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Abstract
In our paper we address the thermoelasticity theory of the strain gradient. First, we
define the mixed problem with initial and boundary data in this context. Then, with
the help of an identity of Lagrange type, we prove some uniqueness theorems with
regards to the solution of this problem and two theorems with regards to the
continuous dependence of solutions on loads and on initial data. We want to
highlight that the use of the approach proposed in this work enables obtaining
results without recourse to any boundedness assumptions on the coefficients or to
any laws of conservation of energy. Also, we do not impose restrictions on
thermoelastic coefficients regarding their positive definition.
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1 Introduction
It is known that in the classical theory of elasticity, the internal structure of the bodies
is not taken into account. However, the reaction of different kinds of bodies to different
actions depends on a significant extent on inner structure of respective material. In order
to take into account these kinds of effects, new mathematical models of continuum bod-
ies have been designed. This is where the materials from strain gradient thermoelasticity
theory fall.

As we can see in the published papers on this subject, for these media it is characteristic
consideration of superior gradients of the displacement vector in main relations. A basic
motivation for the emergence of this theory is that it is useful to modeling the micro-scale
structures. On the other hand, these configurations are widely used in various concrete
situations caused by their important advantages, like small dimensions, high durability,
low power consumption, or low manufacturing cost. The initial form of the theory of the
strain gradient was proposed by Eshel and Mindlin in [1]. Some other remarkable papers
intending to capture the micro-scale structure are those by Mindlin [2], Lam et al. [3],
Yang et al. [4]. For example, in [3] a generalized theory which intends to describe the devi-
atoric stretch, the symmetric rotation gradient tensors, and the dilatation gradient vector
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appears. To this aim in this theory there are included some third order material length
scale parameters. The motivation for introduction of these high order derivatives is given
by the possibility that some media configurations can be better characterized with the help
of these higher gradients.

Let us underline that in the constitutive equations in the strain gradient thermoelastic-
ity theory the second order gradient is contained, of course, along with the first gradient,
because both have contributions to dissipation. The strain gradient theory of thermoelas-
ticity is suitable to approach main problems regarding the size effects and to characterize
the evolution of chiral elastic materials which include auxenic media, carbon nanotube,
bones, porous composite, and honeycomb structures. Some papers in this domain are
[5–14]. In [5] Pata and Quintanilla linearized this theory and have presented a uniqueness
result for the solution of mixed problem in this context. A study where we find an approach
to the problem of increment in the theory of thermoelasticity of this kind of elastic bodies
is presented in the paper [6] by Martinez and Quintanilla. For the extended thermody-
namics, from the paper [7] of Ciarletta, we can find a solution of Galerkin type for the
differential equations and, also, some fundamental solutions for the vibrations of steady
type. There are many papers in the theory of elasticity or in the theory of thermoelasticity
dedicated to the uniqueness of solutions or/and to continuous dependence results, but
we need to say that these results are based almost exclusively on the hypothesis that the
tensors of the thermoelastic coefficients are positive definite. In other studies, the unique-
ness or continuous dependence of solutions are obtained by using a specific law for the
conservation of energy. Green and Lindsay supplemented in [15] the conditions arising
from thermoelasticity with some assumptions on positive or negative definiteness in or-
der to prove a uniqueness theorem. We want to consider that our study is the continuation
of many studies which are based on the different improvements of the Lagrange identity,
of which it is worth mentioning the papers [16–18]. From the studies dedicated to Ce-
saro means, to uniqueness and to continuous dependence results, we remember [19–21].
Other results for different kinds of micro-structures can be found in the papers [22–32].

In our study we address the mixed problem in the context of strain gradient thermoelas-
ticity in a new manner, namely our approach is based on the identity of Lagrange. So, we
can prove that the problem in this context admits at most one solution, and we demon-
strate that the solutions to the problem depend continuously on loads, that is, the heat
supply and mass forces. Another continuous dependence of solutions result is obtained
with respect to the initial data. All the results are deduced in the case of bounded domains
from the Euclidean three-dimensional space, but they can be extended without much dif-
ficulty in the case of boundless domains, with some restrictions on behavior to infinity.
Again, we outline that the results are obtained without recourse to any hypotheses re-
garding the boundedness of the coefficients or to a law for the conservation of energy. In
addition, we avoid using definiteness assumptions on the thermoelastic coefficients.

