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Abstract
We study positive solutions to steady-state reaction–diffusion models of the form

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

–�u = λf (v); �,

–�v = λg(u); �,
∂u
∂η

+
√

λu = 0; ∂�,
∂v
∂η

+
√

λv = 0; ∂�,

where λ > 0 is a positive parameter, � is a bounded domain in R
N (N > 1) with

smooth boundary ∂�, or � = (0, 1), ∂z
∂η

is the outward normal derivative of z. We
assume that f and g are continuous increasing functions such that f (0) = 0 = g(0) and
lims→∞ f (Mg(s))

s = 0 for allM > 0. In particular, we extend the results for the single
equation case discussed in (Fonseka et al. in J. Math. Anal. Appl. 476(2):480-494, 2019)
to the above system.

MSC: 35J15; 35J25; 35J60

1 Introduction
In [7] the authors analyzed and established several results for positive solutions for
reaction–diffusion models of the form

⎧
⎨

⎩

–�u = λf (u); �,
∂u
∂η

+ μ(λ)u = 0; ∂�,

where f ∈ C2([0,∞)), and μ ∈ C([0,∞)) is strictly increasing such that μ(0) ≥ 0. In recent
history, there has been a lot of interests in models where the parameter influences the
equation and boundary conditions (see [5–7], and [8]). In this paper, we are interested in
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extending the results in [7] to systems of the form

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–�u = λf (v); �,

–�v = λg(u); �,
∂u
∂η

+
√

λu = 0; ∂�,
∂v
∂η

+
√

λv = 0; ∂�,

(1.1)

where λ > 0 is a positive parameter, � is a bounded domain in R
N (N > 1) with smooth

boundary ∂�, or � = (0, 1), ∂z
∂η

is the outward normal derivative of z, and f , g satisfy the
following conditions:

(H1) f , g ∈ C[0,∞), increasing, f (0) = 0 = g(0), and lims→∞ f (Mg(s))
s = 0 for all M > 0 (com-

bined sublinear effect at infinity). Further, there exists a > 0 such that f , g ∈ C1[0, a)
and f ′(0), g ′(0) > 0.

Without loss of generality, we assume that f ′(0) ≥ g ′(0) throughout the paper. We first
recall recent results for the eigenvalue problem

⎧
⎨

⎩

–�v = Ev; �,
∂v
∂η

+ γ
√

Ev = 0; ∂�,
(1.2)

where γ > 0. Namely, let E1(γ ) be its principal eigenvalue (see [8]), and let v be the corre-
sponding normalized positive eigenfunction of (1.2). Now consider the eigenvalue prob-
lem

⎧
⎨

⎩

–�φ = Ēg ′(0)φ; �,
∂φ

∂η
+

√
Ēφ = 0; ∂�.

(1.3)

Noting that the substitution E = Eg ′(0) reduces (1.3) to (1.2), we easily see that the principal
eigenvalue of (1.3) is E1(γ )

g′(0) with γ = 1√
g′(0)

. Define

A1 :=
E1(γ )
g ′(0)

. (1.4)

Next, for a given λ̃, we recall the for the eigenvalue problem

⎧
⎨

⎩

–�v = (σ + λ̃)v; �,
∂v
∂η

+ γ
√

λ̃v = 0; ∂�.
(1.5)

Denoting by σλ̃(λ̃,γ ) its principal eigenvalue and by φλ̃ > 0 the corresponding eigenfunc-
tion of (1.5) such that ‖φλ̃‖ = 1, the following results were established in [8]:

⎧
⎪⎪⎨

⎪⎪⎩

σλ̃ > 0; λ̃ < E1(γ ),

σλ̃ = 0; λ̃ = E1(γ ),

σλ̃ < 0; λ̃ > E1(γ ).

(1.6)
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Hence, by the substitution λg ′(0) = λ̃, denoting by σλ the principal eigenvalue of

⎧
⎨

⎩

–�φ = (σ + λg ′(0))φ; �,
∂φ

∂η
+

√
λφ = 0; ∂�,

(1.7)

we deduce the following:

⎧
⎪⎪⎨

⎪⎪⎩

σλ > 0; λ < A1,

σλ = 0; λ = A1,

σλ < 0; λ > A1.

