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Abstract
In this paper, we study the long time behavior of solution for the initial-boundary
value problem of convective Cahn–Hilliard equation in a 2D case. We show that the
equation has a global attractor in H4(�) when the initial value belongs to H1(�).
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1 Introduction
The dynamic properties of diffusion equations ensure the stability of diffusion phenomena
and provide the mathematical foundation for the study of diffusion dynamics. There are
many studies on the existence of global attractors for diffusion equations. For the classical
results, we refer the reader to [1–9].

The convective Cahn–Hilliard equation [10–16], which arises naturally as a continuous
model for the formation of facets and corners in crystal growth, is a typical fourth order
nonlinear parabolic equation. Let � = [0, L] × [0, L], where L > 0, γ is a positive constant,
�β is a vector. We consider the convective Cahn–Hilliard equation in the 2D case:

ut + γ�2u = �ϕ(u) – �β · ∇ψ(u), x = (x1, x2) ∈ R
2, t ≥ 0. (1)

Equation (1) is supplemented by the following boundary conditions:

u(x1 + L, x2, t) = u(x1, x2 + L, t) = u(x1, x2, t), x ∈R
2, t ≥ 0, (2)

and the initial condition

u(x, 0) = u0(x). (3)

In this paper, we denote by H = L2(�), (·, ·) the H-inner product and by ‖ · ‖ the cor-
responding H-norm, denote A = –�, where � is the Laplace operator. Assume that the
initial function has zero mean, i.e.,

∫
�

u0(x) dx = 0, then it follows that
∫
�

u(x, t) dx = 0 for
t > 0. Here, as [3], we set

Ḣk
per =

{

u
∣
∣
∣u ∈ Hk

per(�),
∫

�

u(x, t) dx = 0,
}

, k = 1, 2, . . . .
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Using the same method as [13], we obtain the lemma on the existence of global weak
solution to problem (1)–(3).

Lemma 1.1 Suppose that u0 ∈ Ḣ1
per(�) and the functions ϕ(r) ∈ C2(R), ψ(r) ∈ C1(R) sat-

isfy

ϕ′(r) > 0, ϕ(i) ≤ c′
0|r|k–i + c′

1, ψ ′(r) ≤ c0r
√

ϕ′(r) + c1,

where k ≤ 3 is a positive constant and i = 0, 1, 2. Then there exists a unique solution u for
problem (1)–(3) such that

u ∈ C
(
R

+; Ḣ1
per(�)

) ∩ L2
loc

(
R

+; Ḣ2
per(�)

)
.

By Lemma 1.1, we can define the operator semigroup S(t)u0 : Ḣ1
per(�) ×R

+ → Ḣ1
per(�),

which is (Ḣ1
per , Ḣ1

per)-continuous. In what follows, we always assume that {S(t)}t≥0 is the
semigroup generated by the weak solutions of problem (1). It is sufficient to see that the
restriction of {S(t)} on the affined space Ḣ1

per(�) is a well-defined semigroup.

Proposition 1.2 ([17–19]) Suppose that A is an (H1, H1)-global attractor for {S(t)}t≥0.
Suppose further that {S(t)}t≥0 has a bounded (H1, H4)-absorbing set and {S(t)}t≥0 is
(H1, H4)-asymptotically compact. Then A is also an (H1, H4)-global attractor.

The main result of this paper will be stated in the following.

Theorem 1.3 Suppose that u0 ∈ H1
per(�) and the functions ϕ(r) ∈ C3(R), ψ(r) ∈ C2(R)

satisfy

ϕ′(r) > 0, ϕ(i) ≤ c′
0|r|k–i + c′

1, ψ ′(r) ≤ c0r
√

ϕ′(r) + c1, (4)

where k ≤ 3 is a positive constant and i = 0, 1, 2. Then there exists an (H1, H4)-global at-
tractor for the solution u(x, t) of problem (1)–(3), which is invariant and compact in H4(�)
and attracts every bounded subset of H1(�) with respect to the norm topology of H4(�).

Remark 1.4 In the previous papers [18, 20, 21], my cooperators and I also studied the exis-
tence of global attractor for a 2D convective Cahn–Hilliard equation. There are two main
differences between the previous results and Theorem 1.3. First, in [18, 20], we assumed
that there exists double-well potential for the convective Cahn–Hilliard equation, which
was replaced by the higher order polynomial in [21]. But, in this paper, this assumption
is changed by (4), which seems more abroad than double-well potential and polynomial.
Second, in [18], the existence of (H2, H2)-global attractor was obtained, and in [20, 21], the
existence of (Hk , Hk)-global attractor was proved. In this paper, we only assume that the
initial data belongs to H1(�) and obtain the (H1, H4)-global attractor for the 2D convective
Cahn–Hilliard equation.

The remaining parts are organized as follows. We begin by giving some uniform es-
timates of solutions for the 2D convective Cahn–Hilliard equation in Sect. 2. Then, in
Sect. 3, we prove the main results on the existence of global attractor.
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2 Uniform estimates of solutions
First of all, we establish the uniform estimates of solutions of problem (1) as t → ∞. These
estimates are necessary to prove the existence of global attractors.

Lemma 2.1 Suppose that u0 ∈ L2(�) and the functions ϕ(r) ∈ C1(R), ψ(r) ∈ C1(R) satisfy

ϕ′(r) > 0, ψ ′(r) ≤ c0r
√

ϕ′(r) + c1.

