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Abstract
In this paper, we investigate a delay reaction–diffusion–advection model with ideal
free dispersal. The stability of positive steady-state solutions and the existence of the
associated Hopf bifurcation are obtained by analyzing the principal eigenvalue of an
elliptic operator. By the normal form theory and the center manifold reduction, the
stability and bifurcation direction of Hopf bifurcating periodic solutions are obtained.
Moreover, numerical simulations and a brief discussion are presented to illustrate our
theoretical results.
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1 Introduction
In recent years, biological mathematics has developed to be one of the most active re-
search directions in the field of applied mathematics. The study of biological mathematics
usually includes two aspects. One is to understand and predict the mechanism of biologi-
cal processes by establishing and analyzing mathematical models. The other is to discover
new mathematical problems, explore new mathematical research directions, and develop
new mathematical methods via these models.

One important problem in spatial ecology is the effect of spatially inhomogeneous en-
vironment on the invasion of species. Spatially inhomogeneous environment refers to the
heterogeneous distribution of various environmental conditions in space. For example,
phytoplankton in an ocean or lake require light whose intensity in the vertical direction
depends on depth. In heterogeneous environments, the movement of species also involves
advection, besides random diffusion. Belgacem and Cosner [2] proposed a classical dis-
persal strategy by considering an advection term into a single population model with a
spatially heterogeneous environment to describe that a population moves towards a more
favorable environment,

⎧
⎪⎪⎨

⎪⎪⎩

∂u
∂t = ∇[d∇u – αu∇m] + u(m(x) – u), (t, x) ∈ (0, +∞) × �,

(d∇u – αu∇m) · �n = 0, t > 0, x ∈ ∂�,

u(0, x) = u0(x), x ∈ �,

(1.1)

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13661-020-01481-7
http://crossmark.crossref.org/dialog/?doi=10.1186/s13661-020-01481-7&domain=pdf
http://orcid.org/0000-0002-6081-9435
mailto:huiyuanxian1983@126.com


Liu and Hui Boundary Value Problems          (2021) 2021:3 Page 2 of 20

where the flux of the population density u(t, x) consists of two components: d∇u and
αu∇m. The second one represents the movement upward along the gradient of the re-
source function, α > 0 describes the advection speed/rate. �n denotes the unit outward
normal on the ∂�. The result of Belgacem and Cosner [2] shows that, for an individual
species, the movement upward along the gradient of the resource function will generally
contribute to the survival of the species.

Since the movement of species may not perfectly track resource gradients in reality,
Cantrell, Cosner and Lou [6] considered the biased movement strategy for the species

⎧
⎪⎪⎨

⎪⎪⎩

∂u
∂t = ∇[d∇u – αu∇P] + u(m(x) – u), (t, x) ∈ (0, +∞) × �,

(d∇u – αu∇P) · �n = 0, t > 0, x ∈ ∂�,

u(0, x) = u0(x), x ∈ �.

(1.2)

Here, the flux of the population density of species can be described by –d∇u + αu∇P,
where P(x) describes the movement tendency of the species.

The ideal free distribution (IFD), introduced in [13], describes how populations dis-
tribute themselves if they move freely to optimize their fitness. From the viewpoint of
the evolution of dispersal, an ideal free strategy refers to the idea that such a distribution
would be expected if individuals have complete knowledge of their environment and are
free to locate themselves wherever they want, specifically under the assumption that the
presence of other individuals influences fitness; see [1, 4, 5, 7, 8, 12, 21] and the references
therein. Motivated by [1], we say that P is an ideal free strategy if P can be found as follows.

To discuss the ideal free strategy, we require that m(x) > 0 in �, then (1.2) has a unique
positive steady state ũ satisfying

⎧
⎨

⎩

∇[d∇ũ – αũ∇P] + ũ(m(x) – ũ) = 0, in �,

(d∇ũ – αũ∇P) · �n = 0, on ∂�.
(1.3)

Integrating (1.3) and applying the divergence theorem, we obtain

∫

�

∇[d∇ũ – αũ∇P] + ũ
(
m(x) – ũ

)
=

∫

�

ũ
(
m(x) – ũ

)
= 0.

Since ũ, m(x) > 0 in �, either ũ ≡ m(x) or ũ – m(x) changes sign in �. Clearly, if ũ ≡ m(x),
then we have

∇ · [d∇ũ – αũ∇P] = 0, in �,

which holds if

P = ln m
d
α + C for some constant C. (1.4)

The delay reaction–diffusion equation, which reflects the interaction between delay
feedback of system and space migration impacts on the state of the system, is a kind of
new and important mathematical model. During the past 30 years, it has appeared widely
in many fields such as population biology, chemistry, physics, communication, and com-
puter. In the real world, the phenomena of time delay and spatial diffusion are widespread.
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For example, in a population model, time delay usually indicates resources regeneration
time, mature period, or lactation time, etc., and in the infectious disease model, time de-
lay usually indicates the incubation period, etc. Meanwhile, like cells, bacteria, chemicals,
animals, each individual usually moves randomly, and their distribution is not uniform in
space, which leads to the spread of the population in space.

Under homogeneous Neumann boundary conditions, the unique positive steady state
is a constant and the stable bifurcating periodic orbit is spatially homogeneous. But for
models with the homogeneous Dirichlet boundary conditions, the positive equilibrium is
always spatially nonhomogeneous. Busenberg and Huang [3] first studied the Hopf bifur-
cation of the diffusive logistic equation with a delay effect and Dirichlet boundary condi-
tion,

⎧
⎨

⎩

∂u
∂t = duxx + ku(1 – u(t – τ )), (t, x) ∈ (0, +∞) × (0,π ),

u = 0, t > 0, x = 0,π .
(1.5)

They have shown that:
1. If k ≤ 1, then system (1.5) does not have a positive equilibrium and the zero

solution is a global attractor of all non-negative solutions.
2. If k > 1, then the zero solution of system (1.5) is unstable and there is a unique

nonhomogeneous positive equilibrium Uk .
3. Uk is locally asymptotically stable if (kτ ) · maxx∈(0,π ){Uk(x)} < π

2 .
4. One can give an estimate for Uk(x) by using the implicit function theorem for

k ∈ [1, k∗].
5. There is a τk > 0 such that the equilibrium Uk(x) is locally stable if 0 ≤ τ < τk ,

unstable if τ > τk .
6. There exists a sequence {τkj}∞j=0 such that a Hopf bifurcation arising from Uk(x) as

the delay τ monotonically passes through each τkj . Moreover, the periodic solution
occurring from the Hopf bifurcation point τk0 is stable, and those occurring from
the Hopf bifurcation points τkj , j > 0, are unstable.

