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Abstract

We study positive solutions to steady-state reaction–diffusion models of the form

�
�����

�����

–�u= λf (v); �,

–�v= λg(u); �,
∂u
∂η

+
√

λu= 0; ∂�,
∂v
∂η

+
√

λv= 0; ∂�,

where λ > 0 is a positive parameter, � is a bounded domain in RN (N> 1) with
smooth boundary ∂�, or � = (0, 1), ∂z

∂η
is the outward normal derivative of z. We

assume that f and g are continuous increasing functions such that f (0) = 0 = g(0) and
lims→∞ f (Mg(s))

s = 0 for all M> 0. In particular, we extend the results for the single
equation case discussed in (Fonseka et al. in J. Math. Anal. Appl. 476(2):480-494, 2019)
to the above system.

MSC: 35J15; 35J25; 35J60

1 Introduction

In [7] the authors analyzed and established several results for positive solutions for

reaction…di�usion models of the form

�
�

�
…�u = λf (u); �,
∂u
∂η

+ μ(λ)u = 0; ∂�,

wheref ∈ C2([0,∞)), andμ ∈ C([0,∞)) is strictly increasing such thatμ(0)≥ 0. In recent

history, there has been a lot of interests in models where the parameter in”uences the

equation and boundary conditions (see [5…7], and [8]). In this paper, we are interested in
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extending the results in [7] to systems of the form

�
������

������

…�u = λf (v); �,

…�v = λg(u); �,
∂u
∂η

+
√

λu = 0; ∂�,
∂v
∂η

+
√

λv = 0; ∂�,

(1.1)

whereλ > 0 is a positive parameter,� is a bounded domain inRN (N > 1) with smooth

boundary∂�, or � = (0,1), ∂z
∂η

is the outward normal derivative ofz, and f , g satisfy the

following conditions:

(H1) f ,g ∈ C[0,∞), increasing, f (0) = 0 =g(0), and lims→∞ f (Mg(s))
s = 0 for all M > 0(com-

bined sublinear effect at infinity). Further, there exists a > 0 such that f ,g ∈ C1[0,a)

and f ′(0), g ′(0) > 0.
Without loss of generality, we assume thatf ′(0) ≥ g ′(0) throughout the paper. We “rst

recall recent results for the eigenvalue problem

�
�

�
…�v = Ev; �,
∂v
∂η

+ γ
√

Ev = 0; ∂�,
(1.2)

whereγ > 0. Namely, letE1(γ ) be its principal eigenvalue (see [8]), and letv be the corre-

sponding normalized positive eigenfunction of (1.2). Now consider the eigenvalue prob-

lem

�
�

�
…�φ = Ēg ′(0)φ; �,
∂φ

∂η
+

√
Ēφ = 0; ∂�.

(1.3)

Noting that the substitutionE = Eg ′(0) reduces (1.3) to (1.2), we easily see that the principal

eigenvalue of (1.3) is E1(γ )
g′(0) with γ = 1√

g′(0)
. De“ne

A1 :=
E1(γ )
g ′(0)

. (1.4)

Next, for a givenλ̃, we recall the for the eigenvalue problem

�
�

�
…�v = (σ + λ̃)v; �,
∂v
∂η

+ γ
�

λ̃v = 0; ∂�.
(1.5)

Denoting byσλ̃(λ̃,γ ) its principal eigenvalue and byφλ̃ > 0 the corresponding eigenfunc-

tion of (1.5) such that‖φλ̃‖ = 1, the following results were established in [8]:

�
���

���

σλ̃ > 0; λ̃ < E1(γ ),

σλ̃ = 0; λ̃ = E1(γ ),

σλ̃ < 0; λ̃ > E1(γ ).

(1.6)
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Hence, by the substitutionλg ′(0) = λ̃, denoting byσλ the principal eigenvalue of

�
�

�
…�φ = (σ + λg ′(0))φ; �,
∂φ

∂η
+

√
λφ = 0; ∂�,

(1.7)

we deduce the following:

�
���

���

σλ > 0; λ < A1,

σλ = 0; λ = A1,

σλ < 0; λ > A1.