2 Basic equations
Let us consider a bounded domain D of three-dimensional Euclidean space R3 which is oc-
cupied by the reference configuration of an anisotropic homogeneous linear elastic body
from strain gradient thermoelasticity theory. The closure of the regular domain D is de-
noted by D̄ and the bounder of D is ∂D, that is, we have D̄ = D ∪ ∂D. As usual, a fixed sys-
tem of Cartesian axes is used. The surface ∂D is piecewise smooth, and the components
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of the outward unit normal vector to it are denoted by ni. Letters in boldface are used to
designate fields of tensors and vectors. The vector of the displacement v has the compo-
nents designated by vi. By convention, for the material time derivative, a superposed dot
is used. The usual summation and differentiation conventions are employed. Summation
over repeated subscripts is implied and subscripts preceded by a comma denote partial
differentiation with respect to the corresponding Cartesian coordinate.

When there is no likelihood of confusion, we omit the time argument or/and the spatial
argument of a function.

To describe the evolution of such type of media, we consider a vector of displacement
having the components vi and the difference of temperature, denoted by ϑ , which is mea-
sured from absolute temperature in the reference state T0, which is assumed be a constant.
We use two strain tensors of components emn and μmnr , respectively, which are also called
the kinematic characteristics of the body. These are introduced with the help of the kine-
matic equations

emn =
1
2

(vm,n + vn,m), μmnr = vr,mn. (1)

We also use two tensors of stress, namely the classic stress tensor of components tmn and
the hyperstress tensor of components σmnr , both tensors defined over D. Having the stress
tensors and the strain tensors, we can highlight the connections between them through the
constitutive equations which, for an anisotropic and homogeneous strain gradient ther-
moelastic body, have the following form:

tmn = amnklekl + bmnrklμrkl – αmnϑ ,

σmnr = bklmnrekl + cklsmnrμkls – βmnrϑ ,

η = αmnemn + βmnrμmnr +
a

T0
ϑ – dmϑ,m,

qm = T0(dmϑ̇ – κmnϑ,n).

(2)

In our following considerations we use some basic notations and theoretical results in a
manner similar to that used by Iesan in his known book [33].

First, the equations of motion in strain gradient thermoelasticity have the general form
(see also [33])

tmn,n + σmnr,nr + Fm = 	v̈m. (3)

The equation of energy is given by

ϑ0η̇ =
1
	

qm,m + r. (4)

The functions used in the previous equations have the following meanings:
– Fm are the components of the body force per unit volume;
– 	 is the density of mass;
– η is the notation for the entropy;
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– r is the supply of heat;
– qm are the components of the heat flux.

The thermoelastic coefficients amnkl , bmnrkl , cmnrkls, αmn, βmnk , dm, a, and κmn are constants
for the characterization of materials from a constitutive point of view, and these obey the
following relations of symmetry:

amnkl = aklmn = anmkl, bmnrkl = bnmrkl = bmnrlk ,

cmnrkls = cklsmnr = cnmrkls, αmn = αnm, βmnr = βnmr , κmn = κnm. (5)

From Clausius–Duhem inequality, called also the inequality of production of entropy, we
can write

κmnξmξn ≥ 0, ∀ξm.

In all well-defined points of the set ∂D we consider a surface traction of components tk

and a scalar heat flux denoted by q with the help of notations

tk = tklnl, q = qlnl,

where nl are the components of the normal vector of ∂D.
Together with differential relations (1)–(4) we introduce a system of initial data of the

form

vm(0, x) = am(x), v̇m(0, x) = bm(x), ϑ(0, x) = σ (x), x ∈ D̄. (6)

Also, there are prescribed the following boundary conditions:

vm = v̄m on [0, t0) × ∂D1, tk = tklnl = t̄k on [0, t0) × ∂Dc
1,

ϑ = ϑ̄ on [0, t0) × ∂D2, q = qlnl = q̄ on [0, t0) × ∂Dc
2, (7)

where the instant of time t0 can take the infinite value.
Also, the subsets ∂D1 and ∂D2, respectively ∂Dc

1 and ∂Dc
2, are subsurfaces of the set ∂D

satisfying the following conditions:

∂D1 ∩ ∂Dc
1 = ∂D2 ∩ ∂Dc

2 = ∅,

∂D1 ∪ ∂Dc
1 = ∂D2 ∪ ∂Dc

2 = ∂D.

