< 0 if l > 0,

(38)

which implies that (ii) holds. �

Let Q := [ρ1, R1] × [ρ2, R2], and let

γ0(t1, t2) := (t1 � w1, t2 � w2) ∈ Hrad
a1 × Hrad

a2 , ∀(t1, t2) ∈ Q.

We introduce the minimax class

� :=
{
γ ∈ C

(
Q, Hrad

a1 × Hrad
a2

)
: γ = γ0 on ∂Q

}
.

Lemma 3.3 We have

sup
∂Q

E(γ0) ≤ max
{

Iμ1 (wa1,μ1 ), Iμ2 (wa2,μ2 )
}

+ ε.

Proof For every (u1, u2) ∈ Hrad
a1 × Hrad

a2 , we have

E(u1, u2) = Iμ1 (u1) + Iμ2 (u2) –
β

p

∫
RN

|u1|p|u2|p dx ≤ Iμ1 (u1) + Iμ2 (u2).
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Then, from Lemma 3.2,

E(t1 � w1,ρ2 � w2) ≤ Iμ1 (t1 � w1) + Iμ2 (ρ2 � w2)

≤ Iμ1 (t1 � w1) + ε

≤ sup
l∈R

Iμ1 (l � w1) + ε.

By Lemma 2.3, we have

wai ,μi = l̄i � wi, for el̄i :=
(

μi + β

μi

) 1
s[(p–1)N–2s]

.

Then, due to l1 � (l2 � w) = (l1 + l2) � w for every l1, l2 ∈ R and w ∈ Hs(R), we have

sup
l∈R

Iμ1 (l � w1) = sup
l∈R

Iμ1 (l � wa1,μ1 ).

As a consequence of Lemma 2.5,

sup
l∈R

Iμ1 (l � wa1,μ1 ) = Iμ1 (wa1,μ1 ).

Therefore, we have

E(t1 � w1,ρ2 � w2) ≤ Iμ1 (wa1,μ1 ) + ε, ∀t1 ∈ [ρ1, R1].

Similarly, we have

E(ρ1 � w1, t2 � w2) ≤ Iμ2 (wa2,μ2 ) + ε, ∀t2 ∈ [ρ2, R2],

E(t1 � w1, R2 � w2) ≤ Iμ1 (t1 � w1) + Iμ2 (R2 � w2)

≤ sup
l∈R

Iμ1 (l � w1) = Iμ1 (wa1,μ1 ), ∀t1 ∈ [ρ1, R1],

and

E(R1 � w1, t2 � w2) ≤ Iμ2 (wa2,μ2 ), ∀t2 ∈ [ρ2, R2].

Hence, the conclusion of Lemma 3.3 holds. �

Lemma 3.4 For every γ ∈ �, there exists (t1,γ , t2,γ ) ∈ Q such that γ (t1,γ , t2,γ ) ∈ P(a1,μ1 +
β) ×P(a2,μ2 + β).

Proof For γ ∈ �, we use the notation γ (t1, t2) = (γ1(t1, t2),γ2(t1, t2)) ∈ Hrad
a1 ×Hrad

a2 . Consid-
ering the map Fγ : Q →R

2 defined by

Fγ (t1, t2) :=
(

∂

∂l
Iμ1+β

(
l � γ1(t1, t2)

)∣∣
l=0,

∂

∂l
Iμ2+β

(
l � γ2(t1, t2)

)∣∣
l=0

)
.
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From

∂

∂l
Iμi+β

(
l � γi(t1, t2)

)∣∣
l=0

=
∂

∂l

(
e2s2l

2
∥∥(–�)

s
2 γi(t1, t2)

∥∥2
L2 –

e(p–1)Nsl

2p
(μi + β)

∥∥γi(t1, t2)
∥∥2p

L2p

)∣∣∣∣
l=0

= s2∥∥(–�)
s
2 γi(t1, t2)

∥∥2
L2 –

(p – 1)Ns
2p

(μi + β)
∥∥γi(t1, t2)

∥∥2p
L2p ,

we deduce that

Fγ (t1, t2) = (0, 0) if and only if γ (t1, t2) ∈P(a1,μ1 + β) ×P(a2,μ2 + β).

Now, we will show that Fγ (t1, t2) = (0, 0) has a solution in Q for every γ ∈ �. Since

Fγ0 (t1, t2) =
(

s2e2s2t1
∥∥(–�)

s
2 w1

∥∥2
L2 –

(p – 1)Ns
2p

e(p–1)Nst1 (μ1 + β)‖w1‖2p
L2p ,

s2e2s2t2
∥∥(–�)

s
2 w2

∥∥2
L2 –

(p – 1)Ns
2p

e(p–1)Nst2 (μ2 + β)‖w2‖2p
L2p

)

=
(
ϕ̃1(t1), ϕ̃2(t2)

)
.