A population may tend to move up or down along the gradient of the habitats because
of the heterogeneity of the environment. Chen, Lou, and Wei [9] considered the following
model:

⎧
⎨

⎩

∂u
∂t = ∇[d∇u – αu∇m(x)] + u(m(x) – u(t – τ , x)), (t, x) ∈ (0, +∞) × �,

u = 0, t > 0, x ∈ ∂�.
(1.6)

Their results imply that the increase of time delay can make the spatially nonhomoge-
neous positive steady state unstable for (1.6), and the model can exhibit an oscillatory
pattern through Hopf bifurcation. They also considered the effect of advection on Hopf
bifurcation values, and the Hopf bifurcation is more likely to occur with the increase of
advection rate.

We also point out that there are several mathematical models formulated to describe the
effect of time delay on Hopf bifurcation of the spatially nonhomogeneous positive equi-
librium. These models include single population models [18–20, 23], competition diffu-
sion systems [24, 26], predator–prey diffusion models [17, 25] and nonlocal delay models
[10, 11, 14, 15].
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In this paper, we introduce the notion of the IFD into the Hopf bifurcation problems to
understand the Hopf bifurcation and bifurcation direction of the spatially nonhomoge-
neous positive steady state, and consider the following system:

⎧
⎪⎪⎨

⎪⎪⎩

∂u
∂t = ∇[d∇u – αu∇P] + u(m(x) – u(t – r, x)), (t, x) ∈ (0, +∞) × �,

(d∇u – αu∇P) · �n = 0, t > 0, x ∈ ∂�,

u(θ , x) = φ(θ , x), (θ , x) ∈ [–τ , 0] × �,

(1.7)

where u(t, x) represents the population density, d > 0 denotes the random diffusion coeffi-
cient, P(x) ∈ C2(�) describes the movement tendency of the species, which is referred as
the biased movement strategy for the species, m(x) ∈ C2(�) is the intrinsic growth rate,
α > 0 measures the rate of population movement upward along the gradient of the func-
tion P(x), and delay r > 0 denotes the maturation time. Throughout this paper, we assume
that the function P(x) and the resource function m(x) have the relationship described as
(1.4).

Letting v(t, x) = e–α/dP(x)u(t, x), ψ(θ , x) = e–(α/d)P(x)φ(θ , x), ṽ(̃t, x) = v(t, x), t = t̃/d and de-
noting λ = 1/d, τ = dr, then dropping the tilde sign, system (1.7) can be transformed as
follows:

⎧
⎪⎪⎨

⎪⎪⎩

∂v
∂t = e– α

d P(x)∇[e
α
d P(x)∇v] + λv(m(x) – e

α
d P(x)v(t – τ , x)), (t, x) ∈ (0, +∞) × �,

∇v · �n = 0, t > 0, x ∈ ∂�,

v(θ , x) = ψ(θ , x), (θ , x) ∈ [–τ , 0] × �,

(1.8)

or

⎧
⎪⎪⎨

⎪⎪⎩

∂v
∂t = 1

m(x)∇[m(x)∇v] + λm(x)v(1 – e
α
d Cv(t – τ , x)), (t, x) ∈ (0, +∞) × �,

∇v · �n = 0, t > 0, x ∈ ∂�,

v(θ , x) = ψ(θ , x), (θ , x) ∈ [–τ , 0] × �.

(1.9)

For the convenience of calculation in the following sections, we only focus on (1.8). More-
over, it is easy to see that system (1.8) or (1.9) has a unique positive equilibrium e– α

d P(x)m(x)
or e– α

d C .
The organization of the paper is as follows. In the next section, we study the stability

and Hopf bifurcation of the spatially nonhomogeneous positive steady state for system
(1.8). In Sect. 3, we investigate the bifurcation direction of Hopf bifurcating period orbits
by using the normal form theory and the center manifold reduction. Finally, we give some
numerical simulations and a brief discussion in Sect. 4.

2 Stability and Hopf bifurcation
As in [9], throughout the paper, we denote the spaces X = H2(�) ∩ H1

0 (�), Y = L2(�). We
also denote the complexification of the linear space Xc := X ⊕ iX = {a + ib | a, b ∈ X}, the
domain of a linear operator L by D(L), the kernel of L by N(L), and the range of L by R(L).
Moreover, we take 〈u, v〉 =

∫

�
ū(x)v(x) dx as the inner product of Hilbert space Yc. The

Banach space of continuous and differentiable mappings from [–τ , 0] into Y is denoted by
C = C([–τ , 0],Y) and C1 = C1([–τ , 0],Y), respectively.
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For the following analysis, we decompose the spaces X and Y as follows:

X = K ⊕X1, Y = K ⊕Y1,

where

K = span{1}, X1 =
{

y ∈X

∣
∣
∣

∫

�

y(x) dx = 0
}

, Y1 =
{

y ∈Y

∣
∣
∣

∫

�

y(x) dx = 0
}

.

The linearization of (1.8) at e– α
d P(x)m(x) is given by

⎧
⎨

⎩

∂ω
∂t = e– α

d P(x)∇[e
α
d P(x)∇ω] – λm(x)ω(t – τ ), (t, x) ∈ (0, +∞) × �,

∇ω · �n = 0, t > 0, x ∈ ∂�.
(2.1)

It follows that the solution semigroup of the problem (2.1) has the infinitesimal generator
satisfying

Aτ (λ)ϕ = ϕ̇,

with

D
(
Aτ (λ)

)
=

{
ϕ ∈ Cc ∩ C1

c : ϕ̇(0) = e– α
d P(x)∇[

e
α
d P(x)∇ϕ(0)

]
– λm(x)ϕ(–τ )

}
,

where C1
c = C1([–τ , 0],Yc). Then the spectrum of Aτ (λ) is

σ
(
Aτ (λ)

)
=

{
μ ∈ C,�(λ,μ, τ )ϕ = 0, for some ϕ ∈Xc \ {0}}

with

�(λ,μ, τ )ϕ = e– α
d P(x)∇[

e
α
d P(x)∇ϕ

]
– λm(x)ϕe–μτ – μϕ. (2.2)

Lemma 2.1 For any λ > 0, the steady state e– α
d P(x)m(x) of (1.8) is locally asymptotically

stable when τ = 0. Moreover, 0 is not the spectrum of Aτ (λ), for any τ > 0.