Assume that am, bm, σ , v̄m, t̄k , ϑ̄ , and q̄ are given regular functions on the domain on which
they are defined.

In the following considerations we use some hypotheses of regularity as follows:
(i) the functions which define the thermoelastic coefficients of class C1 on D̄;

(ii) 	 is a function of class C0 on D̄;
(iii) Fm and r are functions of class C0 on [0, t0) × D̄;
(iv) am, bm, and σ are functions of class C0 on D̄;
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(v) v̄m and ϑ̄ are functions of class C0 on [0, t0) × ∂D1 and [0, t0) × ∂D2, respectively;
(vi) t̄k and q̄ are piecewise regular functions on [0, t0) × ∂Dc

1 and [0, t0) × ∂Dc
2,

respectively, and are continuous functions in time.
By using the constitutive relations (2), the motion equation (3) and the equation of en-

ergy (4) become

amnklvk,ln + bmnrklvk,lnr + αmnϑ,n + bmnrklvk,lnr

+ cmnrklsvk,lnrs + βmnrϑ,nr + Fm = 	v̈m, (8)

(κmnϑ,n),m + 	r = cϑ̇ + T0(αmnv̇m,n + βmnrv̇r,mn).

Let us denote by P the problem having initial and boundary data, from the strain gradient
theory of thermoelasticity, in the domain D0 = [0, t0) × D, which consists of the system
of partial differential relations (8) for all (t, x) ∈ D0, the boundary data (7), and the initial
relations (6). Any solution of this problem is an ordered array (vm,ϑ).

3 Verification of theorems
Let v(t, x) and w(t, x) be two functions of class C1 regarding the variable t. By a simple
check, we can see that the following equality takes place:

d
dt

[
v(t)ẇ(t) – v̇(t)w(t)

]
= v(t)ẅ(t) – v̈(t)w(t),

where, for simplicity, we have omitted the time variable and the spatial variables of the
functions v(t, x) and w(t, x).

In the previous identity, we replace the functions v(t, x) and w(t, x) with the functions
Vm(t, x) and Wm(t, x), respectively, considering that the two new functions are also of class
C1 regarding the variable t. If we integrate the resulting equality, we deduce the following
equality known as the identity of Lagrange:

∫

B
	(x)

[
Vm(t, x)Ẇm(t, x) – V̇m(t, x)Wm(t, x)

]
dV =

=
∫

D
	(x)

[
Vm(0, x)Ẇm(0, x) – V̇m(0, x)Wm(0, x)

]
dV + (9)

+
∫ t

0

∫

B
	(x)

[
Vm(τ , x)Ẅm(τ , x) – V̈m(τ , x)Wm(τ , x)

]
dV dτ .

We introduce the following notations:

wm = v(2)
m – v(1)

m , μ = ϑ (2) – ϑ (1)

tmn = t(2)
mn – t(1)

mn, σmnk = σ
(2)
mnk – σ

(1)
mnk , S = η(2) – η(1), (10)

pm = q(2)
m – q(1)

m , fm = F (2)
m – F (1)

m , R = r(2) – r(1),

were we denoted by (v(ν)
m ,ϑ (ν)), ν = 1, 2, two solutions that verify the above problem P cor-

responding to the same boundary relations and same initial relations, but to heat supplies
and to different body forces, namely (F (ν)

m , r(ν)), ν = 1, 2, respectively.
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The constitutive equations become:

tmn = amnklwk,l + bmnrklwr,kl + αmnμ,

σmnr = bklmnrwk,l + cmnrklswk,ls + βmnrμ, (11)

η = –αmnvm,n – βmnrvr,mn +
a

T0
μ – bmμ,m,

pm = T0(bmμ̇ – κmnμ,n).