Then, for problem (1)–(3), we have

∥
∥u(t)

∥
∥ ≤ M0, ∀t ≥ T0,

and
∫ t+1

t

∥
∥Au(t)

∥
∥2 dτ ≤ M0, t ≥ T0.

Here, M0 is a positive constant depending on γ and ci (i = 0, 1). T0 depends on γ , ci (i = 0, 1)
and R, where ‖u0‖2 ≤ R2.

Proof Multiplying equation (1) by u and integrating the resulting relation over �, we ob-
tain

1
2

d
dt

‖u‖2 + γ ‖�u‖2 +
∫

�

ϕ′(u)|∇u|2 dx = β ·
∫

�

ψ ′(u)u∇u dx. (5)

Note that

β ·
∫

�

ψ ′(u)u∇u dx = β ·
∫

�

ψ ′(u)u∇u dx

≤ c2|β|
∫

�

∣
∣u∇u

√
ϕ′(u)

∣
∣dx + c3|β|

∫

�

|u|dx

≤ 1
2

∫

�

ϕ′(u)|∇u|2 dx +
c2

2
‖u‖2 +

c3

2
.

Hence

d
dt

‖u‖2 + 2γ ‖�u‖2 +
∫

�

ϕ′(u)|∇u|2 dx ≤ c2‖u‖2 + c3. (6)

Applying Poincaré’s inequality, we arrive at

‖u‖2 ≤ c′‖∇u‖2.

Moreover,

c′‖∇u‖2 = –c′
∫

�

u�u dx ≤ 1
2
‖u‖2 +

(c′)2

2
‖�u‖2.

Therefore, the following inequality holds:

‖u‖2 ≤ (
c′)2‖�u‖2.
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Summing up, we get

d
dt

‖u‖2 +
(

2γ

(c′)2 – c4

)

‖u‖2 ≤ c5, (7)

where γ satisfies 2γ

(c′)2 – c4 > 0. Using Gronwall’s inequality, we deduce that

‖u‖2 ≤ e–( 2γ

(c′)2 –c2)t‖u0‖2 +
c3(c′)2

2γ – c2(c′)2 ≤ 2c3(c′)2

2γ – c2(c′)2 (8)

for all t ≥ T∗ = (c′)2

2γ –c2(c′)2 ln [2γ –c2(c′)2]R2

c3(c′)2 . Integrating (6) over (t, t + 1) with t ≥ T∗ yields

∫ t+1

t
‖�u‖2 dτ ≤ c4. (9)

By using a mean value theorem for integrals, we obtain the existence of a time t′
0 ∈ (T∗, T∗ +

1) such that

∥
∥�u

(
t′
0
)∥∥2 ≤ c5

holds uniformly, the proof is complete. �

Lemma 2.2 Suppose that u0 ∈ H1
per(�) and the functions ϕ(r) ∈ C2(R), ψ(r) ∈ C1(R) sat-

isfy

ϕ′(r) > 0, ϕ(i) ≤ c′
0|r|k–i + c′

1, ψ ′(r) ≤ c0r
√

ϕ′(r) + c1,

where k ≤ 3 is a positive constant and i = 0, 1, 2. Then, for problem (1)–(3), we have

∥
∥∇u(t)

∥
∥ ≤ M1, ∀t ≥ T1,

and

∫ t+1

t

∥
∥∇�u(t)

∥
∥2 dτ ≤ M1, t ≥ T1.

Here, M1 is a positive constant depending on γ and ci, c′
i (i = 0, 1). T1 depends on γ , ci, c′

i

(i = 0, 1) and R, where ‖u0‖2
H1

per
≤ R2.

Proof Multiplying equation (1) by –�u and integrating the resulting relation over � yields

1
2

d
dt

‖∇u‖2 + γ ‖∇�u‖2 = –
∫

�

�ϕ(u)�u dx – β ·
∫

�

∇ψ(u)�u dx

= –
∫

�

ϕ′(u)|�u|2 dx –
∫

�

ϕ′′(u)|∇u|2�u dx

– β ·
∫

�

ψ ′(u)∇u�u dx.
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Hence

1
2

d
dt

‖∇u‖2 + γ ‖∇�u‖2 +
∫

�

ϕ′(u)|�u|2 dx

= –
∫

�

ϕ′′(u)|∇u|2�u dx – β ·
∫

�

ψ ′(u)∇u�u dx

≤ c
∫

�

|u�u||∇u|2 dx + c|β|
∫

�

∣
∣u2

√
ϕ′(u)∇u�u

∣
∣dx + c‖∇u‖2

≤ c
2

∫

�

|∇u|4 dx +
c
2

∫

�

|u�u|2 dx +
∫

�

ϕ′(u)|�u|2 dx +
c2|β|2

4

∫

�

u4|∇u|2 dx

+
c6

2
‖∇u‖2.

By Nirenberg’s inequality, we obtain

‖u‖4 ≤ c′
1‖∇�u‖ 1

6 ‖u‖ 5
6 + c′

2‖u‖, ‖∇u‖4 ≤ c′
1‖∇�u‖ 1

2 ‖u‖ 1
2 + c′

2‖u‖,

‖u‖8 ≤ c′
1‖∇�u‖ 1

4 ‖u‖ 3
4 + c′

2‖u‖, ‖�u‖4 ≤ c′
1‖∇�u‖ 5

6 ‖u‖ 1
6 + c′

2‖u‖.