By Lemma 3.2, we get (0, 0) /∈ Fγ0 (∂Q), and (0, 0) is the only solution to Fγ0 (t1, t2) = (0, 0)
in Q. It is easy to compute

deg
(
Fγ0 , Q, (0, 0)

)
= sgn

(
ϕ̃′

1(0) · ϕ̃′
2(0)

)
= 1.

Now, for any γ ∈ �, since Fγ (∂+Q) = Fγ0 (∂+Q), therefore, (0, 0) /∈ Fγ (∂Q), we get

deg
(
Fγ , Q, (0, 0)

)
= deg

(
Fγ0 , Q, (0, 0)

)
= 1.

Hence, there exists a (t1,γ , t2,γ ) ∈ Q such that Fγ (t1,γ , t2,γ ) = (0, 0). �

Lemma 3.5 There exists a bounded Palais–Smale sequence (un, vn) for E on Hrad
a1 × Hrad

a2

at the level

c := inf
γ∈�

max
(t1,t2)∈Q

E
(
γ (t1, t2)

)
> max

{
Iμ1 (wa1,μ1 ), Iμ2 (wa2,μ2 )

}
, (39)

satisfying the additional condition

G(un, vn) = o(1), (40)

where o(1) → 0 as n → ∞. Furthermore, there exists C̄ > 0 such that

∫
RN

(∣∣(–�)
s
2 un

∣∣2 +
∣∣(–�)

s
2 vn

∣∣2)dx ≥ C̄ for all n,

and u–
n , v–

n → 0 a.e. in R
N as n → ∞.
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Proof The idea comes from [3]. Equation (39) is simply from Lemma 3.4. We consider the
augmented functional Ẽ : R × Hrad

a1 × Hrad
a2 → R defined by Ẽ(l, u1, u2) := E(l � u1, l � u2).

Let

γ̃ (t1, t2) :=
(
l(t1, t2),γ1(t1, t2),γ2(t1, t2)

)
,

γ̃0(t1, t2) :=
(
0,γ0(t1, t2)

)
= (0, t1 � w1, t2 � w2),

�̃ :=
{
γ̃ ∈ C

(
Q,R× Hrad

a1 × Hrad
a2 : γ̃ = γ̃0 on ∂Q

)}
,

and

c̃ := inf
γ̃∈�̃

max
(t1,t2)∈Q

Ẽ
(
γ̃ (t1, t2)

)
.

Since, for any γ (t1, t2) = (γ1(t1, t2),γ2(t1, t2)) ∈ �, (0,γ1(t1, t2),γ2(t1, t2)) ∈ �̃, we have c̃ ≤ c.
On the other hand, for any γ̃ ∈ �̃ and (t1, t2) ∈ Q, we have

Ẽ
(
γ̃ (t1, t2)

)
= E

(
l(t1, t2) � γ1(t1, t2), l(t1, t2) � γ2(t1, t2)

)
,

and (l(·) � γ1(·), l(·) � γ2(·)) ∈ � due to γ̃ = γ̃0 on ∂Q, so c ≤ c̃. Hence, c = c̃.
Now take a sequence of {γ̃n} ⊂ �̃ such that

lim
n→+∞ max

(t1,t2)∈Q
Ẽ
(
γ̃n(t1, t2)

)
= c̃ = c.

We may also assume that γ̃n = (ln,γ1,n,γ2,n) satisfies the following two additional prop-
erties: for all (t1, t2) ∈ Q:

• ln(t1, t2) ≡ 0,
• γ1,n(t1, t2) ≥ 0, γ2,n(t1, t2) ≥ 0, a.e. in R

N .
The first property comes from the fact that

Ẽ
(
γ̃ (t1, t2)

)
= E

(
l(t1, t2) � γ1(t1, t2), l(t1, t2) � γ2(t1, t2)

)
= Ẽ

(
0, l(t1, t2) � γ1(t1, t2), l(t1, t2) � γ2(t1, t2)

)
,

and the second one is the consequence of Ẽ(l, |u|, |v|) ≤ Ẽ(l, u, v) and the definition of c̃.
Applying Theorem 3.2 in [20], there exists a Palais–Smale sequence (ln, un, vn) for Ẽ on

R× Hrad
a1 × Hrad

a2 at level c̃, such that
• limn→+∞ Ẽ(ln, un, vn) = c̃ = c,
• limn→+∞ |ln| + dist((un, vn), γ̃n(Q)) = 0,
• For all u, v ∈ Hs

r (RN ) with
∫
RN unu dx = 0,

∫
RN vnv dx = 0 and ∀l ∈R,

〈
Ẽ′(ln, un, vn), (l, u, v)

〉
= o(1)

(|l| + ‖u‖Hs + ‖v‖Hs
)
.
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Take (l, u, v) = (1, 0, 0), direct calculations gives

〈
Ẽ′(ln, un, vn), (1, 0, 0)

〉
= s2e2s2ln

∫
RN

(∣∣(–�)
s
2 un

∣∣2 +
∣∣(–�)

s
2 vn

∣∣2)dx

–
e(p–1)Nsln (p – 1)Ns

2p

∫
RN

(
μ1|un|2p + 2β|un|p|vn|p + μ2|vn|2p)dx.