(1.8)

Next, for 0 < a < b, define

Q1(a) := min

{
a

f (a)
,

a
g(a)

}

(1.9)

and

Q2(b) := max

{
b

f (b)
,

b
g(b)

}

. (1.10)

Further, let

C1 = inf
ε

N
εN

RN–1

R – ε
, (1.11)

where R is the radius of the largest inscribed ball in �. Let w be the unique solution of

⎧
⎨

⎩

–�w = 1; �,
∂w
∂η

+ w = 0; ∂�.
(1.12)

Then we first establish the following:

Theorem 1.1 Let (H1) hold. Then (1.1) has a positive solution (uλ, vλ) for λ > A1 such that
‖uλ‖∞, ‖vλ‖∞ → ∞ as λ → ∞. Further, if there exists 0 < a < b such that Q1

Q2
> C1‖w‖∞

and Q1 > max{A1, 1}‖w‖∞, then (1.1) has at least three positive solutions for

max{A1, C1Q2, 1} < λ <
Q1

‖w‖∞
(see Fig. 1).

Next we establish the following:

Theorem 1.2 If there exists r > 0 such that f , g ∈ C2([0, r)), f (0) = 0 = g(0), f ′(0) = g ′(0) > 0,
and f ′′(s), g ′′(s) < 0 for all s ∈ [0, r), then (1.1) has a positive solution (uλ, vλ) for λ > A1 and
λ ≈ A1 such that ‖uλ‖∞, ‖vλ‖∞ → 0 as λ → A+

1 (see Fig. 2).
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Figure 1 Bifurcation diagram for positive solutions when the
hypothesis of Theorem 1.1 holds

Figure 2 Bifurcation diagram for positive solutions when the
hypotheses of Theorems 1.1 and 1.2 hold

Remark 1.1 Note that if both s
f (s) and s

g(s) are strictly increasing for s > 0, then the multi-
plicity of positive solutions for λ > A1 is not possible (see Appendix).

We present some preliminaries in Sect. 2. We provide proofs of Theorems 1.1 and 1.2 in
Sect. 3. In Sect. 4, we discuss an example. We state and prove Lemma 5.1 in Appendix to
justify Remark 1.1. Our existence and multiplicity results are established via the method
of sub- and supersolutions. We conclude this Introduction by citing two additional related
references [3] and [9].

2 Preliminaries
In this section, we introduce definitions of a subsolution and a supersolution of (1.1), and
state sub-supersolution theorems which are used to prove the existence and multiplicity
for positive solutions. By a subsolution of (1.1) we mean (ψ1,ψ2) ∈ C2(�) ∩ C1(�̄) that
satisfies

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–�ψ1 ≤ λf (ψ2); �,

–�ψ2 ≤ λg(ψ1); �,
∂ψ1
∂η

+
√

λψ1 ≤ 0; ∂�,
∂ψ2
∂η

+
√

λψ2 ≤ 0; ∂�,

and by a supersolution of (1.1) we mean (Z1, Z2) ∈ C2(�) ∩ C1(�̄) that satisfies

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–�Z1 ≥ λf (Z2); �,

–�Z2 ≥ λg(Z1); �,
∂Z1
∂η

+
√

λZ1 ≥ 0; ∂�,
∂Z2
∂η

+
√

λZ2 ≥ 0; ∂�.

Now we state two results (see [2, 10], and [11]) we will use later.
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Lemma 2.1 Let (ψ1,ψ2) and (Z1, Z2) be a subsolution and a supersolution of (1.1), respec-
tively, such that (ψ1,ψ2) ≤ (Z1, Z2). Then (1.1) has a solution (u, v) ∈ C2(�) ∩ C1(�̄) such
that (u, v) ∈ [(ψ1,ψ2), (Z1, Z2)].

Lemma 2.2 Let f and g be nonnegative and increasing, and suppose there exist a sub-
solution (ψ1,ψ1), a strict supersolution (φ2,φ2), a strict subsolution (ψ2,ψ2), and a su-
persolution (φ1,φ1) for (1.1) such that (ψ1,ψ1) ≤ (ψ2,ψ2) ≤ (φ1,φ1), (ψ1,ψ1) ≤ (φ2,φ2) ≤
(φ1,φ1), and (ψ2,ψ2) � (φ2,φ2). Then (1.1) has at least three positive solutions (ui, vi), i =
1, 2, 3, such that (u1, v1) ∈ [(ψ1,ψ1), (φ2,φ2)], (u2, v2) ∈ [(ψ2,ψ2), (φ1,φ1)], and (u3, v3) ∈
[(ψ1,ψ1), (φ1,φ1)]\([(ψ1,ψ1), (φ2,φ2)] ∪ [(ψ2,ψ2), (φ1,φ1)]).