Thus, by Hölder’s inequality and the above inequalities, we deduce that

c
2

∫

�

|∇u|4 dx +
c
2

∫

�

|u�u|2 dx +
c2|β|2

4

∫

�

u4|∇u|2 dx ≤ γ

2
‖∇�u‖2 +

c7

2
.

Summing up, we obtain

d
dt

‖∇u‖2 + γ ‖∇�u‖2 ≤ c6‖∇u‖2 + c7. (10)

On the other hand,

‖∇u‖2 = –
∫

�

u�u dx ≤ ‖u‖‖�u‖ ≤
√

2c3(c′)2

2γ – c2(c′)2 ‖�u‖

and

‖�u‖2 = –
∫

�

∇u · ∇�u dx ≤ ‖∇u‖‖∇�u‖.

Adding the above two inequalities together gives

c6‖∇u‖2 ≤ c‖∇�u‖ 4
3 ≤ γ

2
‖∇�u‖2 + c8. (11)

It then follows from (10) and (11) that

d
dt

‖∇u‖2 +
γ

2
‖∇u‖2 ≤ c7 + c8.

Applying Gronwall’s inequality yields

‖∇u‖2 ≤ e– γ
2 t‖∇u0‖2 +

2(c7 + c8)
γ

≤ 4(c7 + c8)
γ

(12)
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for all t ≥ T ′ = max{T∗, 2
γ

ln γ R2

2(c7+c8) }. Integrating (10) over (t, t + 1) with t ≥ T ′ gives

∫ t+1

t
‖∇�u‖2 dτ ≤ c9.

Using a mean value theorem for integrals, we obtain the existence of a time t0 ∈ (T ′, T ′ + 1)
such that

∥
∥∇�u(t0)

∥
∥2 ≤ c10

holds uniformly. Since we consider problem (1)–(3) in the 2D case, based on Sobolev’s
embedding theorem, we can get

‖u‖p =
(∫

�

up dx
) 1

p
≤ c11, 1 ≤ p < ∞.

Set T1 = T ′, we complete the proof. �

Lemma 2.3 Suppose that u0 ∈ H1
per(�) and the functions ϕ(r) ∈ C2(R), ψ(r) ∈ C1(R) sat-

isfy

ϕ′(r) > 0, ϕ(i) ≤ c′
0|r|k–i + c′

1, ψ ′(r) ≤ c0r
√

ϕ′(r) + c1,

where k ≤ 3 is a positive constant and i = 0, 1, 2. Then, for problem (1)–(3), we have

∥
∥Au(t)

∥
∥ ≤ M2, ∀t ≥ T2,

and

∫ t+1

t
‖ut‖2 dτ ≤ M2, t ≥ T2.

Here, M2 is a positive constant depending on γ and ci, c′
i (i = 0, 1). T2 depends on γ , ci, c′

i

(i = 0, 1) and R, where ‖u0‖2
H1

per
≤ R2.

Proof Multiplying equation (1) by �2u and integrating the resulting relation over �, we
obtain

1
2

d
dt

‖�u‖2 + γ
∥
∥�2u

∥
∥2

=
(
�ϕ(u),�2u

)
+

(
β · ∇ψ(u),�2u

)

=
(
ϕ′(u)�u + ϕ′′(u)|∇u|2,�2u

)
+ β · (ψ(u)∇u,�2u

)

≤ γ

2
∥
∥�2u

∥
∥2 +

2
γ

∥
∥ϕ′(u)�u

∥
∥2 +

2
γ

∥
∥ϕ′′(u)|∇u|2∥∥2 +

|β|2
γ

∥
∥ψ ′(u)∇u

∥
∥2.
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Simple calculation shows that

d
dt

‖�u‖2 + γ
∥
∥�2u

∥
∥2

≤ 4
γ

∫

�

∣
∣ϕ′(u)�u

∣
∣2 dx +

4
γ

∫

�

∣
∣ϕ′′(u)|∇u|2∣∣2 dx + c

∫

�

u2∣∣ϕ′(u)
∣
∣|∇u|2 dx + c‖∇u‖2

≤ c
(∫

�

u4|�u|2 dx +
∫

�

u2|∇u|4 dx +
∫

�

u6|∇u|2 dx
)

+ c‖�u‖2 + c‖∇u‖4
4 + c‖∇u‖2

≤ c
(‖u‖4

8‖�u‖2
4 + ‖u‖2

4‖∇u‖4
8 + ‖u‖6

12‖∇u|24
)

+ c‖�u‖2 + c‖∇u‖4
4 + c

≤ c
(‖�u‖2

4 + ‖∇u‖4
8 + +‖∇u‖2

4 + ‖∇u‖4
4
)

+ c‖�u‖2 + c.