(41)

From the above, we can get

se2s2ln
(

(p – 1)N
2

– s
)∫

RN

(∣∣(–�)
s
2 un

∣∣2 +
∣∣(–�)

s
2 vn

∣∣2)dx

= (p – 1)NsẼ(ln, un, vn) –
〈
Ẽ′(ln, un, vn), (1, 0, 0)

〉
→ (p – 1)Nsc, as n → +∞.

Since ln → 0 and p > 1 + 2s
N , we see that there exist C̄ > 0 and C > 0, such that

C̄ ≤
∫
RN

(∣∣(–�)
s
2 un

∣∣2 +
∣∣(–�)

s
2 vn

∣∣2)dx ≤ C, (42)

therefore (un, vn) is bounded in Hs
r (RN ) × Hs

r (RN ). Using ln → 0 and (41) again, we con-
clude that (un, vn) satisfies (40). Now take (l, u, v) = (0, u, v) for any (u, v) ∈ Hs

r (RN )×Hs
r (RN )

with
∫
RN unu dx = 0,

∫
RN vnv dx = 0, due to the boundedness of (un, vn) and ln → 0, it is easy

to see that

〈
E′(un, vn), (u, v)

〉
=

〈
Ẽ′(ln, un, vn), (0, u, v)

〉
+ O

(|ln|
)(‖u‖Hs + ‖v‖Hs

)
= o(1)

(‖u‖Hs + ‖v‖Hs
)
.

Therefore, (un, vn) is a bounded Palais–Smale sequence for E on Hrad
a1 × Hrad

a2 at level c
with additional condition (40). Finally, u–

n , v–
n → 0 a.e. in R

N as n → ∞ is a simple conse-
quence of γ1,n(t1, t2) ≥ 0, γ2,n(t1, t2) ≥ 0 and limn→+∞ dist((un, vn), γ̃n(Q)) = 0. �

From Lemma 3.5, there exist nonnegative functions ũ, ṽ in Hs
r (RN ), such that, up to a

subsequence,

(un, vn) ⇀ (ũ, ṽ), weakly in Hs(
R

N) × Hs(
R

N)
,

(un, vn) → (ũ, ṽ), strongly in L2p(
R

N) × L2p(
R

N)
,

(un, vn) → (ũ, ṽ), a.e. in R
N .
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As a consequence E′|Hrad
a1 ×Hrad

a2
(un, vn) → 0, there exist two sequences of real number

{λ1,n} and {λ2,n} such that

∫
RN

(
(–�)

s
2 un(–�)

s
2 g + (–�)

s
2 vn(–�)

s
2 h – μ1|un|2p–2ung – μ2|vn|2p–2vnh

)
dx

–
∫
Rn

(
β|un|p–2|vn|pung + |un|p|vn|p–2vnh

)
dx +

∫
RN

(λ1,nung + λ2,nvnh) dx

= o(1)
(‖g‖Hs + ‖h‖Hs

)
,

(43)

for every g, h ∈ Hs(RN ) with o(1) → 0, asn → ∞.

Lemma 3.6 Both {λ1,n} and {λ2,n} are bounded sequences and at least one of them is con-
verging, up to a sequence, to a positive value.

Proof By using (un, 0) and (0, vn) as test functions in (43), we get

∫
RN

(∣∣(–�)
s
2 un

∣∣2 – μ1|un|2p – β|un|p|vn|p
)

dx + λ1,na2
1 = o(1),

∫
RN

(∣∣(–�)
s
2 vn

∣∣2 – μ2|vn|2p – β|un|p|vn|p
)

dx + λ2,na2
2 = o(1),

with o(1) → 0, asn → ∞. Hence the boundedness of {λi,n} follows from the boundedness
of un, vn in Hs(RN ) and in L2p(RN ). Furthermore, since (un, vn) satisfies (40),

λ1,na2
1 + λ2,na2

2

= –
∫
RN

(∣∣(–�)
s
2 un

∣∣2 +
∣∣(–�)

s
2 vn

∣∣2 – μ1|un|2p – 2β|un|p|vn|p – μ2|vn|2p)dx + o(1)

=
(

2ps
(p – 1)N

– 1
)∫

RN

(∣∣(–�)
s
2 un

∣∣2 +
∣∣(–�)

s
2 vn

∣∣2)dx + o(1),

therefore by (42),

(
ps

(p – 1)N
–

1
2

)
C̄ ≤ λ1,na2

1 + λ2,na2
2 ≤ 2

(
2ps

(p – 1)N
– 1

)
C,

for 1 + 2s
N < p < N

N–2s and every n sufficiently large. Therefore, at least one sequence of {λi,n}
is positive and bounded away from 0. This shows that at least one sequence of {λi,n} is
converging, up to a sequence, to a positive value. �

Next, we consider converging subsequence λ1,n → λ̃1 ∈R and λ2,n → λ̃2 ∈R, as n → ∞.
The sign of λ̃i plays an important role for the strong convergence of un, vn in Hs(RN ).