3 Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.1 First, we show the existence of positive solutions for λ > A1. Let
(ψ1,ψ2) = (mφλ, mφλ), where φλ is the normalized positive eigenfunction of (1.7). Define
H(s) = (σλ + λg ′(0))s – λf (s). Then H(0) = 0, H ′(0) = σλ + λ(g ′(0) – f ′(0)) < 0 (by (1.8)). This
implies that H(s) ≤ 0 for s ≈ 0. Thus (σλ + λg ′(0))mφλ – λf (mφλ) ≤ 0 for m ≈ 0. Hence
–�ψ1 ≤ λf (ψ2) for m ≈ 0. Analyzing H̃(s) = (σλ + λg ′(0))s – λg(s), by a similar argument
we obtain –�ψ2 ≤ λg(ψ1). Further, on the boundary, we have ∂ψ1

∂η
+

√
λψ1 = 0 and ∂ψ2

∂η
+√

λψ2 = 0. Thus (ψ1,ψ2) is a subsolution of (1.1) for m ≈ 0.
Now let eλ be a positive solution of

⎧
⎨

⎩

–�e = 1; �,
∂e
∂η

+
√

λe = 0; ∂�.
(3.1)

We consider three different cases. If both f and g are bounded, then let (Z1, Z2) =
(λMλ

eλ

‖eλ‖∞ ,λMλ
eλ

‖eλ‖∞ ) and choose Mλ large such that Mλλ

‖eλ‖∞ ≥ λf ( Mλeλ

‖eλ‖∞ ). This implies
–�Z1 – λf (Z2) ≥ 0 for Mλ  1, and by a similar argument we see that –�Z2 – λg(Z1) ≥ 0
for Mλ  1. Also, on the boundary, we have ∂Z1

∂η
+

√
λZ1 = 0 and ∂Z2

∂η
+

√
λZ2 = 0.

Hence (Z1, Z2) is a supersolution for Mλ  1. If g(x) → ∞ as x → ∞, let (Z1, Z2) =
(Mλeλ,λg(Mλ‖eλ‖∞)eλ). Then by choosing Mλ large we obtain

1
λ‖eλ‖∞

≥ f (λ‖eλ‖∞g(Mλ‖eλ‖∞))
Mλ‖eλ‖∞

,

which implies that Mλ – λf (λg(Mλ‖eλ‖∞)eλ) ≥ 0. Hence –�Z1 – λf (Z2) ≥ 0. We also have
λg(Mλ‖eλ‖∞)–λg(Mλeλ) ≥ 0. This implies that –�Z2 –λg(Z1) ≥ 0. Further, on the bound-
ary, we have ∂Z1

∂η
+

√
λZ1 = ∂Z2

∂η
+

√
λZ2 = 0. Hence (Z1, Z2) is a supersolution of (1.1) for

Mλ  1. Finally, we consider the case where f (x) → ∞ as x → ∞ and g(x) is bounded. In
this case, let (Z1, Z2) = (λf (Mλ‖eλ‖∞)eλ, Mλeλ). Then λf (Mλ‖eλ‖∞) –λf (Mλeλ) ≥ 0, which
implies that –�Z1 – λf (Z2) ≥ 0. Also, we have Mλ ≥ λg(λf (Mλ‖eλ‖∞)eλ) for Mλ  1.
This implies that –�Z2 – λg(Z1) ≥ 0. Further, on the boundary, we have ∂Z1

∂η
+

√
λZ1 =

∂Z2
∂η

+
√

λZ2 = 0. Hence (Z1, Z2) is a supersolution of (1.1) for Mλ  1. Now we can choose
Mλ large enough such that (ψ1,ψ2) ≤ (Z1, Z2). Hence by Lemma (2.1), (1.1) has a positive
solution for λ > A1.

Next, we show that there exists a positive solution (uλ, vλ) for λ  1 such that
‖uλ‖∞,‖vλ‖∞ → ∞ as λ → ∞. Define h ∈ C2([0,∞)) such that h(0) < 0, h(s) ≤ f (s), and
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h(s) ≤ g(s) for s ∈ (0,∞) and lims→∞ h(s) > 0. Then the Dirichlet boundary value problem

⎧
⎨

⎩

–�w = λh(w); �,

w = 0; ∂�,

has a positive solution wλ for λ  1 such that ‖wλ‖∞ → ∞ as λ → ∞ (see [4]).
It is easy to show that (wλ, wλ) is a subsolution of (1.1) for λ  1 since h ≤ f , h ≤ g , and

∂w
∂η

< 0; ∂�. We can also choose Mλ  1 such that (Z1, Z2) ≥ (wλ, wλ), where (Z1, Z2) is
a supersolution of (1.1) as constructed before. By Lemma 2.1, (1.1) has a positive solu-
tion (uλ, vλ) ∈ [(wλ, wλ), (Z1, Z2)] for λ  1. Clearly, ‖uλ‖∞,‖vλ‖∞ → ∞ as λ → ∞ since
‖w‖∞ → ∞ as λ → ∞.