By Sobolev’s embedding theorem, we deduce that

‖�u‖2
4 ≤ (

c′
1
∥
∥�2u

∥
∥

5
8 ‖u‖ 3

8 + c′
2‖u‖)2 ≤ ε

c
∥
∥�2u

∥
∥2 + cε ,

‖∇u‖2
4 ≤ (

c′
1
∥
∥�2u

∥
∥

3
8 ‖u‖ 5

8 + c′
2‖u‖)2 ≤ ε

c
∥
∥�2u

∥
∥2 + cε ,

‖∇u‖4
4 ≤ (

c′
1
∥
∥�2u

∥
∥

3
8 ‖u‖ 5

8 + c′
2‖u‖)4 ≤ ε

c
∥
∥�2u

∥
∥2 + cε ,

and

‖∇u‖4
8 ≤ (

c′
1
∥
∥�2u

∥
∥

7
16 ‖u‖ 11

16 + c′
2‖u‖)2 ≤ ε

c
∥
∥�2u

∥
∥2 + cε .

Moreover,

c‖�u‖2 = –c
∫

�

∇u · ∇�u dx = c
∫

�

u�2u dx ≤ ‖u‖∥∥�2u
∥
∥ ≤ ε

∥
∥�2u

∥
∥2 + cε .

Summing up and setting ε = γ

10 gives

d
dt

‖�u‖2 +
γ

2
∥
∥�2u

∥
∥2 ≤ c12. (13)

By a Calderón–Zygmund type estimate, the following inequality holds:

d
dt

‖�u‖2 +
γ c′

2
(‖�u‖2 + ‖∇�u‖2) ≤ c12.

Then, using Gronwall’s inequality, we obtain

‖�u‖2 ≤ e– γ c′
2 (t–t′0)∥∥�u

(
t′
0
)∥∥2 +

2c12

γ c′ ≤ 4c12

γ c′ (14)

for all t ≥ T ′
0 = max{T0, t′

0 + 2
γ c′ ln γ c′R2

2c12
}. Setting t ≥ T ′

0, taking s ∈ (t, t + 1), integrating (14)
over (s, t + 1), we derive that

∥
∥�u(t + 1)

∥
∥2 ≤ c13 +

∥
∥�u(s)

∥
∥2. (15)
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Integrating (15) with respect to s in (t, t + 1), we can obtain

∥
∥�u(t + 1)

∥
∥2 ≤ c13 +

∫ t+1

t

∥
∥�u(s)

∥
∥2 dx ≤ c14, ∀t ≥ T ′

0. (16)

By (14), (12), (7), and Sobolev’s embedding theorem, we conclude

‖u‖∞ ≤ c15, ‖∇u‖p ≤ c16, 1 ≤ p < ∞. (17)

Multiplying equation (1) by ut , integrating the resulting relation over � yields

‖ut‖2 +
γ

2
d
dt

‖�u‖2

=
∫

�

�ϕ(u)ut dx + β ·
∫

�

∇ψ(u)ut dx

=
∫

�

ϕ′(u)�uut dx +
∫

�

ϕ′′(u)|∇u|2ut dx + β ·
∫

�

ψ ′(u)∇uut dx

≤ ∥
∥ϕ′(u)

∥
∥∞‖�u‖‖ut‖ +

∥
∥ϕ′′(u)

∥
∥∞‖∇u‖2

4‖ut‖ + |β|∥∥ψ ′(u)
∥
∥∞‖∇u‖‖ut‖

≤ 1
2
‖ut‖2 + c

(∥∥ϕ′(u)
∥
∥2

∞‖�u‖2 +
∥
∥ϕ′′(u)

∥
∥2

∞‖∇u‖4
4 + |β|2∥∥ψ ′(u)

∥
∥2

∞‖∇u‖2)

≤ 1
2
‖ut‖2 +

c17

2
,

that is,

‖ut‖2 +
d
dt

‖�u‖2 ≤ c17. (18)

Integrating (18) over (t + 1, t + 2), using (14), we derive that

∫ t+2

t+1
‖ut‖2 dx ≤ c18, ∀t ≥ T ′′

0 .

Using a mean value theorem for integrals, we obtain the existence of a time t1 ∈ (T ′′
0 +

1, T ′′
0 + 2) such that the following estimate holds uniformly:

∥
∥ut(t1)

∥
∥2 ≤ c19.

Then the proof is complete. �

Lemma 2.4 Suppose that u0 ∈ H1
per(�) and the functions ϕ(r) ∈ C3(R), ψ(r) ∈ C2(R) sat-

isfy

ϕ′(r) > 0, ϕ(i) ≤ c′
0|r|k–i + c′

1, ψ ′(r) ≤ c0r
√

ϕ′(r) + c1,

where k ≤ 3 is a positive constant and i = 0, 1, 2. Then, for problem (1)–(3), we have

∥
∥∇�u(t)

∥
∥ ≤ M3, ∀t ≥ T3,
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and

∫ t+1

t

∥
∥A

1
2 ut(t)

∥
∥2 dt ≤ M3, ∀t ≥ T3.

Here, M3 is a positive constant depending on γ , ci, c′
i (i = 0, 1). T3 depends on γ , ci, c′

i

(i = 0, 1) and R, where ‖u0‖2
H1 ≤ R2.