Lemma 3.7 If λ̃1 > 0 (resp. λ̃2 > 0), then un → ũ (resp. vn → ṽ) strongly in Hs(RN ).
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Proof Let us suppose that λ̃1 > 0. By the weak convergence of un in Hs(RN ) and the strong
convergence in L2p(RN ), it is easy to get from (43)

o(1) =
〈
E′(un, vn) – E′(ũ, ṽ), (un – ũ, 0)

〉
+ λ̃1

∫
RN

(un – ũ)2 dx

=
∫
RN

(∣∣(–�)
s
2 (un – ũ)

∣∣2 + λ̃1(un – ũ)2)dx + o(1),

with o(1) → 0 and n → ∞. Since λ̃1 > 0, this is equivalent to the strong convergence of un

in Hs(RN ). The proof in the case λ̃2 > 0 is similar. �

Having arrived at the end of this section, we give the proof of Theorem 1.1.

Proof of Theorem 1.1 By the convergence of {λ1,n} and {λ2,n}, and the weak convergence
(un, vn) ⇀ (ũ, ṽ), we see that (λ̃1, λ̃2, ũ, ṽ) is a solution of (1) with at least one λ̃i positive.
We will show that both λ̃1, λ̃2 are positive, hence by Lemma 3.7, ũ ∈ Ha1 , ṽ ∈ Ha2 and the
proof is complete.

We prove by contradiction. Without loss of generality, by Lemma 3.7, we may assume
that λ̃1 > 0 and λ̃2 ≤ 0. Since (λ̃1, λ̃2, ũ, ṽ) is a solution of (1) and ũ, ṽ ≥ 0, we have

(–�)sṽ = –λ̃2ṽ + μ2ṽ2p–1 + βũpṽp–1 ≥ 0 in R
N ,

and since 2s < N ≤ 4s, i.e., 2 ≤ N
N–2s , from Lemma 2.7(i), we can deduce that ṽ ≡ 0. In

particular, this implies that ũ solves

⎧⎨
⎩(–�)sũ + λ̃1ũ – μ1ũ2p–1 = 0 in R

N ,∫
RN ũ2 dx = a2

1, and ũ > 0 in R
N ,

(44)

so that ũ = wa1,μ1 ∈ P(a1,μ1). However, due to strong convergence of un, vn in L2p(RN ),
we obtain due to (40),

c = lim
n→∞ E(un, vn) = lim

n→∞
(p – 1)N – 2s

4ps

∫
RN

(
μ1|un|2p + 2β|un|p|vn|p + μ2|vn|2p)dx

=
(p – 1)N – 2s

4ps

∫
RN

μ1|wa1,μ1 |2p dx = Iμ1 (wa1,μ1 ).

This is a contradiction with Lemma 3.5. Therefore, both λ̃1, λ̃2 are positive. �

4 Proof of Theorem 1.2
In this section, we prove Theorem 1.2. The proof is divided into two parts. Firstly, we show
the existence of a positive solution (ū, v̄), and secondly we characterize it as a ground state.
The proof of the theorem is based on a mountain pass argument. For (u, v) ∈ Hrad

a1 × Hrad
a2 ,

we consider the function

E
(
l � (u, v)

)
=

e2s2l

2

∫
RN

(∣∣(–�)
s
2 u

∣∣2 +
∣∣(–�)

s
2 v

∣∣2)dx

–
e(p–1)Nsl

2p

∫
RN

(
μ1|u|2p + 2β|u|p|v|p + μ2

∣∣v2p∣∣)dx,
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where l � (u, v) = (l �u, l �v). If (u, v) ∈ Hrad
a1 ×Hrad

a2 , then l � (u, v) ∈ Hrad
a1 ×Hrad

a2 for any l ∈R.
Similar to Lemma 2.5, we have the following lemma.

Lemma 4.1 Let (u, v) ∈ Hrad
a1 × Hrad

a2 . Then

lim
l→–∞

∫
R

(∣∣(–�)
s
2 l � u

∣∣2 +
∣∣(–�)

s
2 l � v

∣∣2)dx = 0, (45)

lim
l→+∞

∫
R

(∣∣(–�)
s
2 l � u

∣∣2 +
∣∣(–�)

s
2 l � v

∣∣2)dx = +∞, (46)

lim
l→–∞

E
(
l � (u, v)

)
= 0+ and lim

l→+∞
E
(
l � (u, v)

)
= –∞. (47)

The next lemma enlightens the mountain pass structure of the problem.