Proof When τ = 0, the spectrum of Aτ (λ) becomes

�(λ,μ, 0)ϕ = e– α
d P(x)∇[

e
α
d P(x)∇ϕ

]
– λm(x)ϕ – μϕ. (2.3)

This, in turn, leads to the study of the linear eigenvalue problem

⎧
⎨

⎩

e– α
d P(x)∇[e

α
d P(x)∇ϕ] – λm(x)ϕ = μϕ, x ∈ �,

∇ϕ · �n = 0, x ∈ ∂�.
(2.4)

Moreover, μ1 has the following variational characterization:

μ1 = max
ϕ∈Xc ,ϕ =0

[–
∫

�
e

α
d P(x)[(∇ϕ)2 + λm(x)ϕ2] dx

∫

�
e

α
d P(x)ϕ2 dx

]

, (2.5)
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which yields μ1 ≤ –λminx∈� m(x) < 0. Thus we conclude that the steady state e– α
d P(x)m(x)

of (1.8) is locally asymptotically stable when τ = 0.
Similarly, we can prove 0 /∈ σ (Aτ (λ)) for any τ > 0. �

Next, we will show that the eigenvalues of Aτ (λ) could pass through the imaginary axis
for some τ > 0. And, this is a necessary condition for hopf bifurcation to occur. Actually,
Aτ (λ) has a purely imaginary eigenvalue μ = iω (ω > 0) for some τ > 0, if and only if

e– α
d P(x)∇[

e
α
d P(x)∇ϕ

]
– λm(x)ϕe–iθ – iωϕ = 0 (2.6)

is solvable for some value of ω > 0, θ ∈ [0, 2π ), ωτ = θ , ϕ ∈Xc, ϕ = 0.
First, we give the following lemmas.

Lemma 2.2 For some λ∗ > 0, when λ ∈ (0,λ∗), if there exist some (ωλ, θλ,ϕλ) ∈ R
+ × R ×

Xc\{0} solving system (2.6), then ωλ

λ
is uniformly bounded.

Proof Substituting (ωλ, θλ,ϕλ) into system (2.6) and multiplying e
α
d P(x)ϕλ, integrating the

result over �, then we get

〈
ϕλ,∇[

e
α
d P(x)∇ϕλ

]〉
– λ

∫

�

e
α
d P(x)m(x)ϕ2

λe–iθλ – iωλ

∫

�

e
α
d P(x)ϕ2

λ = 0. (2.7)

Separating the real and imaginary parts of the above equality, one can get

λ sin θλ

∫

�

e
α
d P(x)m(x)ϕ2

λ = ωλ

∫

�

e
α
d P(x)ϕ2

λ .

Thus,

ωλ

λ
=

sin θλ

∫

�
e

α
d P(x)m(x)ϕ2

λ
∫

�
e

α
d P(x)ϕ2

λ

≤ max
�

m(x). �

Lemma 2.3 Let L := ∇[e
α
d P(x)∇]. If ν ∈Xc and 〈ν, 1〉 = 0, then

∣
∣〈Lν,ν〉∣∣ ≥ γ2‖ν‖2

Yc ,

where γ2 is the second eigenvalue of operator –L.

Proof It is well known that the operator –L on the domain � with zero-Neumann bound-
ary conditions has a sequence of eigenvalues {γn}∞n=1 satisfying

0 = γ1 < γ2 ≤ γ3 ≤ · · · , lim
n→∞γn = ∞

and the corresponding eigenfunctions {φn}∞n=1, construct an orthogonal basis of Yc, more-
over φ1 = 1. In particular, for each ν ∈Xc satisfying that 〈ν, 1〉 = 0, there is a sequence of real
numbers {cn}∞n=2 such that ν =

∑∞
n=2 cnφn and therefore Lν =

∑∞
n=2 cnLφn =

∑∞
n=2 cnγnφn.

It follows from the above equality that

∣
∣〈Lν,ν〉∣∣ = γn

∞∑

n=2

c2
n‖φn‖2

L2 ≥ γ2

∞∑

n=2

c2
n‖φn‖2

YC
= γ2‖ν‖2

YC
. �
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For λ ∈ (0,λ∗), if (ω, θ ,ϕ) satisfies system (2.6), then, ignoring a scalar factor, we have
ϕ = β +λν , with β > 0 and ‖ϕ‖Yc = |�|. Letting ω = λh, and substituting these into Eq. (2.6),
we obtain

⎧
⎪⎪⎨

⎪⎪⎩

f1(ν,β , θ , h,λ) := ∇[e
α
d P(x)∇ν] – e

α
d P(x)m(x)(β + λν)e–iθ

– ihe
α
d P(x)(β + λν) = 0,

f2(ν,β , θ , h,λ) := (β2 – 1)|�| + λ2‖ν‖Yc = 0.

(2.8)

Define F = (f1, f2) from (X1)c × R
4 → Yc × R. The following lemma confirms that

F(ν,β , θ , h,λ) = 0 is uniquely solvable when λ → 0.

Lemma 2.4 Consider the following equation:

⎧
⎨

⎩

F(ν,β , θ , h, 0) = 0,

ν ∈Xc, β ≥ 0, θ ∈ [0, π
2 ], h ≥ 0.

(2.9)

Equation (2.9) has a unique solution (ν0,β0, θ0, h0) as λ → 0. Here β0 = 1, θ0 = π
2 , h0 =

∫

� m2(x)
∫

� m(x) , and ν0 satisfies the following equation:

∇[
e

α
d P(x)∇ν0

]
+ ie

α
d P(x)m(x) – ie

α
d P(x)h0 = 0. (2.10)

Proof From the second equation of (2.8), we see that f2(ν,β , θ , h, 0) if and only if β0 = 1.
Substituting β0 = 1 into the first equation of (2.8), we can see ν0 satisfies

∇[
e

α
d P(x)∇ν0

]
– m(x)e

α
d P(x)e–iθ0 – ie

α
d P(x)h0 = 0. (2.11)

Next, integrating Eq. (2.11) over �, and separating the real and imaginary parts, we
obtain

⎧
⎨

⎩

cos θ0
∫

�
e

α
d P(x)m(x) = cos θ0e

αC
d

∫

�
m2(x) = 0,

sin θ0e
αC
d

∫

�
m2(x) = h0e

αC
d

∫

�
m(x).