Proof Multiplying (1) by �3u and integrating the resulting relation over �, we obtain

1
2

d
dt

‖∇�u‖2 + γ
∥
∥∇�2u

∥
∥2

=
∫

�

∇�ϕ(u)∇�2u dx + β ·
∫

�

�ψ(u)∇�2u dx

=
∫

�

ϕ′(u)∇�u∇�2u dx + 3
∫

�

ϕ′′(u)∇u�u∇�2u dx

+
∫

�

ϕ′′′(u)|∇u|2∇u∇�2u dx

+ β ·
∫

�

ψ ′(u)�u∇�2u dx + β ·
∫

�

ψ ′′(u)|∇u|2∇�2u dx

≤ γ

2
∥
∥∇�2u

∥
∥2 + c

(∥∥ϕ′(u)
∥
∥2

∞‖∇�u‖2 + 3
∥
∥ϕ′′(u)

∥
∥2

∞‖∇u‖2
4‖�u‖2

4

+
∥
∥ϕ′′(u)

∥
∥2

∞‖∇u‖6
6 + |β|2∥∥ψ ′(u)

∥
∥2

∞‖�u‖2 + |β|2∥∥ψ ′′(u)
∥
∥2

∞‖∇u‖4
4
)
.

(19)

It follows form (17) that

∥
∥ϕ′(u)

∥
∥2

∞‖∇�u‖2 ≤ c′

2
‖∇�u‖2,

3
∥
∥ϕ′′(u)

∥
∥2

∞‖∇u‖2
4‖�u‖2

4 ≤ c′

2
‖�u‖2

4,

and

∥
∥ϕ′′(u)

∥
∥2

∞‖∇u‖6
6 + |β|2∥∥ψ ′(u)

∥
∥2

∞‖‖�u‖2 + |β|2∥∥ψ ′′(u)
∥
∥2

∞‖∇u‖4
4 ≤ c19

2
.

Summing up, we find that

d
dt

‖∇�u‖2 + γ
∥
∥∇�2u

∥
∥2 ≤ c′(‖∇�u‖2 + ‖�u‖2

4 + c19
)
. (20)

Using Nirenberg’s inequality, we obtain

c′‖�u‖2
4 ≤ c′(c′

1
∥
∥∇�2u

∥
∥

1
6 ‖�u‖ 5

6 + c′
2‖�u‖)2 ≤ γ

4
∥
∥∇�2u

∥
∥2 + c20.

On the other hand,

c′‖∇�u‖2 = c′
∫

�

∇u · ∇�2u dx ≤ c′‖∇u‖∥∥∇�2u
∥
∥ ≤ γ

4
∥
∥∇�2u

∥
∥2 + c21.
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Hence

d
dt

‖∇�u‖2 +
γ

2
∥
∥∇�2u

∥
∥2 ≤ c20 + c21 + c′c19. (21)

A simple calculation shows that

d
dt

‖∇�u‖2 + c22‖∇�u‖2 ≤ c23. (22)

By Gronwall’s inequality, we immediately obtain

∥
∥∇�u(t)

∥
∥2 ≤ e–c22(t–t0)∥∥∇u(t0)

∥
∥2 +

c23

c22
≤ 2c23

c22
(23)

for all t ≥ T∗
1 = max{T1, t0 + 1

c22
ln c22R2

2c23
}. Combining (23), (14), (12), and (7) together gives

‖∇u‖∞ ≤ c24, ‖�u‖q ≤ c25, 1 ≤ q < ∞,∀t ≥ T∗
1 . (24)

Multiplying equation (1) by Aut , integrating the resulting relation over �, we obtain

‖∇ut‖2 +
γ

2
d
dt

‖∇�u‖2

=
∫

�

∇�ϕ(u)∇ut dx + β ·
∫

�

�ϕ(u)∇ut dx

=
∫

�

[
ϕ′(u)∇�u + 3ϕ′′(u)∇u�u + ϕ′′′(u)|∇u|2∇u

]∇ut dx

+ β ·
∫

�

[
ψ ′(u)�u + ψ ′′(u)|∇u|2]∇ut dx

≤ ∥
∥ϕ′(u)

∥
∥∞‖∇�u‖‖∇ut‖ + 3

∥
∥ϕ′′(u)

∥
∥∞‖∇u‖∞‖�u‖‖∇ut‖

+
∥
∥ϕ′′′(u)

∥
∥∞‖∇u‖2

∞‖∇u‖‖∇ut‖
+ |β|∥∥ψ ′(u)

∥
∥∞‖�u‖‖∇ut‖ + |β|∥∥ψ ′′(u)

∥
∥∞‖∇u‖∞‖∇u‖‖∇ut‖

≤ c‖∇ut‖ ≤ 1
2
‖∇ut‖2 +

c26

2
.

Summing up, using the result of (23) gives

‖∇ut‖2 + γ
d
dt

‖∇�u‖2 ≤ c26. (25)

Then

γ
d
dt

‖∇�u‖2 ≤ c26.

Setting t ≥ T∗
1 , taking s ∈ (t, t + 1), integrating the above inequality over (s, t + 1), we obtain

∥
∥∇�u(t + 1)

∥
∥2 ≤ 1

γ

(
c26 +

∥
∥∇�u(s)

∥
∥2).
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Integrating the above inequality with respect to s in (t, t + 1), we have

∥
∥∇�u(t + 1)

∥
∥2 ≤ 1

γ

(

c26 +
∫ t+1

t

∥
∥∇�u(s)

∥
∥2 ds

)

≤ c27, ∀t ≥ T∗
1 . (26)

Integrating (25) over (t + 1, t + 2), using (26) yields

∫ t+2

t+1

∥
∥A

1
2 ut

∥
∥2 dτ ≤ c28, ∀t ≥ T∗

1 .