(1.8)

Next, for 0 <a < b, de“ne

Q1(a) := min

�
a

f (a)
,

a
g(a)

�
(1.9)

and

Q2(b) := max

�
b

f (b)
,

b
g(b)

�
. (1.10)

Further, let

C1 = inf
ε

N
εN

RN…1

R …ε
, (1.11)

whereR is the radius of the largest inscribed ball in�. Let w be the unique solution of

�
�

�
…�w = 1; �,
∂w
∂η

+ w = 0; ∂�.
(1.12)

Then we “rst establish the following:

Theorem 1.1 Let (H1) hold. Then (1.1) has a positive solution (uλ,vλ) for λ > A1 such that
‖uλ‖∞, ‖vλ‖∞ → ∞ as λ → ∞. Further, if there exists 0 < a < b such that Q1

Q2
> C1‖w‖∞

and Q1 > max{A1, 1}‖w‖∞, then (1.1) has at least three positive solutions for

max{A1,C1Q2, 1} < λ <
Q1

‖w‖∞
(see Fig.1).

Next we establish the following:

Theorem 1.2 If there exists r > 0 such that f ,g ∈ C2([0,r)), f (0) = 0 =g(0), f ′(0) = g ′(0) > 0,

and f ′′(s), g ′′(s) < 0 for all s ∈ [0,r), then (1.1) has a positive solution (uλ,vλ) for λ > A1 and
λ ≈ A1 such that ‖uλ‖∞, ‖vλ‖∞ → 0 as λ → A+

1 (see Fig.2).
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Figure 1 Bifurcation diagram for positive solutions when the
hypothesis of Theorem 1.1 holds

Figure 2 Bifurcation diagram for positive solutions when the
hypotheses of Theorems 1.1 and 1.2 hold

Remark 1.1 Note that if both s
f (s) and s

g(s) are strictly increasing fors > 0, then the multi-

plicity of positive solutions forλ > A1 is not possible (seeAppendix).

We present some preliminaries in Sect.2. We provide proofs of Theorems1.1and1.2in

Sect.3. In Sect.4, we discuss an example. We state and prove Lemma5.1in Appendix to

justify Remark1.1. Our existence and multiplicity results are established via the method

of sub- and supersolutions. We conclude thisIntroduction by citing two additional related

references [3] and [9].

2 Preliminaries
In this section, we introduce de“nitions of a subsolution and a supersolution of (1.1), and

state sub-supersolution theorems which are used to prove the existence and multiplicity

for positive solutions. By a subsolution of (1.1) we mean (ψ1,ψ2) ∈ C2(�) ∩ C1(�̄) that

satis“es

�
������

������

…�ψ1 ≤ λf (ψ2); �,

…�ψ2 ≤ λg(ψ1); �,
∂ψ1
∂η

+
√

λψ1 ≤ 0; ∂�,
∂ψ2
∂η

+
√

λψ2 ≤ 0; ∂�,

and by a supersolution of (1.1) we mean (Z1,Z2) ∈ C2(�) ∩ C1(�̄) that satis“es

�
������

������

…�Z1 ≥ λf (Z2); �,

…�Z2 ≥ λg(Z1); �,
∂Z1
∂η

+
√

λZ1 ≥ 0; ∂�,
∂Z2
∂η

+
√

λZ2 ≥ 0; ∂�.

Now we state two results (see [2, 10], and [11]) we will use later.
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Lemma 2.1 Let (ψ1,ψ2) and (Z1,Z2) be a subsolution and a supersolution of (1.1), respec-
tively, such that (ψ1,ψ2) ≤ (Z1,Z2). Then (1.1) has a solution (u,v) ∈ C2(�) ∩ C1(�̄) such
that (u,v) ∈ [(ψ1,ψ2), (Z1,Z2)].

Lemma 2.2 Let f and g be nonnegative and increasing, and suppose there exist a sub-
solution (ψ1,ψ1), a strict supersolution (φ2,φ2), a strict subsolution (ψ2,ψ2), and a su-
persolution (φ1,φ1) for (1.1) such that (ψ1,ψ1) ≤ (ψ2,ψ2) ≤ (φ1,φ1), (ψ1,ψ1) ≤ (φ2,φ2) ≤
(φ1,φ1), and (ψ2,ψ2) � (φ2,φ2). Then (1.1) has at least three positive solutions (ui,vi),i =
1,2,3,such that (u1,v1) ∈ [(ψ1,ψ1), (φ2,φ2)], (u2,v2) ∈ [(ψ2,ψ2), (φ1,φ1)], and (u3,v3) ∈
[(ψ1,ψ1), (φ1,φ1)]\([(ψ1,ψ1), (φ2,φ2)] ∪ [(ψ2,ψ2), (φ1,φ1)]).