(2.12)

By the periodicity of θ0, we can set θ0 = π
2 . Then we have h0 =

∫

� m2(x)
∫

� m(x) . �

We next prove that there exists a λ∗ > 0 such that we can solve F(ν,β , θ , h,λ) = 0 for
λ ∈ (0,λ∗).

Lemma 2.5 There exists a λ∗ > 0 and a unique continuously differentiable mapping λ →
(νλ,βλ, θλ, hλ) from (0,λ∗) to (X1)c ×R

3 such that F(νλ,βλ, θλ, hλ,λ) = 0.

Proof We define T = (T1, T2) (X1)c × R
3 → Yc × R be the Fréchet derivative of F with

respect to (ν,β , θ , h) at the point (ν0,β0, θ0, h0). Therefore, we have

⎧
⎪⎪⎨

⎪⎪⎩

T1(νε ,βε , θε , hε) = ∇[e
α
d P(x)∇νε] + ie

α
d P(x)(m –

∫

� m(x)
|�| )βε

+ e
α
d P(x)m(x)θε – ie

α
d P(x)hε ,

T2(νε ,βε , θε , hε) = 2βε .

(2.13)
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One can easily check that T is bijective from (X1)c × R
3 to Yc × R. Thus by the implicit

function theorem, there exists a λ∗ > 0 and a continuously differentiable mapping λ →
(νλ,βλ, θλ, hλ) from (0,λ∗) to (X1)c ×R

3 such that F(νλ,βλ, θλ, hλ,λ) = 0.
We next claim that the uniqueness, by virtue of the uniqueness of the implicit func-

tion theorem, it is sufficient to show that, if νλ ∈ (X1)c, βλ, hλ > 0, θλ ∈ [0, 2π ), and
F(νλ,βλ, θλ, hλ,λ) = 0, then (νλ,βλ, θλ, hλ) → (ν0,β0, θ0, h0) as λ → 0 in the norm of
(X1)c ×R

3. First, the boundedness of the sequences {βλ}, {θλ} and {hλ} can be easily ob-
tained from the definition, hypothesis and Lemma 2.2, respectively. By Lemma 2.3, and
the first equation of Eq. (2.8), we obtain

∥
∥νλ

∥
∥2
Yc

≤ 1
γ2

∣
∣
〈
Lνλ,νλ

〉∣
∣ =

1
γ2

∣
∣
〈(

m(x)e–iθλ
+ ihλ

)(
βλ + λνλ

)
,νλ

〉∣
∣.

The boundedness of m(x) and {hλ} implies that there exists a constant M1 such that

1
γ2

∥
∥m(x)e–iθλ

+ ihλ
∥
∥∞ ≤ M1.

Hence, we obtain ‖νλ‖2
Yc

≤ M1|βλ|‖νλ‖Yc + λM1‖νλ‖2
Yc

. Accordingly, if λ∗ is sufficiently
small, then we have λM1 ≤ 1

2 , and ‖νλ‖Yc ≤ 2M1|βλ|‖νλ‖Yc . As a result, {νλ} is bounded
in Yc for λ ∈ (0,λ∗). Since the operator L–1 is bounded, we see that {νλ} is bounded in Xc,
which implies that (νλ,βλ, θλ, hλ) is precompact in Yc ×R

3 for λ ∈ (0,λ∗). Therefore, there
is a subsequence (νλi ,βλi , θλi , hλi ) such that

(
νλi ,βλi , θλi , hλi

) → (
ν0,α0, θ0, h0) in Yc ×R

3 λi → 0, as i → ∞.

Taking the limit of the equation L–1f1(νλi ,βλi , θλi , hλi ,λi) = 0 as i → ∞, we see that

(
νλi ,βλi , θλi , hλi

) → (
ν0,α0, θ0, h0) in Xc ×R

3 λi → 0, as i → ∞.

Moreover, F(ν,β , θ , h, 0) = 0 has a unique solution, which implies that (ν0,β0, θ0, h0) =
(ν0,β0, θ0, h0). This completes the proof. �

Remark 2.1 From Lemma 2.5, we derive that, for each λ ∈ (0,λ∗), the eigenvalue problem
�(λ, iω, τ )ϕ = 0, ω > 0, τ ≥ 0, ϕ(= 0) ∈Xc, has a solution (ω, τ ,ϕ) if and only if

ω = ωλ = λhλ, ϕ = cϕλ, and τ = τn =
θλ + 2nπ

ωλ

, n = 0, 1, 2, . . . ,

where ϕλ = βλ + λνλ.

In the following section, we will always assume λ ∈ (0,λ∗) for convenience. Actually, the
interval of λ might be smaller, since further perturbation arguments are used.

Lemma 2.6 Assume that 0 < λ < λ∗. Then

Sn(λ) =
∫

�

e
α
d P(x)ϕ2

λ

[(
1 – τnλm(x)e–iθλ

)] = 0.
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Proof Since

lim
λ→0

θλ =
π

2
, lim

λ→0
ϕλ = 1, lim

λ→0
λτn =

( π
2 + 2nπ )

∫

�
m(x)

∫

�
m2(x)

,

we have

lim
λ→0

Sn(λ) = e
αC
d

(

1 + i
(

π

2
+ 2nπ

))∫

�

m(x) = 0. �

Theorem 2.1 For λ ∈ (0,λ∗), there is a neighborhood of (τn, iωλ,ϕλ) such that Aτn (λ) has a
simple eigenvalue μ(τn) = a(τn) + ib(τn). Moreover, a(τn) = 0, and b(τn) = ωλ.

Proof We know that N [Aτn (λ) – iωλ] = Span[eiωλθϕλ], where θ ∈ [–τn, 0]. If φ1 ∈
N [Aτn (λ) – iωλ]2, then

N
[
Aτn (λ) – iωλ

]
φ1 ∈N

[
Aτn (λ) – iωλ

]
= Span

[
eiωλθϕλ

]
.

Therefore, there exists a constant a such that

N
[
Aτn (λ) – iωλ

]
φ1 = aeiωλθϕλ.

Hence,
⎧
⎨

⎩

φ̇1(θ ) = iωλφ1(θ ) + aeiωλθϕλ, θ ∈ [–τn, 0],

φ̇1(0) = de– α
d P(x)∇[e

α
d P(x)∇φ1(0)] – λm(x)φ1(–τn).