Using a mean value theorem for integrals, we obtain the existence of a time t2 ∈ (T∗
1 +

1, T∗
1 + 2) such that the following estimate holds uniformly:

∥
∥A

1
2 ut(t2)

∥
∥2 ≤ c29.

Then we complete the proof. �

Lemma 2.5 Suppose that u0 ∈ H1
per(�) and the functions ϕ(r) ∈ C3(R), ψ(r) ∈ C2(R) sat-

isfy

ϕ′(r) > 0, ϕ(i) ≤ c′
0|r|k–i + c′

1, ψ ′(r) ≤ c0r
√

ϕ′(r) + c1,

where k ≤ 3 is a positive constant and i = 0, 1, 2. Then, for problem (1)–(3), we have

‖ut‖ ≤ M4, ∀t ≥ T4.

Here, M4 is a positive constant depending on γ , ci, c′
i (i = 0, 1). T4 depends on γ , ci, c′

i
(i = 0, 1) and R, where ‖u0‖2

H1
per

≤ R2.

Proof Setting v = ut , differentiating (1) with respect to the time t, we deduce that

vt + γ�2v –
[
�ϕ(u)

]
t – β · [∇ψ(u)

]
t = 0. (27)

Multiplying (27) by v, integrating the resulting relation over � yields

1
2

d
dt

‖v‖2 + γ ‖�v‖2 –
∫

�

[
�ϕ(u)

]
tv dx –

∫

�

β · [∇ψ(u)
]

tv dx = 0. (28)

Using Sobolev’s embedding theorem, we get

∫

�

[
�ϕ(u)

]
tv dx + β ·

∫

�

[
ψ ′(u)∇u

]
tv dx

=
∫

�

ϕ′(u)v�v dx +
∫

�

ϕ′′(u)v2�u dx +
∫

�

ϕ′′′(u)|∇u|2v2 dx

+ 2
∫

�

ϕ′′(u)v∇u∇v dx + β ·
∫

�

ψ ′(u)v∇v dx + β ·
∫

�

ψ ′′(u)v2∇u dx

≤ ∥
∥ϕ′(u)

∥
∥∞‖�v‖‖v‖ +

∥
∥ϕ′′(u)

∥
∥∞‖�u‖6‖v‖2

6 +
∥
∥ϕ′′′(u)

∥
∥∞‖∇u‖2

∞‖v‖2

+ 2
∥
∥ϕ′′(u)∇u

∥
∥∞‖v‖‖∇v‖ + |β|∥∥ψ ′(u)

∥
∥∞‖∇v‖‖v‖ + |β|∥∥ψ ′′(u)

∥
∥∞‖∇u‖∞‖v‖2
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≤ c
(‖�v‖‖v‖ + ‖∇v‖2 + ‖∇v‖‖v‖)

≤ γ

2
‖�v‖2 +

c30

2
‖v‖2 +

c31

2
.

Hence,

d
dt

‖v‖2 + γ ‖�v‖2 ≤ c30‖v‖2 + c31. (29)

A simple calculation shows that

‖v‖2 ≤ 1
c′ ‖�v‖2.

It then follows from (29) and the above inequality that

d
dt

‖v‖2 +
(
c′γ – c30

)‖v‖2 ≤ c31,

where γ is sufficiently large, it satisfies c′γ – c30 > 0. Using Gronwall’s inequality, we derive
that

‖v‖2 ≤ e–(c′γ –c30)(t–t1)∥∥v(t1)
∥
∥2 +

c31

c′γ – c30

≤ c19e–(c′γ –c30)(t–t1) +
c31

c′γ – c30
≤ 2c31

c′γ – c30

(30)

for all t ≥ t1 + 1
c′γ –c30

ln c19(c′γ –c30)
c31

. Then the proof is complete. �

Lemma 2.6 Suppose that u0 ∈ H1
per(�) and the functions ϕ(r) ∈ C3(R), ψ(r) ∈ C2(R) sat-

isfy

ϕ′(r) > 0, ϕ(i) ≤ c′
0|r|k–i + c′

1, ψ ′(r) ≤ c0r
√

ϕ′(r) + c1,

where k ≤ 3 is a positive constant and i = 0, 1, 2. Then, for problem (1)–(3), we have

∥
∥A

1
2 vt(t)

∥
∥ ≤ M5, ∀t ≥ T5.

Here, M5 is a positive constant depending on γ , ci, c′
i (i = 0, 1). T5 depends on γ , ci, c′

i

(i = 0, 1) and R, where ‖u0‖2
H1

per
≤ R2.

Proof Multiplying (27) by Av, integrating the resulting relation over �, we obtain

1
2

d
dt

‖∇v‖2 + γ ‖∇�v‖2 = –
∫

�

[
�ϕ(u)

]
t�v dx – β ·

∫

�

[∇ψ(u)
]

t�v dx. (31)
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By Sobolev’s embedding theorem, we get

–
∫

�

[
�ϕ(u)

]
t�v dx – β ·

∫

�

[∇ψ(u)
]

t�v dx

= –
∫

�

ϕ′(u)|�v|2 dx –
∫

�

ϕ′′(u)v�u�v dx –
∫

�

ϕ′′′(u)v|∇u|2�v dx

+ 2
∫

�

ϕ′′(u)∇u∇v�v dx + β ·
∫

�

ψ ′(u)∇v�v dx + β ·
∫

�

ψ ′′(u)v∇u�v dx

≤ ∥
∥ϕ′(u)