Next, we establish our multiplicity result. We first construct a positive strict superso-
lution (z̃1, z̃2) for (1.1) when 1 < λ < Q1

‖w‖∞ , where w is the solution of (1.12). Let (z̃1, z̃2) =
(a w

‖w‖∞ , a w
‖w‖∞ ). Then a

‖w‖∞f (a) > λ gives us a
‖w‖∞ > λf (a). Since f is increasing, we have

a
‖w‖∞ ≥ λf (a w

‖w‖∞ ), which implies that –�z̃1 ≥ λf (z̃2) in �. Similarly, we can show that
–�z̃2 ≥ λg(z̃1) in �. On the boundary, we have ∂ z̃1

∂η
+

√
λz̃1 = a

‖w‖∞ [ ∂w
∂η

+
√

λw] > a
‖w‖∞ [ ∂w

∂η
+

w] = 0 since λ > 1. Similarly, we have ∂ z̃2
∂η

+
√

λz̃2 > 0. Thus (z̃1, z̃2) is a strict supersolution
of (1.1).

Now we construct a strict subsolution (ψ̃1, ψ̃2) of (1.1) for λ ≥ C1Q2 = C1 max{ b
g(b) , b

f (b) }.
Note that in [1] the authors showed that the boundary value problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–�u = λf (v); �,

–�v = λg(u); �,

u = 0; ∂�,

v = 0; ∂�,

has a strict subsolution (u0, v0) for λ ≥ C1 max{ b
g(b) , b

f (b) } such that ‖u0‖∞ ≥ b and ‖v0‖∞ ≥
b. Let (ψ̃1, ψ̃2) be the first iteration of (u0, v0), that is, the solution to the problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–�ψ̃1 = λf (v0); �,

–�ψ̃2 = λg(u0); �,
∂ψ̃1
∂η

+
√

λψ̃1 = 0; ∂�,
∂ψ̃2
∂η

+
√

λψ̃2 = 0; ∂�.

Then by comparison principle (ψ̃1, ψ̃2) > (u0, v0); �̄. Hence (ψ̃1, ψ̃2) is a strict subsolution
of (1.1) such that ‖ψ̃1‖∞ ≥ b > a and ‖ψ̃2‖∞ ≥ b > a. Thus we have (ψ̃1, ψ̃2) � (z̃1, z̃2).
Further, for λ > A1, we can construct the subsolution (ψ1,ψ2) as before for m ≈ 0,
and for any λ > 0, we can construct the supersolution (Z1, Z2) as before for Mλ  1.
Also, for m ≈ 0 and Mλ  1, we obtain (ψ1,ψ2) ≤ (ψ̃1, ψ̃2) ≤ (Z1, Z2) and (ψ1,ψ2) ≤
(z̃1, z̃2) ≤ (Z1, Z2). Hence by Lemma (2.2), (1.1) has at least three positive solutions for
λ ∈ (max{A1, C1Q2, 1}, Q1

‖w‖∞ ). �

Proof of Theorem 1.2 Let (ψ1,ψ2) = (mφλ, mφλ) be as in the proof of Theorem 1.1. Then
(ψ1,ψ2) is a subsolution of (1.1) for m ≈ 0. Since f ′′(s) < 0 and g ′′(s) < 0 for s ≈ 0, there
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exists A > 0 such that f ′′(s) ≤ –A and g ′′(s) ≤ –A for s ≈ 0. Let (φ1,φ2) = (δλφλ, δλφλ), where
δλ = – 2σλ

λA min
�

φλ
. Note that δλ > 0 and δλ → 0 as λ → A+

1 since σλ → 0 and min� φλ � 0
as λ → A+

1 (see [8]). Clearly, ‖φ1‖∞ → 0 and ‖φ2‖∞ → 0 as λ → A+
1 . Then by Taylor’s

theorem we have f (φ2) = f (0) + f ′(0)φ2 + f ′′(ξ )
2 φ2

2 = φ2 + f ′′(ξ )
2 φ2

2 for some ξ ∈ [0,φ2]. Then
we have

–�φ1 – λf (φ2) = δλ

(
σλ + λg ′(0)

)
φλ – λ

[

δλφλf ′(0) +
f ′′(ξ )

2
(δλφλ)2

]

≥ δλφλ

[

σλ +
λA
2

δλ min
�̄

φλ

]

= 0

by our choice of δλ. A similar argument shows that –�φ2 – λg(φ1) ≥ 0. Further, on the
boundary, we have ∂φ1

∂η
+

√
λφ1 = ∂φ2

∂η
+

√
λφ2 = 0. Thus (φ1,φ2) is a supersolution of (1.1).