(2.14)

The first equation of Eq. (2.14) yields

⎧
⎨

⎩

φ1(θ ) = φ1(0)eiωλθ + aθeiωλθϕλ,

φ̇1(0) = iωλφ1(0) + aϕλ.
(2.15)

From Eqs. (2.14) and (2.15), we have

e
α
d P(x)�(λ, iωλ, τn)φ1(0) = ∇[

e
α
d P(x)∇φ1(0)

]
– λe

α
d P(x)m(x)φ1(0)e–iθλ

– ie
α
d P(x)ωλφ1(0)

= ae
α
d P(x)(ϕλ – τnλm(x)e–iθλϕλ

)
.

(2.16)

Hence
∫

�

φ1(0)
[
e

α
d P(x)�(λ, iωλ, τn)ϕλ

]
=

∫

�

ϕλ

[
e

α
d P(x)�(λ, iωλ, τn)φ1(0)

]

= a
∫

�

e
α
d P(x)ϕ2

λ

[(
1 – τnλm(x)e–iθλ

)]
= 0,

(2.17)

which implies that a = 0. And it leads to that μ = iωλ is a simple eigenvalue of Aτn (λ). It
follows from the implicit function theorem that there is a neighborhood of (τn, iωλ,ϕλ)
such that Aτ (λ) has a simple eigenvalue μ(τ ) = a(τ ) + ib(τ ), for λ ∈ (0,λ∗). �
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Theorem 2.2 Assume that λ ∈ (0,λ∗), we have Re dμ(τnλ)
dτ

> 0.

Proof Since

e
α
d P(x)�

(
λ,μ(τ ), τ

)
ϕ(τ ) = ∇[

e
α
d P(x)∇ϕ(τ )

]
– λe

α
d P(x)m(x)ϕ(τ )e–μ(τ )τ

– μ(τ )e
α
d P(x)ϕ(τ ) = 0.

(2.18)

Differentiating above equation with respect to τ at τ = τn yields

e
α
d P(x)�(λ, iωλ, τn)

dϕ(τn)
dτ

+
dμ(τn)

dτ
e

α
d P(x)(λτnm(x)ϕλe–iθλ – ϕλ

)

+ iωλλm(x)e
α
d P(x)ϕλe–iθλ = 0.

(2.19)

Then, multiplying the above equation by ϕλ and integrating the result over �, we have

dμ(τn)
dτ

=
∫

�
iωλλm(x)e

α
d P(x)ϕ2

λe–iθλ
∫

�
e

α
d P(x)ϕ2

λ[(1 – τnλm(x)e–iθλ )]

=
∫

�
iωλλm(x)e

α
d P(x)ϕ2

λe–iθλ
∫

�
e

α
d P(x)ϕ2

λ – iωλλ
2τn(

∫

�
m(x)e

α
d P(x)ϕ2

λ)2

|Sn(λ)|2 .

(2.20)

Since limλ→0 sin θλ = 1,

Re
dμ(τnλ)

dτ
=

λ sin θλωλ

∫

�
m(x)e

α
d P(x)ϕ2

λ

∫

�
e

α
d P(x)ϕ2

λ

|Sn(λ)|2 > 0 for λ ∈ (0,λ∗). (2.21)
�

From the above lemmas and theorems, we immediately have the following result.

Theorem 2.3 For λ ∈ (0,λ∗), the infinitesimal generator Aτn (λ) has exactly 2(n + 1) eigen-
values with positive real parts when τ ∈ (τn, τn+1], where n = 0, 1, 2, . . . .

Moreover, by virtue of [22], we have the local Hopf bifurcation theorem for partial func-
tional differential equations as follows.

Theorem 2.4 For each fixed λ ∈ (0,λ∗), the positive steady state e– α
d P(x)m(x) of (1.8) is lo-

cally asymptotically stable when τ ∈ [0, τ0), and is unstable when τ ∈ [τ0,∞). Furthermore,
in system (1.8) there occurs a Hopf bifurcation at the positive steady state e– α

d P(x)m(x), when
τ = τn (n = 0, 1, 2, . . .).

3 The direction of the Hopf bifurcation
Taking advantage of the previous section, we find that a periodic solution bifurcates from
the spatially nonhomogeneous steady-state solution e– α

d P(x)m(x) as the delay τ passes
through the critical value τn (n = 0, 1, 2, . . .).

In this section, by applying the normal form theory and the center manifold reduction
we analyze the direction of Hopf bifurcation occurring around the positive steady-state
solution with τ as a bifurcation parameter.
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We first transform the steady state e– α
d P(x)m(x) of system (1.8) and the critical value τn

to the origin via the translations

V (t) = υ(t, x) – e– α
d P(x)m(x), t = τ̂ t, τ = τn + �,

then, dropping the tilde sign, system (1.8) can be transformed as follows:

dV (t)
dt

= τne– α
d P(x)∇[

e
α
d P(x)∇V (t)

]
– τnλm(x)V (t – 1) + F(Vt ,�), (3.1)

where

F(Vt ,�) = �e– α
d P(x)∇[

e
α
d P(x)∇V (t)

]
– �λm(x)V (t – 1) – (τn + �)λe

α
d P(x)V (t)V (t – 1).

Similar to Sect. 2, we define Aτn (λ) to be the infinitesimal generator of the linearized
equation (3.1), then

Aτn (λ)ϕ = ϕ̇,

with

D
(
Aτn (λ)

)
=

{
ϕ ∈ Cc ∩ C1

c : ϕ̇(0) = τne– α
d P(x)∇[

e
α
d P(x)∇ϕ(0)

]
– λτnm(x)ϕ(–1)

}
,

where C1
c = C1([–1, 0],Yc).

Define

F(Vt ,�)(θ ) =

⎧
⎨

⎩

0, θ ∈ [–1, 0),

F(Vt ,�), θ = 0,

then (3.1) can be rewritten as

dVt

dt
= Aτn (λ)Vt + F(Vt ,�)(θ ). (3.2)

It follows from the previous section that Aτn has only one pair of purely imaginary eigen-
values ±iωλτn, which are simple. The eigenfunction associated with iωλτn (respectively,
–iωλτn) is γ (θ ) = ϕλeiωλτnθ (respectively, γ̄ (θ ) = ϕ̄λe–iωλτnθ ) for θ ∈ [–1, 0], where ϕλ is de-
fined as in Remark 2.1.

Following [9], we introduce a bilinear inner product as follows:

⟪�, �̂⟫ =
〈
�(0), �̂(0)

〉

1 – λτn

∫ 0

–1

〈
�(s + 1), m(x)�̂(s)

〉

1 ds

for � ∈ Cc and �̂ ∈ C∗
c .