In this way, we see that the differences (wm,μ) verify the equations and conditions that
follow:

– the equation of motion:

	ẅm = amnklwk,ln + bmnrklwr,kln + αmnμ,n

+ bklmnrwr,kln + cklsmnrwr,nskl + βmnrμ,nr + fm; (12)

– the equation of energy:

aχ̇ + ϑ0(αmnẇm,n + βmnrẇr,mn) = (κmnμ,n),m + 	R; (13)

– the initial conditions:

wm(0, x) = 0, ẇm(0, x) = 0, μ(0, x) = 0, x ∈ D̄; (14)

– the boundary conditions:

wm(t, x) = 0 on [0, t0) × ∂D1, tmk(t, x)nk = 0 on [0, t0) × ∂Dc
1,

μ(t, x) = 0 on [0, t0) × ∂D2, pk(t, x)nk = 0 on [0, t0) × ∂Dc
2. (15)

Now, we can find a Lagrange identity corresponding to the difference of two solutions of
the mixed initial boundary value problem P .

Theorem 1 Let us consider the difference (wm,χ ) of two solutions of the mixed problem P .
Corresponding to this difference, the Lagrange identity receives the form that follows:

2
∫

D
	wm(t)ẇm(t) dV +

∫

D

1
T0

κmn

(∫ t

0
μ,m(s) ds

)(∫ t

0
μ,n(s) ds

)
dV

=
∫ t

0
dτ

∫

D
	
[
wm(2t – τ )fm(τ ) – wm(τ )fm(2t – τ )

]
dV + (16)

+
∫ t

0

∫

D

	

T0

[
μ(τ )

∫ 2t–τ

0
R(s) ds – μ(2t – τ )

∫ τ

0
R(s) ds

]
dV dτ , t ∈

[
0,

t0

2

)
.

Proof Clearly, the mixed problem P is linear such that the difference (wm,μ) represents
also a solution of a mixed initial boundary value problem, which is analogous to the prob-
lem P , but consists of a system of relations (12), (13) with the charges fm and R, the ho-
mogeneous boundary conditions (15), and null initial conditions (14). Identity (9) receives



Marin et al. Boundary Value Problems        (2020) 2020:174 Page 7 of 14

the following simpler form:

2
∫

B
	vm(t)vm(t) dV =

∫ t

0

∫

B
	
[
vm(2t – τ )v̈m(τ ) – v̈m(2t – τ )vm(τ )

]
dV dτ (17)

after using the substitutions

Vm(τ ) = wm(τ ), Wm(τ ) = wm(2t – τ ), τ ∈ [0, 2t], t ∈
[

0,
t0

2

)
.

In order to obtain equality (17) we considered that both the initial data and the boundary
conditions are zero.

If we use the motion equations for the respective differences (wm,μ), we can substitute
the inertial terms which appear in identity (17), in its right-hand side. To this end we con-
sider equation (12) so that we deduce

	
[
wm(2t – τ )ẅm(τ ) – ẅm(2t – τ )wm(τ )

]

=
{

wm(2t – τ )
[
amnklwk,l(τ ) + bmnrklwr,kl(τ ) + αmnμ(τ )

+ bklmnrwr,kl(τ ) + cmnrklswr,kls(τ ) + βmnrμ,r(τ )
]}

,n

–
{

wm(τ )
[
amnklvk,l(2t – τ ) + bmnrklwr,kl(2t – τ ) + αmnμ(2t – τ )

+ brklmnwr,kl(2t – τ ) + cmnrklswr,kls(2t – τ ) + βmnrμ,r(2t – τ )
]}

,n

– amnklwk,l(τ )wm,n(2t – τ ) – bmnrklwr,kl(τ )wm,n(2t – τ ) – αmnμ(τ )wm,n(2t – τ )

– bklmnrwr,kl(τ )wm,n(2t – τ ) – cmnrklswr,kls(τ )wm,n(2t – τ )

– βmnrμ,r(τ )wm,n(2t – τ )

+ amnklwk,l(2t – τ )wm,n(τ ) + bmnrklwr,kl(2t – τ )wm,n(τ ) + αmnμ(2t – τ )wm,n(τ )

+ bklmnrwr,kl(2t – τ )wm,n(τ ) + cmnrklswr,kls(2t – τ )wm,n(τ )

+ βmnrμ,r(2t – τ )wm,n(τ )

+ 	
[
fm(τ )wm(2t – τ ) – fm(2t – τ )wm(τ )

]
.