Lemma 4.2 There exists K > 0 sufficiently small such that

sup
A

E < inf
B

E and E(u, v) > 0 on A, (48)

where

A =
{

(u, v) ∈ Hrad
a1 × Hrad

a2 ,
∥∥(–�)

s
2 u

∥∥2
L2 +

∥∥(–�)
s
2 v

∥∥2
L2 ≤ K

}
, (49)

B =
{

(u, v) ∈ Hrad
a1 × Hrad

a2 ,
∥∥(–�)

s
2 u

∥∥2
L2 +

∥∥(–�)
s
2 v

∥∥2
L2 = 2K

}
. (50)

Proof By the Gagliardo–Nirenberg–Sobolev inequality (11),∫
RN

(
μ1|u|2p + 2β|u|p|v|p + μ2|v|2p)dx

≤ C
∫
RN

(|u|2p + |v|2p)dx

≤ C
(∫

RN

(∣∣(–�)
s
2 u

∣∣2 +
∣∣(–�)

s
2 v

∣∣2)dx
) (p–1)N

2s
,

for every (u, v) ∈ Hrad
a1 × Hrad

a2 , where C > 0 depends on μ1,μ2,β , a1, a2 > 0, but not on the
choice of (u, v). Now if (u1, v1) ∈ B and (u2, v2) ∈ A (with K to be determined), we have

E(u1, v1) – E(u2, v2)

≥ 1
2

{∫
RN

(∣∣(–�)
s
2 u1

∣∣2 +
∣∣(–�)

s
2 v1

∣∣2)dx –
∫
RN

(∣∣(–�)
s
2 u2

∣∣2 +
∣∣(–�)

s
2 v2

∣∣2)dx
}

–
1

2p

∫
RN

(
μ1|u1|2p + 2β|u1|p|v1|p + μ2|v1|2p)dx ≥ K

2
–

C
2p

(2K)
(p–1)N

2s ≥ K
4

,

provided K > 0 is sufficiently small. Furthermore if necessary, we can make K smaller, then

E(u2, v2) ≥ 1
2

(∫
RN

(∣∣(–�)
s
2 u2

∣∣2 +
∣∣(–�)

s
2 v2

∣∣2)dx
)

–
C
2p

(∫
RN

(∣∣(–�)
s
2 u2

∣∣2 +
∣∣(–�)

s
2 v2

∣∣2)dx
) (p–1)N

2s
> 0,

for every (u2, v2) ∈ A. �
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For the next part, we shall introduce a suitable minimax class. Define

D :=
{

(u, v) ∈ Hrad
a1 × Hrad

a2 :
∥∥(–�)

s
2 u

∥∥2
L2 +

∥∥(–�)
s
2 v

∥∥2
L2 ≥ 3K and E(u, v) ≤ 0

}
. (51)

Recall from Lemma 2.3 that wa,μ is the unique positive radial solution of (19). By
Lemma 4.1, there exist l1 < 0 and l2 > 0 such that

l1 � (wa1,C0/a2
1
, wa2,C0/a2

2
) =: (ū1, v̄1) ∈ A,

l2 � (wa1,C0/a2
1
, wa2,C0/a2

2
) =: (ū2, v̄2) ∈ D.

At last, we define

�̄ :=
{
γ̄ ∈ C

(
[0, 1], Hrad

a1 × Hrad
a2

)
: γ̄ (0) = (ū1, v̄1), γ̄ (1) = (ū2, v̄2)

}
.

Similarly to the proof of Lemma 3.5, we derive

Lemma 4.3 There exists a bounded Palais–Smale sequence (un, vn) for E on Hrad
a1 × Hrad

a2

at the level

d := inf
γ̄∈�̄

max
t∈[0,1]

E
(
γ̄ (t)

)
,

satisfying the additional condition

G(un, vn) = o(1),

with o(1) → 0 as n → ∞. Furthermore, u–
n , v–

n → 0 a.e. in R
N as n → ∞.

Lemma 4.4 Let β2 be defined in (10), if β > β2, then

sup
l∈R

E
(
l � (wa1,(C0/a2

1)p–1 , wa2,(C0/a2
2)p–1 )

)
< min

{
Iμ1 (wa1,μ1 ), Iμ2 (wa2,μ2 )

}
. (52)

Proof By Lemma 2.3, direct computation gives

∫
RN

(l � wa1,(C0/a2
1)p–1 )p(l � wa2,(C0/a2

2)p–1 )p dx

=
∫
RN

e(p–1)Nsl
(

a1

C
1
2

0

w0(x)
)p( a2

C
1
2

0

w0(x)
)p

dx

=
ap

1ap
2

Cp
0

e(p–1)Nsl
∫
RN

w2p
0 dx =

ap
1ap

2C1

Cp
0

e(p–1)Nsl,

E
(
l � (wa1,(C0/a2

1)p–1 , wa2,(C0/a2
2)p–1 )