Here 〈u, v〉1 =
∫

�
e

α
d P(x)ū(x)v(x) dx.

As in [9], we have the following lemma to compute the formal adjoint operator of Aτn

satisfy the above bilinear inner product.
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Lemma 3.1 Let

A
∗
τn�̂(s) =

⎧
⎨

⎩

˙̂�(s), s ∈ (0, 1],

τne– α
d P(x)∇[e

α
d P(x)∇�̂(0)] – λτnm(x)�̂(1), s = 0,

for �̂ ∈ C∗
c ∩ C1∗

c , where C∗
c = C([0, 1],Yc). Then Aτn and A

∗
τn satisfy

⟪�̂,Aτn�⟫ =
〈〈
A

∗
τn�̂,�

〉〉
.

Proof For � ∈D(Aτn ) and �̂ ∈D(A∗
τn ), we have

⟪�̂,Aτn�⟫ =
〈
�̂(0),Aτn�(0)

〉
– λτn

∫ 0

–1

〈
�̂(s + 1), m(x)Aτn�(s)

〉
ds

=
〈
�̂(0), τne– α

d P(x)∇[
e

α
d P(x)∇�(0)

]
– λτnm(x)�(–1)

〉

– λτn

∫ 0

–1

〈
�̂(s + 1), m(x)�̇(s)

〉
ds

=
〈
�̂(0), τne– α

d P(x)∇[
e

α
d P(x)∇�(0)

]〉
– λτn

[〈
�̂(s + 1), m(x)�(s)

〉]0
–1

+
〈
�̂(0), –λτnm(x)�(–1)

〉
+ λτn

∫ 0

–1

〈 ˙̂�(s + 1), m(x)�(s)
〉
ds

=
〈(
A

∗
τn�̂

)
(0),�(0)

〉
– λτn

∫ 0

–1

〈
– ˙̂�(s + 1), m(x)�(s)

〉
ds

=
〈〈
A

∗
τn�̂,�

〉〉
. �

Similarly, we know that A∗
τn has only one pair of purely imaginary eigenvalues ±iωλτn,

which are simple. The eigenfunction associated with iωλτn (respectively, –iωλτn) is γ̂ (s) =
ϕλe–iωλτns (respectively, ¯̂γ (s) = ϕ̄λeiωλτns) for s ∈ [0, 1], where ϕλ is defined as in Remark 2.1.
The center subspace of (3.2) is P = span{γ (θ ), γ̄ (θ )}. Moreover, the basis of eigenfunc-
tion space of the adjoint operator A

∗
τn associated with the eigenvalues ±iωλτn is P∗ =

span{γ̂ (s), ¯̂γ (s)}. And the formal adjoint subspace of P is P∗. As usual, Cc can be decom-
posed as Cc = P ⊕ Q, where Q = {ψ ∈ Cc | ⟪ψ̂ ,ψ⟫ = 0, for all ψ̂ ∈ P∗}. Let

�γ =
(
γ (θ ), γ̄ (θ )

)
, for θ ∈ [–1, 0],

�γ̂ =
(

γ̂ (s)
S̄n(λ)

,
¯̂γ (s)

Sn(λ)

)

for s ∈ [0, 1],

and one can easily check that ⟪�γ ,�γ̂⟫ = I , where I is the identity matrix in R
2×2. Since

the formulas to be developed for the bifurcation direction and stability are all relative to
� = 0 only, we set � = 0 in system (3.2) and define

z(t) =
1

Sn(λ)
⟪γ̂ , Vt⟫. (3.3)

Let

W (z, z̄) = W20(θ )
z2

2
+ W11(θ )zz̄ + W02(θ )

z̄2

2
+ O

(|z|3)
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be the center manifold with the range in Q, and then the flow of Eq. (3.2) on the center
manifold can be written as

Vt = �γ · (z(t), z̄(t)
)T + W

(
z(t), z̄(t)

)
.

Since � = 0, we have

ż(t) =
1

Sn(λ)
d⟪γ̂ , Vt⟫

dt
= iωλτnz(t) + g

(
z(t), z̄(t)

)
,

where

g
(
z(t), z̄(t)

)
=

1
Sn(λ)

〈
γ (0), F(Vt , 0)

〉

1

=
1

Sn(λ)
〈
γ (0), F

(
�γ · (z(t), z̄(t)

)T + W
(
z(t), z̄(t)

)
, 0

)〉

1

= g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄
2

+ · · · ,

and obviously an easy calculation implies that

g20 = –
2λτn

Sn(λ)
e–iωλτn

∫

�

e
2α
d P(x)ϕ3

λ dx,

g11 = –
[

λτn

Sn(λ)
(
eiωλτn + e–iωλτn

)
]∫

�

e
2α
d P(x)ϕλ|ϕλ|2 dx,

g02 = –
2λτn

Sn(λ)
eiωλτn

∫

�

e
2α
d P(x)ϕλϕ̄

2
λ dx,

g21 = –
2λτn

Sn(λ)

∫

�

e
2α
d P(x)ϕ2

λW11(–1) dx –
λτn

Sn(λ)

∫

�

e
2α
d P(x)|ϕλ|2W20(–1) dx

–
2λτn

Sn(λ)
e–iωλτn

∫

�

e
2α
d P(x)ϕ2

λW11(0) dx –
λτn

Sn(λ)
eiωλτn

∫

�

e
2α
d P(x)|ϕλ|2W20(0) dx.

(3.4)

To determine the bifurcation direction and stability of bifurcating periodic orbits, we
need to compute the following quantities:

C1(0) =
i

2ωλτn

(

g11g20 – 2|g11|2 –
|g02|2

3

)

+
g21

2
,

μ2 = –
Re{C1(0)}
Re{μ′(τn)} ,

β2 = 2Re
{
C1(0)

}
,

T2 = –
Im{C1(0)} + μ2Im{μ′(τn)}

τn
.

Inspired by [16] and [22], we have the following results.

Lemma 3.2 For λ ∈ (0,λ∗), in Eq. (1.8) there occurs a Hopf bifurcation at the positive steady
state e– α

d P(x)m(x), moreover,
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(i) μ2 determines the direction of the Hopf bifurcation: if μ2 > 0 (μ2 < 0), then the
bifurcating periodic solutions exist for τ > τn (τ < τn), and the bifurcation is called
forward (backward);

(ii) β2 determines the stability of bifurcating periodic solutions: the bifurcating periodic
solutions are orbitally asymptotically stable (unstable) if β2 < 0 (β2 > 0);

(iii) T2 determines the period of the bifurcating periodic solutions: the period increases
(decreases) if T2 > 0 (T2 < 0).