We wish to get a simpler form of the previous equality. In this regard, we use the symmetry
relations (5):

	
[
wm(2t – τ )ẅm(τ ) – ẅm(2t – τ )wm(τ )

]

=
{

wm(2t – τ )
[
amnklvk,l(τ ) + bmnrklwr,kl(τ ) + αmnμ(τ )

+ bklmnrwr,kl(τ ) + cmnrklswr,kls(τ ) + βmnrμ,r(τ )
]}

,n

–
{

wm(τ )
[
amnklwk,l(2t – τ ) + bmnrklwr,kl(2t – τ ) + αmnμ(2t – τ ) (18)

+ bklmnrwr,kl(2t – τ ) + cmnrklswr,kls(2t – τ ) + βmnrμ,r(2t – τ )
]}

,n

+ αmn
[
μ(2t – τ )wm,n(τ ) – μ(τ )wm,r(2t – τ )

]

+ βmnrμ,r(2t – τ )wm,n(τ ) – βmnrμ,r(τ )wm,n(2t – τ )

+ 	
[
fm(τ )wm(2t – τ ) – fm(2t – τ )wm(τ )

]
.



Marin et al. Boundary Value Problems        (2020) 2020:174 Page 8 of 14

In this equality we integrate by parts equality (18) on [0, t] × D, so that after we use the
theorem of divergence and the null boundary relations (15), we obtain the identity

∫

D
	
[
wm(2t – τ )ẅm(τ ) – ẅm(2t – τ )wm(τ )

]
dV

=
∫ t

0

∫

D

[
αmnwm,n(τ ) + βmnrwm,nr(τ )

]
μ(2t – τ ) dV dτ (19)

–
∫ t

0

∫

D

[
αmnwm,n(2t – τ ) + βmnrwm,nr(2t – τ )

]
μ(τ ) dV dτ

+
∫ t

0

∫

D
	
[
fm(τ )wm(2t – τ ) – fm(2t – τ )wm(τ )

]
dV dτ .

Let us now integrate the equation of energy (13) on [0, τ ]. Taking into account that in (14)
the initial data are null, we deduce the equality

αmnwm,n(τ ) + βmnrwm,nr(τ )

=
a

T0
μ(τ ) – –

1
T0

(∫ τ

0
μ,n(ξ ) dξ

)

,m
–

	

T0

∫ τ

0
P(z) dξ , τ ∈ [0, t0). (20)

In a similar manner, we can get also the equality

αmnwm,n(2t – τ ) + βmnrwm,nr(2t – τ )

=
a

T0
μ(2t – τ )

–
1

T0

(∫ 2t–τ

0
μ,n(ξ ) dξ

)

,m
–

	

T0

∫ 2t–τ

0
P(ξ ) dξ , τ ∈ [0, t0). (21)

Now, we multiply identity (20) by μ(2t – τ ) and identity (21) by μ(τ ), then we add term by
term the equalities that are obtained. We get a new equality that we integrate on [0, t] × D
so that we obtain the equality

∫ t

0

∫

D

[
αmnwm,n(τ ) + βmnrwm,nr(τ )

]
μ(2t – τ ) dV dτ

–
∫ t

0

∫

D

[
αmnwm,n(2t – τ ) + βmnrwm,nr(2t – τ )

]
μ(τ ) dV dτ (22)

=
∫

D

1
T0

[
κmnμ,m(2t – τ )

∫ τ

0
μ,n(ξ ) dξ – κmnμ,m(τ )

∫ 2t–τ

0
μ,n(ξ ) dξ

]
dV

+
∫

D

	

T0

[
μ(τ )

∫ 2t–τ

0
R(ξ ) dξ – μ(2t – τ )

∫ τ

0
R(ξ ) dξ

]
dV .