3 Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.1 First, we show the existence of positive solutions forλ > A1. Let
(ψ1,ψ2) = (mφλ,mφλ), whereφλ is the normalized positive eigenfunction of (1.7). De“ne
H(s) = (σλ + λg ′(0))s …λf (s). Then H(0) = 0,H ′(0) =σλ + λ(g ′(0) …f ′(0)) < 0 (by (1.8)). This
implies that H(s) ≤ 0 for s ≈ 0. Thus (σλ + λg ′(0))mφλ …λf (mφλ) ≤ 0 for m ≈ 0. Hence
…�ψ1 ≤ λf (ψ2) for m ≈ 0. AnalyzingH̃(s) = (σλ + λg ′(0))s …λg(s), by a similar argument
we obtain …�ψ2 ≤ λg(ψ1). Further, on the boundary, we have∂ψ1

∂η
+

√
λψ1 = 0 and ∂ψ2

∂η
+√

λψ2 = 0. Thus (ψ1,ψ2) is a subsolution of (1.1) for m ≈ 0.
Now let eλ be a positive solution of

�
�

�
…�e = 1; �,
∂e
∂η

+
√

λe = 0; ∂�.
(3.1)

We consider three di�erent cases. If bothf and g are bounded, then let (Z1,Z2) =
(λMλ

eλ
‖eλ‖∞ ,λMλ

eλ
‖eλ‖∞ ) and chooseMλ large such that Mλλ

‖eλ‖∞ ≥ λf ( Mλeλ
‖eλ‖∞ ). This implies

…�Z1 …λf (Z2) ≥ 0 for Mλ 
 1, and by a similar argument we see that …�Z2 …λg(Z1) ≥ 0
for Mλ 
 1. Also, on the boundary, we have∂Z1

∂η
+

√
λZ1 = 0 and ∂Z2

∂η
+

√
λZ2 = 0.

Hence (Z1,Z2) is a supersolution forMλ 
 1. If g(x) → ∞ as x → ∞, let (Z1,Z2) =
(Mλeλ,λg(Mλ‖eλ‖∞)eλ). Then by choosingMλ large we obtain

1
λ‖eλ‖∞

≥ f (λ‖eλ‖∞g(Mλ‖eλ‖∞))
Mλ‖eλ‖∞

,

which implies thatMλ …λf (λg(Mλ‖eλ‖∞)eλ) ≥ 0. Hence …�Z1 …λf (Z2) ≥ 0. We also have
λg(Mλ‖eλ‖∞)…λg(Mλeλ) ≥ 0. This implies that …�Z2…λg(Z1) ≥ 0. Further, on the bound-
ary, we have∂Z1

∂η
+

√
λZ1 = ∂Z2

∂η
+

√
λZ2 = 0. Hence (Z1,Z2) is a supersolution of (1.1) for

Mλ 
 1. Finally, we consider the case wheref (x) → ∞ asx → ∞ and g(x) is bounded. In
this case, let (Z1,Z2) = (λf (Mλ‖eλ‖∞)eλ,Mλeλ). Thenλf (Mλ‖eλ‖∞)…λf (Mλeλ) ≥ 0, which
implies that …�Z1 …λf (Z2) ≥ 0. Also, we haveMλ ≥ λg(λf (Mλ‖eλ‖∞)eλ) for Mλ 
 1.
This implies that …�Z2 …λg(Z1) ≥ 0. Further, on the boundary, we have∂Z1

∂η
+

√
λZ1 =

∂Z2
∂η

+
√

λZ2 = 0. Hence (Z1,Z2) is a supersolution of (1.1) for Mλ 
 1. Now we can choose
Mλ large enough such that (ψ1,ψ2) ≤ (Z1,Z2). Hence by Lemma (2.1), (1.1) has a positive
solution for λ > A1.

Next, we show that there exists a positive solution (uλ,vλ) for λ 
 1 such that
‖uλ‖∞,‖vλ‖∞ → ∞ asλ → ∞. De“ne h ∈ C2([0,∞)) such thath(0) < 0,h(s) ≤ f (s), and
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h(s) ≤ g(s) for s ∈ (0,∞) and lims→∞ h(s) > 0. Then the Dirichlet boundary value problem

�
�

�
…�w = λh(w); �,

w = 0; ∂�,

has a positive solutionwλ for λ 
 1 such that‖wλ‖∞ → ∞ asλ → ∞ (see [4]).