To compute g21, we need to figure out W11(θ ) and W20(θ ). Note that W (z, z̄) satisfies

Ẇ = Aτn W + H20
z2

2
+ H11zz̄ + H02

z̄2

2
+ · · · , (3.5)

and W11(θ ), W20(θ ), H11(θ ) and H20(θ ) satisfy

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–Aτn W11(θ ) = H11(θ ),

(2iωλτn – Aτn )W20(θ ) = H20(θ ),

H11(θ ) = –(g11γ (θ ) + ḡ11γ̄ (θ )), θ ∈ [–1, 0),

H20(θ ) = –(g20γ (θ ) + ḡ02γ̄ (θ )), θ ∈ [–1, 0),

H11(0) = –(g11γ (0) + ḡ11γ̄ (0)) – λτne
α
d P(x)(eiωλτn + e–iωλτn )|ϕ|2,

H20(0) = –(g20γ (0) + ḡ02γ̄ (0)) – 2λτne
α
d P(x)e–iωλτnϕ2.

(3.6)

Then from Eq. (3.6), we have

⎧
⎨

⎩

W20(θ ) = ig20
ωλτn

γ (θ ) + iḡ02
3ωλτn

γ̄ (θ ) + Ee2iωλτnθ ,

W11(θ ) = ig11
ωλτn

γ (θ ) + iḡ11
ωλτn

γ̄ (θ ) + F .
(3.7)

In what follows, we shall solve E and F . From Eqs. (3.6) and (3.7), the definition of Aτn , we
see that E and F satisfy

⎧
⎨

⎩

�(λ, 2iωλ, τn)E = 2λe
α
d P(x)e–iωλτnϕ2,

�(λ, 0, τn)F = λe
α
d P(x)(eiωλτn + e–iωλτn )|ϕ|2.

(3.8)

Note that 2iωλ is not the eigenvalue of Aτn for λ ∈ (0,λ∗), and hence

E = 2λ�(λ, 2iωλ, τn)–1e
α
d P(x)e–iωλτnϕ2.

Similarly, we obtain

F = λ�(λ, 0, τn)–1e
α
d P(x)(eiωλτn + e–iωλτn

)|ϕ|2.

Lemma 3.3 Assume that E and F satisfy system (3.8). Then

E = cλe– α
d P(x)m(x) + ϑλ, F = ϑ̃λ,
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where ϑλ and ϑ̃λ satisfy

〈
e– α

d P(x)m(x),ϑλ

〉
= 0, lim

λ→0
‖ϑλ‖Yc = 0, lim

λ→0
‖ϑ̃λ‖Yc = 0.

Moreover, the constant cλ satisfies limλ→0 cλ = 2i

e– 2Cα
d (2i–1)

.

Proof We just give the estimate for E, and that for F can be obtained similarly.
Substituting E = cλe– α

d P(x)m(x) + ϑλ into the first equation of system (3.8), one can easily
have

e– α
d P(x)∇[

e
α
d P(x)∇(

cλe– α
d P(x)m(x) + ϑλ

)]
– λm(x)

(
cλe– α

d P(x)m(x) + ϑλ

)
e–2iωλτ

– 2iωλ

(
cλe– α

d P(x)m(x) + ϑλ

)
= 2λe

α
d P(x)e–iωλτnϕ2.

Since e– α
d P(x)m(x) is a positive steady state of system (1.8) which satisfies

⎧
⎨

⎩

e– α
d P(x)∇[e

α
d P(x)∇v] + λv(m(x) – e

α
d P(x)v) = 0, x ∈ �,

∇v · �n = 0, x ∈ ∂�,
(3.9)

we obtain

∇[
e

α
d P(x)∇(ϑλ)

]
– λe

α
d P(x)m(x)

(
cλe– α

d P(x)m(x) + ϑλ

)
e–2iωλτn

– 2ie
α
d P(x)ωλ

(
cλe– α

d P(x)m(x) + ϑλ

)
= 2λe

2α
d P(x)e–iωλτnϕ2.

(3.10)

Multiplying the above equation by e– α
d P(x)m(x), and integrating the result over �, we obtain

λcλe–2iωλτn

∫

�

e– α
d P(x)m3(x) dx + 2iωλcλ

∫

�

e– α
d P(x)m2(x) dx

= –λe–2iωλτn

∫

�

e– α
d P(x)m2(x)ϑλ dx – 2iωλ

∫

�

e– α
d P(x)m(x)ϑλ dx

– 2λe–iωλτn

∫

�

ϕ2e
α
d P(x)m(x) dx.

(3.11)

Multiplying (3.10) by ϑ̄λ and integrating the result over �, we have

〈
ϑλ, d∇[

e
α
d P(x)∇ϑλ

]〉
– λcλe–2iωλτn

∫

�

m2(x)ϑ̄λ dx – 2iωλcλ

∫

�

m(x)ϑ̄λ dx

= λe–2iωλτn

∫

�

e
α
d P(x)m(x)|ϑλ|2 dx + 2iωλ

∫

�

e– α
d P(x)|ϑλ|2 dx

+ 2λe–iωλτn

∫

�

e
2α
d P(x)ϕ2ϑ̄λ dx.

(3.12)

Combining the above lemma leads easily to

ϕ → 1,
ωλ

λ
→ h0, ωλτn → π

2
+ 2nπ ,

as λ → 0.
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Hence, it follows from Eq. (3.11) that there exist constants λ̂ > 0 and M0, M1 > 0 such
that, for any λ ∈ (0, λ̂),

|cλ| ≤ M0‖ϑλ‖Yc + M1. (3.13)

Furthermore, from Eqs. (3.12) and (3.13) and combining with Lemma 2.3, we find that
there exist constants M2, M3 > 0 such that, for any λ ∈ (0, λ̂),

γ2 · ‖ϑλ‖2
Yc ≤ λM2‖ϑλ‖2

Yc + λM3‖ϑλ‖Yc . (3.14)

So, we have limλ→0 ‖ϑλ‖Yc = 0. This, together with Eq. (3.11), implies

lim
λ→0

cλ =
2i

e– 2Cα
d (2i – 1)

,

where C is a constant determined by P(x) = ln m d
α + C. �

By similar arguments to [10] and [9], one can easily have the following result.