∥
∥∞‖�v‖2 +

∥
∥ϕ′′(u)

∥
∥∞‖�u‖‖�v‖‖v‖∞ +

∥
∥ϕ′′′(u)

∥
∥∞‖∇u‖2

∞‖�v‖‖v‖
+ 2

∥
∥ϕ′′(u)

∥
∥∞‖∇u‖∞‖∇v‖‖�v‖ + |β|∥∥ψ ′(u)

∥
∥∞‖∇v‖‖�v‖

+ |β|∥∥ψ ′′(u)
∥
∥∞‖∇u‖∞‖�v‖‖v‖

≤ c
(‖�v‖2 + ‖�v‖‖v‖ + ‖∇v‖‖�v‖) ≤ γ

2
‖∇�v‖2 +

c32

2
‖∇v‖2.

Summing up gives

d
dt

‖∇v‖2 + γ ‖∇�v‖2 ≤ c32‖∇v‖2.

Using Nirenberg’s inequality, we obtain

c32‖∇v‖2 ≤ c32
(
c′

1‖∇�v‖ 1
3 ‖v‖ 2

3 + c′
2‖v‖)2 ≤ γ

2
‖∇�v‖2 + c33.

Adding the above two inequalities together gives

d
dt

‖∇v‖2 + c32‖∇v‖2 ≤ 2c33.

By Gronwall’s inequality, we can obtain

‖∇v‖2 ≤ e–c32(t–t2)∥∥∇v(t2)
∥
∥2 +

2c33

c32

≤ c29e–c32(t–t2) +
2c33

c32
≤ 4c33

c32

(32)

for all t ≥ t2 + 1
c32

ln c29c32
2c33

. Then the proof is complete. �

Lemma 2.7 Suppose that u0 ∈ H1
per(�) and the functions ϕ(r) ∈ C3(R), ψ(r) ∈ C2(R) sat-

isfy

ϕ′(r) > 0, ϕ(i) ≤ c′
0|r|k–i + c′

1, ψ ′(r) ≤ c0r
√

ϕ′(r) + c1,

where k ≤ 3 is a positive constant and i = 0, 1, 2. Then, for problem (1)–(3), we have

∥
∥A2u(t)

∥
∥ ≤ M6, ∀t ≥ T6.

Here, M6 is a positive constant depending on γ , ci, c′
i (i = 0, 1). T6 depends on γ , ci, c′

i

(i = 0, 1) and R, where ‖u0‖2
H1

per
≤ R2.
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Proof For equation (1), by Lemmas 2.1–2.6, we deduce that

∥
∥�2u

∥
∥ ≤ 1

γ

(‖ut‖ +
∥
∥�ϕ(u)

∥
∥ + |β|∥∥∇ψ(u)

∥
∥)

≤ c
(‖ut‖ +

∥
∥ϕ′(u)

∥
∥∞‖�u‖ +

∥
∥ϕ′′(u)

∥
∥∞‖∇u‖∞‖∇u‖ + |β|∥∥ψ ′(u)

∥
∥∞‖∇u‖)

≤ c34, ∀t ≥ T .

On the other hand, by Sobolev’s embedding theorem, it yields that

‖�u‖∞ ≤ c35,

which completes the proof. �

3 Proof of Theorem 1.3
Suppose that M1 and M6 are the constants in Lemma 2.2 and Lemma 2.7, respectively.
Denote

B1 =
{

u ∈ Ḣ1
per :

∥
∥A

1
2 u

∥
∥ ≤ M1

}
, (33)

B2 =
{

u ∈ Ḣ4
per :

∥
∥A2u

∥
∥ ≤ M6

}
. (34)

Using Lemmas 2.2 and 2.7, we easily obtain that B1 is a bounded (Ḣ1
per , Ḣ1

per)-absorbing
set for {S(t)}t≥0 and B2 is a bounded (Ḣ1

per , Ḣ4
per)-absorbing set for {S(t)}t≥0. Note that

the embedding Ḣ4
per ↪→ Ḣ1

per is compacted. Applying Lemma 2.3, we obtain {S(t)}t≥0 is
(Ḣ1

per , Ḣ1
per)-asymptotically compact. Hence, {S(t)}t≥0 has an (Ḣ1

per , Ḣ1
per)-global attractor

A. In the following, we show that A is actually an (Ḣ1
per , Ḣ4

per)-global attractor for {S(t)}t≥0.

Lemma 3.1 Suppose that u0 ∈ H1
per(�) and the functions ϕ(r) ∈ C3(R), ψ(r) ∈ C2(R) sat-

isfy

ϕ′(r) > 0, ϕ(i) ≤ c′
0|r|k–i + c′

1, ψ ′(r) ≤ c0r
√

ϕ′(r) + c1,

where k ≤ 3 is a positive constant and i = 0, 1, 2. Then, for the solution u(x, t) of problem
(1)–(3), the dynamical system {S(t)}t≥0 is (Ḣ1

per , Ḣ4
per)-asymptotically compact.

Proof For (1), we have

γ A2u = –ut + �ϕ(u) + β · ∇ψ(u). (35)

Assume that {u0,n}∞n=1 is bounded in Ḣ1
per(�) and tn → ∞. In the following we prove that

{S(tn)u0,n}∞n=1 has a convergent subsequence in Ḣ4
per(�). Denote

un(t) = S(t)u0,n and vn(tn) =
dun

dt

∣
∣
∣
∣
t=tn

.