)
=

(p – 1)Ne2s2l

4ps

(
a2

1C1 + a2
2C1

C0

)

–
e(p–1)Nsl

2p

(
μ1C1a2p

1 + 2βC1ap
1ap

2 + μ2C1a2p
2

Cp
0

)
.
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Therefore, it is easy to get

max
l∈R

E
(
l � (wa1,(C0/a2)p–1 , wa2,(C0/a2)p–1 )

)

=
(p – 1)N – 2s

4ps
C1C

2ps–(p–1)N
(p–1)N–2s

0 (a2
1 + a2

2)
(p–1)N

(p–1)N–2s

(μ1a2p
1 + 2βap

1ap
2 + μ2a2p

2 )
2s

(p–1)N–2s
.

Due to (10) and (23), if β > β2, (52) is satisfied. �

Existence of a positive solution at level d We will prove the existence of positive solution
at level d by contradiction. By Lemma 4.3, up to a subsequence, we may assume that

(un, vn) ⇀ (ū, v̄), weakly in Hs(
R

N) × Hs(
R

N)
,

(un, vn) → (ū, v̄), strongly in L2p(
R

N) × L2p(
R

N)
,

(un, vn) → (ū, v̄), a.e. in R
N .

Then it can be easily derived that (ū, v̄) is a solution of (1) for some constants λ̄1, λ̄2 ∈R.
Moreover, Lemma 3.6 and Lemma 3.7 are applicable. We may assume that λ̄1 > 0 and
un → ū strongly in Hs(RN ). If λ̄2 ≤ 0, we can derive that v̄ ≡ 0 and ū = wa1,μ1 as in the proof
of Theorem 1.1. By G(un, vn) → 0 and strong convergence in L2p(RN ), d = Iμ1 (wa1,μ1 ). We
can consider the path

γ̄ (t) :=
(
(1 – t)l1 + tl2

)
� (wa1,μ1 , wa2,μ2 ).

Obviously, γ̄ ∈ �̄. Then, by Lemma 4.4,

d ≤ sup
t∈[0,1]

E
(
γ̄ (t)

) ≤ sup
l∈R

E
(
l � (wa1,μ1 , wa2,μ2 )

)
< Iμ1 (wa1,μ1 ),

which is a contradiction. Therefore, λ̄2 > 0 and vn → v̄ strongly in Hs(RN ). This shows that
(λ̄1, λ̄2, ū, v̄) is a solution of (1) with λ̄1, λ̄2 > 0 and (ū, v̄) ∈ Ha1 × Ha2 .

Obviously, we can see that G(ū, v̄) = 0, i.e., (ū, v̄) ∈ F .

Variational characterization of (ū, v̄) In the following, we will prove that

E(ū, v̄) = inf
{

E(u, v); (u, v) ∈ F
}

= inf
(u,v)∈Ha1 ×Ha2

R(u, v),

where F and R are defined in (6) and (8). Recall the definition of A in (49) and D in (51),
let us define

A+ :=
{

(u, v) ∈ A, u, v ≥ 0 a.e. in R
N}

,

D+ :=
{

(u, v) ∈ D, u, v ≥ 0 a.e. in R
N}

.

For any (u1, v1) ∈ A+ and (u2, v2) ∈ D+, let

�̄(u1, v1, u2, v2) =:
{
γ̄ ∈ C

(
[0, 1], Hrad

a1 × Hrad
a2

)
: γ̄ (0) = (u1, v1), γ̄ (1) = (u2, v2)

}
.
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Lemma 4.5 The sets A+ and D+ are connected by arcs, so that

d = inf
γ̄∈�̄(u1,v1,u2,v2)

max
t∈[0,1]

E
(
γ̄ (t)

)
, (53)

for every (u1, v1) ∈ A+ and (u2, v2) ∈ D+.

Proof Equality (53) follows easily once we show that A+ and D+ are connected by arcs
( as l ∗ (ū, v̄) is a path from A+ to D+). Let (u1, v1), (u2, v2) ∈ Hrad

a1 × Hrad
a2 be nonnegative

functions such that
∫
RN

(∣∣(–�)
s
2 u1

∣∣2 +
∣∣(–�)

s
2 v1

∣∣2)dx =
∫
RN

(∣∣(–�)
s
2 u2

∣∣2 +
∣∣(–�)

s
2 v2

∣∣2)dx = α2, (54)

for some α > 0. For l ∈R and θ ∈ [0, π
2 ],

h(l, θ ) =
(
cos θ (l � u1)(x) + sin θ (l � u2)(x), cos θ (l � v1)(x) + sin θ (l � v2)(x)

)
.