Theorem 3.1 For λ ∈ (0,λ∗), in Eq. (1.8) there occurs a Hopf bifurcation at the positive
steady state e– α

d P(x)m(x), near τn (n ∈N∪ {0}). Moreover, the direction of the Hopf bifurca-
tion at τ = τn is forward and the bifurcating periodic solution at τ = τ0 is orbitally asymp-
totically stable.

Proof Since

lim
λ→0

Sn(λ) = e
αC
d

(

1 +
(

π

2
+ 2nπ

)

i
)∫

�

m(x), lim
λ→0

λτn =
( π

2 + 2nπ )
∫

�
m(x)

∫

�
m2(x)

,

we have

lim
λ→0

g20 = –
2λτn

Sn(λ)
e–iωλτn

∫

�

e
2α
d P(x)ϕ3 dx =

i(π + 4nπ )

e– αC
d (1 + i( π

2 + 2nπ ))
, (3.15)

lim
λ→0

g11 = –
[

λτn

Sn(λ)
(
eiωλτn + e–iωλτn

)
]∫

�

e
α
d P(x)ϕ|ϕ|2 dx = 0, (3.16)

lim
λ→0

g02 = –
2λτn

Sn(λ)
eiωλτn

∫

�

e
α
d P(x)|ϕ|2ϕ dx =

–i(π + 4nπ )

e– αC
d (1 + i( π

2 + 2nπ ))
. (3.17)

The conclusions in front yield

W20(θ ) =
ig20

ωλτn
γ (θ ) +

iḡ02

3ωλτn
γ̄ (θ ) + Ee2iωλτnθ ,

W11(θ ) =
ig11

ωλτn
γ (θ ) +

iḡ11

ωλτn
γ̄ (θ ) + F ,

(3.18)

where

γ (θ ) = ϕeiωλτnθ , γ̄ (θ ) = ϕ̄e–iωλτnθ .
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Figure 1 Numerical solutions of system (1.8). Parameters were chosen as:m(x) = sin(x) + 2, α = 1, d = 2,
τ = 0 < τ0 ≈ 0.7, C = 0

Hence

lim
λ→0

W20(–1) =
ig20

ωλτn
ϕe–iωλτn +

iḡ02

3ωλτn
ϕ̄eiωλτn +

(
cλe– α

d P(x)m(x) + ϑλ

)
e–2iωλτn ,

lim
λ→0

eiωλτn W20(0) =
ig20

ωλτn
ϕeiωλτn +

iḡ02

3ωλτn
ϕ̄eiωλτn +

(
cλe– α

d P(x)m(x) + ϑλ

)
eiωλτn ,

(3.19)

where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

limλ→0
ig20
ωλτn

ϕe–iωλτn = – limλ→0
ig20
ωλτn

ϕeiωλτn = (π+4nπ )+i2

e– αC
d (1+ π

2 +2nπ )
,

limλ→0
iḡ02

3ωλτn
ϕ̄eiωλτn = (π+4nπ )–i2

3e– αC
d (1+ π

2 +2nπ )
,

limλ→0(cλe– α
d P(x)m(x) + ϑλ)e–2iωλτn = –4e

Cα
d +2e

Cα
d i

5 ,

limλ→0(cλe– α
d P(x)m(x) + ϑλ)eiωλτn = i4e

Cα
d +2e

Cα
d

5 .

(3.20)

Then

lim
λ→0

g21

= lim
λ→0

(

–
2λτn

Sn(λ)

∫

�

e
2α
d P(x)ϕ2W11(–1) dx –

λτn

Sn(λ)

∫

�

e
2α
d P(x)|ϕ|2W20(–1) dx

–
2λτn

Sn(λ)
e–iωλτn

∫

�

e
2α
d P(x)ϕ2W11(0) dx –

λτn

Sn(λ)
eiωλτn

∫

�

e
2α
d P(x)|ϕ|2W20(0) dx

)

= lim
λ→0

(

–
λτn

Sn(λ)

∫

�

e
2α
d P(x)|ϕ|2W20(–1) dx –

λτn

Sn(λ)
eiωλτn

∫

�

e
2α
d P(x)|ϕ|2W20(0) dx

)

= lim
λ→0

[

–
λτn

Sn(λ)
e

2Cα
d

∫

�

m2(x)
(

i2ḡ02

3ωλτn
ϕ̄eiωλτn +

(
cλe– α

d P(x)m(x) + ϑλ

)
e–2iωλτn (3.21)
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Figure 2 Numerical solutions of system (1.8). Parameters were chosen as:m(x) = sin(x) + 2, α = 1, d = 2,
τ = 0.5 < τ0 ≈ 0.7, C = 0

Figure 3 Numerical solutions of system (1.8). Parameters were chosen as:m(x) = sin(x) + 2, α = 1, d = 2,
τ = 0.7 < τ0 ≈ 0.8, C = 0

+
(
cλe– α

d P(x)m(x) + ϑλ

)
e–iωλτn

)]

=
[

–
λτn

Sn(λ)
e

2Cα
d

∫

�

m2(x)
(

(2π + 8nπ )e
Cα
d – i4e

Cα
d

3(1 + π
2 + 2nπ )

+
–4e

Cα
d + 2e

Cα
d i

5

+
i4e

Cα
d + 2e

Cα
d

5

)]

= –
π
2 + 2nπ

1 + i( π
2 + 2nπ )

e
2Cα

d

(
(2π + 8nπ ) – i4
3(1 + π

2 + 2nπ )
+

i6 – 2
5

)

.
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Figure 4 Numerical solutions of system (1.8). Parameters were chosen as:m(x) = sin(x) + 2, α = 1, d = 2,
τ = 1 > τ0 ≈ 0.7, C = 0

Then we can compute that limλ→0 g21 < 0, which implies that limλ→0 C1(0) < 0. From
Lemma 3.2, the proof of this theorem is finished. �

4 The numerical simulations and conclusions
This article is concerned with a delayed reaction–diffusion equation with ideal free disper-
sal. The local asymptotic stability of positive equilibrium solutions e– α

d P(x)m(x) is studied
by analyzing the associated eigenvalue problem. Moreover, it is demonstrated that the
positive equilibrium solutions e– α

d P(x)m(x) is asymptotically stable when there is no de-
lay (see Fig. 1) or the delay is less than a certain critical value τ0 (see Figs. 2 and 3), and
unstable when the delay is greater than this critical value τ0 (see Fig. 4). Besides, it is also
found that the system under consideration can undergo a Hopf bifurcation when the delay
crosses through a sequence of critical values τn.
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