Note that {u0,n}∞n=1 is bounded in Ḣ1
per . Then there exists R > 0 such that

∥
∥u0,n + A

1
2 u0,n

∥
∥ ≤ R, ∀n = 1, 2, . . . .
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By Lemmas 2.6 and 2.7, there exists T > 0 such that

‖vn‖
D(A

1
2 )

≤ M5, ‖un‖D(A2) ≤ M6, ∀t ≥ T , n = 1, 2, . . . . (36)

Since tn → ∞, there exists N > 0 such that tn ≥ T for all n ≥ N . Therefore, by (36), we get

∥
∥vn(tn)

∥
∥

D(A
1
2 )

≤ M5,
∥
∥un(tn)

∥
∥

D(A2) ≤ M6, ∀n ≥ N . (37)

Note that the embedding D(A 1
2 ) ↪→ H and D(A2) ↪→ D(A) are compacted. Hence, by (36),

there exist v ∈ D(A 1
2 ), �u ∈ D(A), ∇u ∈ Ḣ3

per , and u ∈ Ḣ4
per such that, up to a subsequence,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

vn(tn) → v strongly in H ,

�un(tn) → �u strongly in D(A 1
2 ),

∇un(tn) → ∇u strongly in D(A),

un(tn) → u strongly in Ḣ3
per .

(38)

By (37) and Sobolev’s embedding theorem, we obtain

∥
∥un(tn)

∥
∥

W 2,∞ ≤ C, ∀n ≥ N .

It then follows from (36) and (38) that

∥
∥un(tn) – u

∥
∥ → 0,

∥
∥vn(tn) – v

∥
∥2 → 0,

∥
∥�un(tn) – �u

∥
∥2 → 0,

and

∥
∥�ϕ

(
un(tn)

)
– �ϕ(u)

∥
∥

=
∥
∥ϕ′(un(tn)

)
�un(tn) – ϕ′(u)�u + ϕ′′(un(tn)

)∣
∣∇un(tn))

∣
∣2 – ϕ′′(u)|∇u|2∥∥

≤ c
(∥
∥ϕ′(un(tn)

)[
�un(tn) – �u

]∥
∥ +

∥
∥�u

[
ϕ′(un(tn)

)
�un(tn) – ϕ′(u)

]∥
∥

+
∥
∥ϕ′′(un(tn)

)[∣
∣∇un(tn)

∣
∣2 – |∇u|2]∥∥ +

∥
∥|∇u|2[ϕ′′(un(tn)

)
– ϕ′′(u)

]∥
∥
)

≤ c
∥
∥ϕ′(un(tn)

)∥
∥∞

∥
∥�un(tn) – �u

∥
∥ + c‖�u‖∞

∥
∥ϕ′(un(tn)

)
�un(tn) – ϕ′(u)

∥
∥

+ c
∥
∥ϕ′′(un(tn)

)∥
∥∞

∥
∥∇un(tn) + ∇u

∥
∥∞

∥
∥∇un(tn) – ∇u

∥
∥

+ c‖∇u‖2
∞

∥
∥ϕ′′(un(tn)

)
– ϕ′′(u)

∥
∥

≤ c
∥
∥ϕ′(un(tn)

)∥
∥∞

∥
∥�un(tn) – �u

∥
∥

+ c‖�u‖∞
∥
∥ϕ′′(θ1un(tn) + (1 – θ1)u

)∥
∥∞

∥
∥un(tn) – u

∥
∥

+ c
∥
∥ϕ′′(un(tn)

)∥∥∞
∥
∥∇un(tn) + ∇u

∥
∥∞

∥
∥∇un(tn) – ∇u

∥
∥

+ c‖∇u‖2
∞

∥
∥ϕ′′′(θ2un(tn) + (1 – θ2)u

)∥∥∞
∥
∥un(tn)u

∥
∥

≤ c
(∥∥�un(tn) – �u

∥
∥ +

∥
∥∇un(tn) – ∇u

∥
∥ +

∥
∥un(tn) – u

∥
∥)

→ 0,

(39)
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where θ1, θ2 ∈ (0, 1). Using the same method as above, we also have

∥
∥∇ψ

(
un(tn)

)
– ∇ψ(u)

∥
∥ → 0.

Therefore

γ A2un(tn) → –ut + �ϕ(u) + β · ∇ψ(u), strongly in H ,

that is, {un(tn)}∞n=1 converges to A–2(–v +�ϕ(u) +β ·∇ψ(u)) in Ḣ4
per(�). Then we complete

the proof. �

Now we give the proof of the main result.

Proof of Theorem 1.3 Note that {S(t)}t≥0 has an (Ḣ1
per , Ḣ1

per)-global attractor A. By
Lemma 2.7, B2 is a bounded (Ḣ1

per , Ḣ4
per)-absorbing set for {S(t)}t≥0. On the other hand,

by Lemma 3.1, we can obtain {S(t)}t≥0 is (Ḣ1
per , Ḣ4

per)-asymptotically compact. Then, by
Proposition 1.2, A is actually an (Ḣ1

per , Ḣ4
per)-global attractor for {S(t)}t≥0. The proof of

Theorem 1.3 is complete. �
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