Set h = (h1, h2), we have h1(l, θ ), h2(l, θ ) ≥ 0 a.e. in R
N . It is not difficult to check that

∫
RN

h2
1(l, θ ) dx = a2

1 + sin(2θ )
∫
RN

u1u2 dx,
∫
RN

h2
2(l, θ ) dx = a2

2 + sin(2θ )
∫
RN

v1v2 dx,
∫
RN

(∣∣(–�)
s
2 h1(l, θ )

∣∣2 +
∣∣(–�)

s
2 h2(l, θ )

∣∣2)dx

= e2s2l
(

α2 + sin(2θ )
∫
RN

(
(–�)

s
2 u1(–�)

s
2 u2 + (–�)

s
2 v1(–�)

s
2 v2

)
dx

)
,

for all (l, θ ) ∈R× [0, π
2 ]. We can deduce that

a2
1 ≤

∫
RN

h2
1(l, θ ) dx ≤ 2a2

1 and a2
2 ≤

∫
RN

h2
2(l, θ ) dx ≤ 2a2

2.

Therefore

α2 + sin(2θ )
∫
RN

(
(–�)

s
2 u1(–�)

s
2 u2 + (–�)

s
2 v1(–�)

s
2 v2

)
dx > 0,

and it is continuous in θ ∈ [0, π
2 ], so there is a constant C > 0 independent of l, θ , such that

Cα2e2s2l ≤
∫
RN

(∣∣(–�)
s
2 h1(l, θ )

∣∣2 +
∣∣(–�)

s
2 h2(l, θ )

∣∣2)dx ≤ 2α2e2s2l.

Thus we can define the function

ĥ(l, θ )(x) =
(

a1
h1(l, θ )

‖h1(l, θ )‖L2
, a2

h2(l, θ )
‖h2(l, θ )‖L2

)
,

for (l, θ ) ∈R× [0, π
2 ].
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Notice that ĥ(l, θ ) ∈ Hrad
a1 × Hrad

a2 for every (l, θ ), we see that

Cc0α
2e2s2l ≤

∫
RN

(∣∣(–�)
s
2 ĥ1(l, θ )

∣∣2 +
∣∣(–�)

s
2 ĥ2(l, θ )

∣∣2)dx ≤ 2c1α
2e2s2l, (55)

with c0 = min{a2
1,a2

2}
max{a2

1,a2
2} and c1 = max{a2

1,a2
2}

min{a2
1,a2

2} .
For u, v ≥ 0 and t ∈ [0, π

2 ],

∥∥cos t · u(x) + sin t · v(x)
∥∥

L2p ≥ max
(
cos t‖u‖L2p , sin t‖v‖L2p

)
≥ ‖u‖L2p‖v‖L2p√

‖u‖2
L2p + ‖v‖2

L2p

.

Therefore, we have, for some constant C > 0 independent of l, θ ,

∫
RN

ĥ2p
1 (l, θ ) dx ≥ Ce(p–1)Nsl and

∫
RN

ĥ2p
2 (l, θ ) dx ≥ Ce(p–1)Nsl, (56)

for all (l, θ ) ∈R× [0, π
2 ]. Let (u1, v1), (u2, v2) ∈ A+, and let ĥ be as previously. From (55), we

can deduce there exists l0 > 0 such that

∫
RN

(∣∣(–�)
s
2 ĥ1(–l0, θ )

∣∣2 +
∣∣(–�)

s
2 ĥ2(–l0, θ )

∣∣2)dx ≤ K ,

for all θ ∈ [0, π
2 ], where K is defined in Lemma 4.2. For the choice of l0, let

σ1(r) :=

⎧⎪⎪⎨
⎪⎪⎩

–r � (u1, v1) = ĥ(–r, 0), 0 ≤ r ≤ l0,

ĥ(–l0, r – l0), l0 < r ≤ l0 + π
2 ,

(r – 2l0 – π
2 ) � (u2, v2) = ĥ(r – 2l0 – π

2 , π
2 ), l0 + π

2 < r ≤ 2l0 + π
2 .

It is not difficult to check that σ1 is a continuous path connecting (u1, v1) and (u2, v2) and
lying in A+. For the case that condition (54) is not satisfied, suppose for instance

∫
RN

(∣∣(–�)
s
2 u1

∣∣2 +
∣∣(–�)

s
2 v1

∣∣2)dx >
∫
RN

(∣∣(–�)
s
2 u2

∣∣2 +
∣∣(–�)

s
2 v2

∣∣2)dx.

Then, by Lemma 4.1, there exists l1 < 0 such that

∫
RN

(∣∣(–�)
s
2 (l1 � u1)

∣∣2 +
∣∣(–�)

s
2 (l1 � v1)

∣∣2)dx =
∫
RN

(∣∣(–�)
s
2 u2

∣∣2 +
∣∣(–�)

s
2 v2

∣∣2)dx.