Considering (22), from (19) we deduce

∫

D
	
[
wm(2t – τ )ẅm(τ ) – ẅm(2t – τ )wm(τ )

]
dV

=
∫

D

1
T0

[
κmnμ,m(2t – τ )

∫ τ

0
μ,n(ξ ) dξ – κmnμ,m(τ )

∫ 2t–τ

0
μ,n(ξ ) dξ

]
dV (23)
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+
∫

D

	

T0

[
μ(τ )

∫ 2t–τ

0
R(ξ ) dξ – μ(2t – τ )

∫ τ

0
R(ξ ) dξ

]
dV

+
∫ t

0

∫

D
	
[
fm(τ )wm(2t – τ ) – fi(2t – τ )wm(τ )

]
dV dτ .

Since the tensor κmn is symmetrical, we obtain

∫ t

0

∫

D

1
T0

κmn
d

dτ

[(∫ τ

0
μ,m(ξ ) dξ

)(∫ 2t–τ

0
μ,j(ξ ) dξ

)]
dV dτ

=
∫

D

1
T0

κmn

∫ t

0

d
dτ

[(∫ τ

0
μ,m(ξ ) dξ

)(∫ 2t–τ

0
μ,n(ξ ) dξ

)]
dτ dV (24)

=
∫

D

1
T0

κmn

(∫ t

0
μ,m(ξ ) dξ

)(∫ t

0
μ,n(ξ ) dξ

)
dV ,

and this identity can be rewritten in the following form:

∫ t

0
dτ

∫

D

1
T0

κmn

[
μ,m(τ )

∫ 2t–τ

0
μ,n(ξ ) dξ – μ,n(2t – τ )

∫ τ

0
μ,m(ξ ) dξ

]
dV

=
∫ t

0
dτ

∫

D

1
T0

κmn
d

dτ

[(∫ τ

0
μ,m(ξ ) dξ

)(∫ 2t–τ

0
μ,n(ξ ) dξ

)]
dV (25)

after we performed integration by parts.
After using the derivation of the integral with the parameter in the integral from equality

(25), we obtain

∫ t

0

∫

D

1
T0

κmn

[
μ,m(2t – τ )

∫ τ

0
μ,m(ξ ) dξ – μ,i(2t – τ )

∫ 2t–τ

0
μ,n(ξ ) dξ

]
dV dτ

= –
∫

D

1
T0

κmn

[(∫ τ

0
μ,m(ξ ) dξ

)(∫ 2t–τ

0
μ,n(ξ ) dξ

)]
dV . (26)

Considering (26), from (23) we obtain equality (16), and so the proof of Theorem 1 is
finished. �

Although it is an auxiliary result, identity (16) of Theorem 1 is very important because
based on it we prove all the results of our study, both the one ensuring that the solution
to the problem is unique and the three results regarding the continuous dependence of
the solution. First application of identity (16) is the result of uniqueness, from the next
theorem, with regards to the solution of the mixed initial boundary value problem P . For
this we need to suppose that the tensor of conductivity κmn is positive definite, that is, we
have

κmnxmxn ≥ k0xmxm, ∀xm,

where k0 > 0 is a constant.

Theorem 2 Let us suppose that the relations of symmetry (5) are fulfilled and the set ∂D2

is not empty or the specific heat a(x) is nonzero on B. Thus, the mixed problem P in strain
gradient thermoelasticity has at most one solution.
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Proof Assume that the above problem P is satisfied by two supposed solutions (v(ν)
m ,ϑ (ν)),

ν = 1, 2, corresponding to the same data to the limit, the identical initial conditions, the
identical heat supply, and the identical body force.

We use the notations

wm = v(2)
m – v(1)

m , μ = ϑ (2) – ϑ (1), (27)

and the proof will end if we show that

wm(t, x) = 0, μ(t, x) = 0, ∀(t, x) ∈ [0, t0) × B. (28)

Taking into account the linearity of the problem P , the above differences (wm,μ) also
satisfy this problem in the special case in which the heat supply is null and the body force
is zero. In this particular case, equality (16) can be rewritten in the following simpler form:

2
∫

D
	wm(t)ẇm(t) dV +

∫

D

1
T0

κmn

(∫ t

0
μ,i(ξ ) dξ

)(∫ t

0
μ,j(ξ ) dξ

)
dV = 0,

which, after integration on [0, t], t ∈ [0, t0/2), becomes

∫

D
	wm(t)wm(t) dV +

∫ t

0

∫

D

1
T0

κmn

(∫ s

0
μ,m(ξ ) dξ

)(∫ s

0
μ,m(ξ ) dξ

)
dV ds = 0.