It is easy to show that (wλ,wλ) is a subsolution of (1.1) for λ 
 1 sinceh ≤ f ,h ≤ g, and
∂w
∂η

< 0;∂�. We can also chooseMλ 
 1 such that (Z1,Z2) ≥ (wλ,wλ), where (Z1,Z2) is

a supersolution of (1.1) as constructed before. By Lemma2.1, (1.1) has a positive solu-

tion (uλ,vλ) ∈ [(wλ,wλ), (Z1,Z2)] for λ 
 1. Clearly,‖uλ‖∞,‖vλ‖∞ → ∞ asλ → ∞ since

‖w‖∞ → ∞ asλ → ∞.

Next, we establish our multiplicity result. We “rst construct a positive strict superso-

lution ( z̃1, z̃2) for (1.1) when 1 <λ < Q1
‖w‖∞ , wherew is the solution of (1.12). Let (̃z1, z̃2) =

(a w
‖w‖∞ ,a w

‖w‖∞ ). Then a
‖w‖∞f (a) > λ gives us a

‖w‖∞ > λf (a). Sincef is increasing, we have
a

‖w‖∞ ≥ λf (a w
‖w‖∞ ), which implies that …�z̃1 ≥ λf (z̃2) in �. Similarly, we can show that

…�z̃2 ≥ λg(z̃1) in �. On the boundary, we have∂ z̃1
∂η

+
√

λz̃1 = a
‖w‖∞ [ ∂w

∂η
+

√
λw] > a

‖w‖∞ [ ∂w
∂η

+

w] = 0 sinceλ > 1. Similarly, we have∂ z̃2
∂η

+
√

λz̃2 > 0. Thus (̃z1, z̃2) is a strict supersolution

of (1.1).

Now we construct a strict subsolution (̃ψ1,ψ̃2) of (1.1) for λ ≥ C1Q2 = C1 max{ b
g(b) ,

b
f (b) }.

Note that in [1] the authors showed that the boundary value problem

�
������

������

…�u = λf (v); �,

…�v = λg(u); �,

u = 0; ∂�,

v = 0; ∂�,

has a strict subsolution (u0,v0) for λ ≥ C1 max{ b
g(b) ,

b
f (b) } such that‖u0‖∞ ≥ b and‖v0‖∞ ≥

b. Let (ψ̃1,ψ̃2) be the “rst iteration of (u0,v0), that is, the solution to the problem

�
������

������

…�ψ̃1 = λf (v0); �,

…�ψ̃2 = λg(u0); �,
∂ψ̃1
∂η

+
√

λψ̃1 = 0; ∂�,
∂ψ̃2
∂η

+
√

λψ̃2 = 0; ∂�.

Then by comparison principle (̃ψ1,ψ̃2) > (u0,v0); �̄. Hence (ψ̃1,ψ̃2) is a strict subsolution

of (1.1) such that ‖ψ̃1‖∞ ≥ b > a and ‖ψ̃2‖∞ ≥ b > a. Thus we have (̃ψ1,ψ̃2) � (z̃1, z̃2).

Further, for λ > A1, we can construct the subsolution (ψ1,ψ2) as before form ≈ 0,

and for any λ > 0, we can construct the supersolution (Z1,Z2) as before forMλ 
 1.

Also, for m ≈ 0 and Mλ 
 1, we obtain (ψ1,ψ2) ≤ (ψ̃1,ψ̃2) ≤ (Z1,Z2) and (ψ1,ψ2) ≤
(z̃1, z̃2) ≤ (Z1,Z2). Hence by Lemma (2.2), (1.1) has at least three positive solutions for

λ ∈ (max{A1,C1Q2, 1}, Q1
‖w‖∞ ). �

Proof of Theorem 1.2 Let (ψ1,ψ2) = (mφλ,mφλ) be as in the proof of Theorem1.1. Then

(ψ1,ψ2) is a subsolution of (1.1) for m ≈ 0. Sincef ′′(s) < 0 andg ′′(s) < 0 for s ≈ 0, there
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existsA > 0 such thatf ′′(s) ≤ …A andg ′′(s) ≤ …A for s ≈ 0. Let (φ1,φ2) = (δλφλ,δλφλ), where

δλ = … 2σλ

λA min
�

φλ
. Note that δλ > 0 andδλ → 0 asλ → A+

1 sinceσλ → 0 and min� φλ � 0

asλ → A+
1 (see [8]). Clearly,‖φ1‖∞ → 0 and ‖φ2‖∞ → 0 asλ → A+

1. Then by Taylor•s

theorem we havef (φ2) = f (0) + f ′(0)φ2 + f ′′(ξ )
2 φ2

2 = φ2 + f ′′(ξ )
2 φ2

2 for someξ ∈ [0,φ2]. Then

we have

…�φ1 …λf (φ2) = δλ

	
σλ + λg ′(0)



φλ …λ

�
δλφλf ′(0) +

f ′′(ξ )
2

(δλφλ)2
�

≥ δλφλ

�
σλ +

λA
2

δλ min
�̄

φλ

�
= 0

by our choice ofδλ. A similar argument shows that …�φ2 …λg(φ1) ≥ 0. Further, on the

boundary, we have∂φ1
∂η

+
√

λφ1 = ∂φ2
∂η

+
√

λφ2 = 0. Thus (φ1,φ2) is a supersolution of (1.1).