Choosing m ≈ 0, we also have (ψ1,ψ2) ≤ (φ1,φ2). By Lemma 2.1 there exists a positive
solution (uλ, vλ) ∈ [(ψ1,ψ2), (φ1,φ2)] for λ > A1 and λ ≈ A1 such that ‖uλ‖∞ → 0,‖vλ‖∞ →
0 as λ → A+

1 . �

4 Example
For an example to illustrate Theorems 1.1–1.2, consider f = fα,k and g = gk as follows:

f = fα,k(s) =

⎧
⎨

⎩

e s
s+1 – 1; s ≤ k,

[e αs
α+s – e

αk
α+k ] + [e

k
k+1 – 1]; s ≥ k,

g = gk(s) =

⎧
⎨

⎩

2(1 + s) 1
2 – 2; s ≤ k,

[ 1
2 (1 + s)2 – 1

2 (1 + k)2] + [2(1 + k) 1
2 – 2]; s ≥ k,

where k > 0 is a constant, and α > 0 is a parameter. Note that though g is superlinear at
infinity, since f is bounded, f (Mg(s))

s −→ 0 as s −→ ∞ for all M > 0. Choose a = k, b = α, and
α > k. Then we note that Q1(k) = min{ k

f (k) , k
g(k) } −→ ∞ as k −→ ∞ since k

f (k) , k
g(k) −→ ∞

as k −→ ∞ and Q2(α) = max{ α
f (α) , α

g(α) } −→ 0 as α −→ ∞ since α
f (α) , α

g(α) −→ 0 as α −→
∞. Hence we can choose k = k0 such that Q1(k0) > max{A1, 1}‖w‖∞ and choose α  1
such that Q1(k0)

Q2(α) ≥ C1‖w‖∞. Hence Q1
‖w‖∞ > max{A1, C1Q2, 1} for k = k0 and α  1. It is also

clear that f and g satisfy (H1). This implies that (1.1) has at least one positive solution
for λ > A1 and at least three positive solutions for λ ∈ (max{A1, C1Q2, 1}, Q1

‖w‖∞ ) for k = k0

and α  1. Thus Theorem 1.1 holds in this example for k = k0 and α  1. Further, since
f ′(0) = g ′(0) and f , g ∈ C2([0, k)) and f ′′ < 0, g ′′ < 0 for all s ∈ [0, k), Theorem 1.2 holds.
Hence the bifurcation diagram for positive solutions is as shown in Fig. 2.

Appendix
Lemma 5.1 Let (H1) hold, and let s

f (s) and s
g(s) be strictly increasing for s > 0. Then (1.1)

has a unique positive solution for λ > A1.

Proof: The existence for λ > A1 is clear from Theorem 1.1. Let (ui, vi), i = 1, 2, be two
distinct positive solutions for λ > A1. Since (mφλ, mφλ) is a subsolution for m ≈ 0, there
exists a minimal positive solution, and hence without loss of generality, we can assume
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that (u1, v1) ≥ (u2, v2), by which we mean that u1 ≥ u2, v1 ≥ v2. Now

L =
∫

�

{

g(u1)g(u2)
[

u1

g(u1)
–

u2

g(u2)

]

+ f (v1)f (v2)
[

v1

f (v1)
–

v2

f (v2)

]}

dx

=
∫

�

[
g(u2)u1 – g(u1)u2 + f (v2)v1 – f (v1)v2

]
dx

=
∫

�

{
[u2�v1 – u1�v2] + [v2�u1 – v1�u2]

}
dx

=
∫

∂�

{[

u2
∂v1

∂η
– u1

∂v2

∂η

]

+
[

v2
∂u1

∂η
– v1

∂u2

∂η

]}

dx

=
∫

∂�

[–
√

λu2v1 +
√

λu1v2 –
√

λv2u1 +
√

λv1u2] dx = 0.

This is clearly a contradiction when s
f (s) and s

g(s) are strictly increasing and (u1, v1), (u2, v2)
are distinct. Thus (1.1) has a unique positive solution for λ > A1.
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