Considering that the tensor κmn is positive defined and 	 > 0, from the above identity we
deduce

wm(t, x) = 0, μ,m(t, x) = 0, ∀(t, x) ∈ [0, t0/2) × D. (29)

If the surface ∂B2 is not empty, based on the boundary data (7), from (29) we obtain that
statements (28) are true. In the case a(x) �= 0, the energy equation (for the above differ-
ences) leads to the conclusion that μ̇ = 0. But the initial value of μ is zero, such that we
have again that (28) holds true.

If the time t0 were infinite, the proof of Theorem 2 would be ready. In the case t0 is finite,
the above considerations can be repeated, but on the interval [t0/2, t0/2 + t0/4], by setting

wm

(
t0

2
, x

)
= ẇm

(
t0

2
, x

)
= 0, μ

(
t0

2
, x

)
= 0.

In this way we obtain again conclusion (28), but on the interval B × [0, 3t0/4). The proce-
dure can be repeated as many times as possible, each time by halving the interval.

At long last, we can conclude that conclusions (28) are true on [0, t0) × D and the proof
of Theorem 2 ends. �

In our next theorem, we prove the first result regarding the continuous dependence of
solutions of the problem P in relation to heat supply and body force on the compact sub-
intervals of the interval [0, t0).
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To this aim, we consider two solutions (v(ν)
m ,ϑ (ν)), ν = 1, 2, of the mixed problem P , cor-

responding to the same boundary data and the same initial conditions, but to different
heat supply and different body force, namely (F (ν)

m , r(ν)), ν = 1, 2). We use the notations

fm = F (2)
m – F (1)

m , R = r(2) – r(1).

Theorem 3 Suppose that the relations of symmetry (5) take place. Assuming there exist
the constants Q1, Q2, M1, and M2 and there exists t∗ ∈ (0, t0) such that

∫ t∗

0

∫

D
	wm(t)wm(t) dV dt ≤ Q2

1,
∫ t∗

0

∫

D

	

T0
μ2(t) dV dt ≤ Q2

2,

∫ t∗

0

∫

D
	fm(t)fm(t) dV dt ≤ M2

1,
∫ t∗

0

∫

D

	

T0

(∫ t

0
R(ξ ) dξ

)2

dV dt ≤ M2
2, (30)

we deduce the following estimation:

∫

D
	wm(τ )wm(τ ) dV +

∫ τ

0

∫

D

1
ϑ0

κmn

(∫ s

0
μ,m(ξ ) dξ

)(∫ s

0
μ,n(ξ ) dξ

)
dV dτ

≤ t∗Q1

[∫ t∗

0

∫

D
	fm(s)fm(s) dV ds

]1/2

+ t∗Q2

[∫ t∗

0

∫

D

	

T0

(∫ s

0
R(ξ ) dξ

)2

dV ds
]1/2

, (31)

where τ ∈ [0, t∗/2) and wm(τ ) and μ(τ ) are the differences defined in (27).

Proof As we anticipated, the proof is based on identity (16). With the help of the Schwarz
inequality, we deduce some estimations for each integral which appears in the right-hand
side of this identity.

For example, the following estimates are easy to follow:

∫ t

0

∫

D
	wm(2t – τ )fm(τ ) dV dτ

≤
[∫ t

0

∫

D
	fm(τ )fm(τ ) dV dτ

]1/2[∫ t∗

0

∫

D
	wm(2t – τ )wm(2t – τ ) dV dτ

]1/2

=
[∫ t

0

∫

D
	fm(τ )fm(τ ) dV dτ

]1/2[∫ 2t

t

∫

B
	wm(τ )wm(τ ) dV dτ

]1/2

≤ Q1

[∫ t∗

0

∫

D
	fm(τ )fm(τ ) dV dτ

]1/2

,

where, to get the last row, we made the transformation of variable 2t – τ → τ .
The other integrals which appear in identity (16) in its right-hand part are approached

in a similar manner. All the inequalities obtained in this way are added together, a new
inequality that is integrated over [0, τ ], τ ∈ [0, t∗/2] is obtained and, finally, we are led to
inequality (31), and this ends the demonstration of Theorem 3. �

Remark Inequality (31) has a double importance.
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First, it proves the continuous dependence of the solutions of the mixed problem P with
respect to the loads.