Therefore, to connect (u1, v1) and (u2, v2) by a path in A+, we can at first connect (u1, v1)
with l1 � (u1, v1) along arc l ∗ (u1, v1), then connect l1 � (u1, v1) with (u2, v2). This shows that
A+ is path connected. In a similar way, we can prove that D+ is also path connected. �

From the previous notation,

F :=
{

(u, v) ∈ Ha1 × Ha2 : G(u, v) = 0
}

,



Li et al. Boundary Value Problems        (2020) 2020:166 Page 27 of 29

we define its radial subset and positive radial subset

Frad :=
{

(u, v) ∈ Hrad
a1 × Hrad

a2 : G(u, v) = 0
}

,

F+ :=
{

(u, v) ∈ F : u ≥ 0, v ≥ 0
}

,

F+
rad :=

{
(u, v) ∈ Frad : u ≥ 0, v ≥ 0

}
,

where

G(u, v) =
∫
RN

(∣∣(–�)
s
2 u

∣∣2 +
∣∣(–�)

s
2 v

∣∣2)dx

–
(p – 1)N

2ps

∫
RN

(
μ1|u|2p + 2β|u|p|v|p + μ2|v|2p)dx.

For (u, v) ∈ Ha1 × Ha2 , let us set

�(u,v)(l) = E
(
l � (u, v)

)
,

where l � (u, v) = (l � u, l � v) for short. Similar to the proof of Lemma 2.5, we have the
following lemma.

Lemma 4.6 For every (u, v) ∈ Ha1 × Ha2 , there exists a unique l(u,v) ∈ R such that l(u,v) �

(u, v) ∈ F . Moreover, l(u,v) is the unique critical point of �(u,v), which is a strict maximum.

Lemma 4.7 We have infF E = infF+ E = infF+
rad

E.

Proof We prove the lemma by contradiction. Suppose there exists (u, v) ∈ F such that

0 < E(u, v) < inf
F+

E. (57)

For any u ∈ Hs(RN ), since ‖(–�) s
2 |u|‖L2 ≤ ‖(–�) s

2 u‖L2 , we get E(|u|, |v|) ≤ E(u, v) and
G(|u|, |v|) ≤ G(u, v) = 0. Thus, there exists l0 ≤ 0 such that G(l0 � (|u|, |v|)) = 0. We obtain

E
(
l0 �

(|u|, |v|)) =
(

1
2

–
s

(p – 1)N

)
e2s2l0

{∫
RN

(∣∣(–�)
s
2 |u|∣∣2 +

∣∣(–�)
s
2 |v|∣∣2)dx

}

≤
(

1
2

–
s

(p – 1)N

)
e2s2l0

{∫
RN

(∣∣(–�)
s
2 u

∣∣2 +
∣∣(–�)

s
2 v

∣∣2)dx
}

= e2s2l0 E(u, v).

Therefore

0 < E(u, v) < inf
F+

E ≤ E
(
l0 �

(|u|, |v|)) ≤ e2s2l0 E(u, v),

which contradicts l0 ≤ 0. Thus infF E = infF+ E.
Next, if there exists (u, v) ∈ F+ such that

0 < E(u, v) < inf
F+

rad

E.
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For u ∈ Hs(RN ), let u∗ denotes its Schwarz spherical rearrangement. According to
the property of Schwarz symmetrization, we have E(u∗, v∗) ≤ E(u, v) and G(u∗, v∗) ≤
G(u, v) = 0. Thus there exists l0 ≤ 0 such that G(l0 � (u∗, v∗)) = 0. Similarly, we get

0 < E(u, v) < inf
F+

rad

E ≤ E
(
l0 �

(
u∗, v∗)) ≤ e2s2l0 E(u, v),

which contradicts l0 ≤ 0. Thus infF+ E = infF+
rad

E. �

Proof of Theorem 1.2 We have showed that (λ̄1, λ̄2, ū, v̄) is a solution of (1). Since (ū, v̄) ∈
F+

rad, we just need to show that

E(ū, v̄) = d ≤ inf
F+

rad

E.

Then E(ū, v̄) = infF E follows from Lemma 4.7. Choose any (u, v) ∈ F+
rad. Let us consider the

function �(u,v)(l) = E(l∗ (u, v)). By Lemma 4.1 there exists l0 � 1 such that (–l0)�(u, v) ∈ A+

and l0 � (u, v) ∈ D+. Therefore, the continuous path

γ̄ (t) =
(
(2t – 1)l0

)
� (u, v), t ∈ [0, 1],

connects A+ with D+, and by Lemma 4.5 and Lemma 4.6, we can deduce that

d ≤ max
t∈[0,1]

E
(
γ̄ (t)

)
= E(u, v).

Since this holds for all the elementary quantities in F+
rad, we have

d ≤ inf
F+

rad

E.

Finally, it remains to show that

inf
F

E = inf
Ha1 ×Ha2

R. (58)

The proof of (58) is similar to the case for the single equation; see Lemma 2.6. �
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