Choosingm ≈ 0, we also have (ψ1,ψ2) ≤ (φ1,φ2). By Lemma2.1 there exists a positive

solution (uλ,vλ) ∈ [(ψ1,ψ2), (φ1,φ2)] for λ > A1 andλ ≈ A1 such that‖uλ‖∞ → 0,‖vλ‖∞ →
0 asλ → A+

1. �

4 Example
For an example to illustrate Theorems1.1…1.2, considerf = fα,k and g = gk as follows:

f = fα,k(s) =

�
�

�
e s

s+1 … 1; s ≤ k,

[e αs
α+s …e

αk
α+k ] + [e

k
k+1 … 1]; s ≥ k,

g = gk(s) =

�
�

�
2(1 +s) 1

2 … 2; s ≤ k,

[ 1
2(1 + s)2 …1

2(1 +k)2] + [2(1 + k)
1
2 … 2]; s ≥ k,

wherek > 0 is a constant, andα > 0 is a parameter. Note that thoughg is superlinear at

in“nity, since f is bounded,f (Mg(s))
s −→ 0 ass −→ ∞ for all M > 0. Choosea = k,b = α, and

α > k. Then we note thatQ1(k) = min{ k
f (k) ,

k
g(k) } −→ ∞ ask −→ ∞ since k

f (k) ,
k

g(k) −→ ∞
ask −→ ∞ and Q2(α) = max{ α

f (α) ,
α

g(α) } −→ 0 asα −→ ∞ since α
f (α) ,

α
g(α) −→ 0 asα −→

∞. Hence we can choosek = k0 such that Q1(k0) > max{A1, 1}‖w‖∞ and chooseα 
 1

such that Q1(k0)
Q2(α) ≥ C1‖w‖∞. Hence Q1

‖w‖∞ > max{A1,C1Q2, 1} for k = k0 andα 
 1. It is also

clear that f and g satisfy (H1). This implies that (1.1) has at least one positive solution

for λ > A1 and at least three positive solutions forλ ∈ (max{A1,C1Q2, 1}, Q1
‖w‖∞ ) for k = k0

and α 
 1. Thus Theorem1.1holds in this example fork = k0 and α 
 1. Further, since

f ′(0) = g ′(0) and f ,g ∈ C2([0,k)) and f ′′ < 0, g ′′ < 0 for all s ∈ [0,k), Theorem 1.2 holds.

Hence the bifurcation diagram for positive solutions is as shown in Fig.2.

Appendix
Lemma 5.1 Let (H1) hold, and let s

f (s) and s
g(s) be strictly increasing for s > 0. Then (1.1)

has a unique positive solution for λ > A1.

Proof: The existence forλ > A1 is clear from Theorem1.1. Let (ui,vi),i = 1,2, be two

distinct positive solutions forλ > A1. Since (mφλ,mφλ) is a subsolution form ≈ 0, there

exists a minimal positive solution, and hence without loss of generality, we can assume
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that (u1,v1) ≥ (u2,v2), by which we mean thatu1 ≥ u2,v1 ≥ v2. Now

L =



�

�
g(u1)g(u2)

�
u1

g(u1)
…

u2

g(u2)

�
+ f (v1)f (v2)

�
v1

f (v1)
…

v2

f (v2)

��
dx

=



�

�
g(u2)u1 …g(u1)u2 + f (v2)v1 …f (v1)v2

�
dx

=



�

�
[u2�v1 …u1�v2] + [v2�u1 …v1�u2]

�
dx

=



∂�

��
u2

∂v1

∂η
…u1

∂v2

∂η

�
+

�
v2

∂u1

∂η
…v1

∂u2

∂η

��
dx

=



∂�

[…
√

λu2v1 +
√

λu1v2 …
√

λv2u1 +
√

λv1u2] dx = 0.

This is clearly a contradiction when s
f (s) and s

g(s) are strictly increasing and (u1,v1), (u2,v2)
are distinct. Thus (1.1) has a unique positive solution forλ > A1.
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