Second, this inequality underlies the proof of the following theorem, which addresses
another type of continuous dependence, namely with respect to the initial data.

To this aim, we consider two solutions of the mixed problem P :

(
v(1)

m ,ϑ (1)),
(
v(1)

m + wm,ϑ (1) + μ
)

corresponding to the same boundary conditions and to the same heat supply and body
force, but to different initial conditions, namely

(
v(1)

m (0), v̇(1)
m (0),ϑ (1)(0)

)
,

(
v(1)

m (0) + α0
m, v̇(1)

m (0) + β0
m,ϑ (1)(0) + δ0),

where the perturbations (α0
m,β0

m, δ0
m) satisfy the following conditions: there exist the con-

stants M3 and M4 such that
∫

D
	
(
α0

mα0
m + β0

mβ0
m
)

dV ≤ M2
3,

∫

B

T0

	
η2

0 dV ≤ M2
4,

where we denote by η0 the following expression:

η0 =
a

T0
δ0 – αmnα

0
n,m – βmnkβ

0
k,mn.

With the help of the perturbation wm and μ, we introduce the functions Vm(t) and �(t)
by means of the notations

Vm(t) =
∫ t

0

∫ s

0
wm(τ ) dτ ds, �(t) =

∫ t

0

∫ s

0
μ(τ ) dτ ds. (32)

Theorem 4 Suppose that symmetry relations (5) take place and the functions (Vm,�) sat-
isfy restrictions (30). Then the following estimate takes place:

∫

D
	Vm(t)Vm(t) dV +

∫ t

0

∫

D

1
T0

κmn

(∫ s

0
�,m(ξ ) dξ

)(∫ s

0
�,n(ξ ) dξ

)
dV ds

≤ t∗Q1

[(
t∗ +

t∗2

2

)∫

D
	α0

mα0
m dV +

(
t∗2

2
+

t∗3

3

)∫

D
	β1

mβ1
m dV

]1/2

(33)

+ t∗7/2Q2
1√
20

(∫

D

T0

	
η2

0 dV
)1/2

, t ∈
[

0,
t∗

2

]
.

Proof First, it is easy to obtain from (32) that

Vm(t) =
∫ t

0
(t – τ )wm(τ ) dτ , �(t) =

∫ t

0
(t – τ )μ(τ ) dτ

after integration by parts.
On the other hand, the difference functions (wm,μ) verify the motion equations and the

energy equation in the form from (8), but in the particular case of zero loads

fm = 0, r = 0.
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The initial conditions satisfied by the difference functions have the form

wm(0) = α0
m, ẇm(0) = β0

m, μ(0) = δ0.

It is not difficult to prove that the functions (Vm,�), introduced in relations (32), satisfy
the equations of motion and the energy equation exactly of the form of the equations from
system (8), but the heat supply and the body force have the following form:

r(t) =
T0

	
t
[

a
T0

δ0 – αmnα
0
m,n – βmnkβ

0
k,mn

]
,

fm(t) = α0
m + tβ0

m.

In view of these clarifications, we can obtain estimate (32) directly from (31) such that the
proof of Theorem 4 is finished. �

4 Conclusions
It is worth noting that our main results with regards to the uniqueness of solution and
with regards to the continuous dependence of solutions were obtained without recourse
to any assumptions with respect to the boundedness of thermoelastic coefficients. We also
did not resort to any conservation law to demonstrate these qualitative theorems. In many
previous papers, any qualitative theorems regarding the solutions of some mixed problems
of the form of P , such as existence, uniqueness, continuous dependence, or stability of
solutions, have been obtained based on some strong restrictions. One of the most used
restrictions is the imposition of the internal energy to be positively defined, a condition
that we have not used in any of the results mentioned.
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