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Abstract
A type of non-Newtonian filtration equations with variable delay is considered. Using
a new approach which was established by Ge and Ren in (Nonlinear Anal. 58:477–488,
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1 Introduction
This paper is devoted to studying the periodic wave solutions problem for a type of non-
Newtonian filtration equation with variable delay as follows:

∂y
∂t

=
∂

∂x

(∣∣∣∣ ∂y
∂x

∣∣∣∣
p–2

∂y
∂x

)
+ f (y, yτ (t)) + g(t, x), t ≥ 0, x ∈R, (1.1)

where p > 1, f (y, z) = yq(1 – y)(z – a) + f (y), q > 0, a ∈ (0, 1) is a constant, f (y) ∈ C(R,R)
yτ (t)(t, x) = y(t – τ (t), x), τ (t) ∈ C(R,R).

Equation (1.1) is known as the evolutionary p-Laplacian equation. When f (y) = 0 and
g(t, x) = 0 in Eq. (1.1), Eq. (1.1) is changed into

∂y
∂t

=
∂

∂x

(∣∣∣∣ ∂y
∂x

∣∣∣∣
p–2

∂y
∂x

)
+ yq(1 – y)(z – a), t ≥ 0, x ∈ R. (1.2)

In 1967, Ladyzhenskaja [2] studied Eq. (1.2) for the description of incompressible fluids
and solvability in the large boundary value of them, which is the first work for Eq. (1.2). Af-
ter that, more related papers for non-Newtonian filtration equation and related nonlinear
equation appeared, see e.g. [3–17].

In recent years, the solitary wave and periodic wave solutions for the non-Newtonian
filtration equation have received great attention. Kong and Luo [18, 19] considered a non-
Newtonian filtration equation with nonlinear sources and the variable (constant) delay and
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obtained the existence of solitary wave and periodic wave solutions for the above equation
by using the extension of Mawhin’s continuation theorem. Then, by the same way, Lian et
al. [20] further studied a kind of singular non-Newtonian filtration equations.

As far as we know, the existence of periodic wave solutions for functional differential
equations was obtained by the use of an extension of coincidence degree theory (see [21],
Theorem 3.1). This paper aims to use a different method for obtaining the existence of
periodic wave solutions for Eq. (1.1). In [1], Ge and Ren extended Mawhin’s continuation
theorem to a more general theorem for studying the p-Laplacian differential equations.
Classic Mawhin’s continuation theorem is used for a class of differential equations with
weaker nonlinearity, see [22]. Hence, classic Mawhin’s continuation theorem is no longer
applicable for studying differential equations with stronger nonlinearity. In this paper, we
use the theorem belonging to [1] to obtain the existence of periodic wave solutions for
Eq. (1.1). To the best of our knowledge, there is no paper to use the theorem in [1] for
studying the non-Newtonian filtration equations. The main purpose is to recommend a
new method for the research of non-Newtonian filtration equations.

For Eq. (1.1), assume that there is a continuous function h(t) such that g(t, x) = h(x + ct),
where c ∈ R. Let y(t, x) = u(s) with s = x + ct be the solution of Eq. (1.1), then Eq. (1.1) is
changed into the following equation:

cu′(s) =
(
φp

(
u′(s)

))′ + uq(s)
(
1 – u(s)

)[
u
(
s – τ (s)

)
– a

]
+ f

(
u(s)

)
+ h(s), (1.3)

where φp(u) = |u|p–2u, p > 1, u ∈ R.

Definition 1.1 Let T > 0 be a constant. Suppose that u(s + T) = u(s) and u(s) is a solution
of Eq. (1.3) for s ∈R, then u(s) is called a periodic wave solution of Eq. (1.3). Generally, the
periodic solution of Eq. (1.3) is regarded as a periodic wave solution of Eq. (1.1).

The following sections are organized as follows: In Sect. 2, we give some useful lemmas
and definitions. In Sect. 3, main results are obtained for the existence of periodic wave
solutions to the non-Newtonian filtration equation (1.1). In Sect. 4, an example is given
to show the feasibility of our results. Finally, some conclusions and discussions are given
about this paper.

2 Preliminary
Definition 2.1 ([1]) Let X and Z be two Banach spaces with norms ‖ · ‖X , ‖ · ‖Z , respec-
tively. A continuous operator

M : X ∩ domM→Z

is called quasi-linear if
(i) ImM := M(X ∩ domM) is a closed subset of Z ;

(ii) KerM := {x ∈X ∩ dom M : Mx = 0} is linearly homeomorphic to R
n, n < ∞,

where domM is the domain of M.

Definition 2.2 ([1]) Let � ⊂ X be an open and bounded set with the origin θ ∈ �. Nλ :
�̄ → Z , λ ∈ [0, 1] is said to be M-compact in �̄ if there exist a subset Z1 of Z satisfying
dimZ1 = dim KerM and an operator R : �̄ × [0, 1] → X2 being continuous and compact
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such that, for λ ∈ [0, 1],
(a) (I – Q)Nλ(�̄) ⊂ ImM⊂ (I – Q)Z ,
(b) QNλx = 0, λ ∈ (0, 1) ⇔ QNx = 0, ∀x ∈ �,
(c) R(·, 0) ≡ 0 and R(·,λ)|�λ

= (I – P)|�λ
,

(d) M[Pu + R(·,λ)] = (I – Q)Nλ, λ ∈ [0, 1],
where X2 is a complement space of KerM in X , i.e., X = KerM⊕X2; P, Q are two pro-
jectors satisfying Im P = KerM, Im Q = Z1, N = N1, �λ = {x ∈ �̄ : Mx = Nλx}.

Lemma 2.1 ([1]) Let X and Z be two Banach spaces with norms ‖ ·‖X , ‖ ·‖Z , respectively.
Let � ⊂ X be an open and bounded nonempty set. Suppose that

M : X ∩ domM→Z

is quasi-linear and Nλ : �̄ →Z , λ ∈ [0, 1] is M-compact in �̄. In addition, if the following
conditions hold:

(A1) Mx �= Nλx, ∀(x,λ) ∈ ∂� × (0, 1);
(A2) QNx �= 0, ∀x ∈ KerM∩ ∂�;
(A3) deg{JQN ,� ∩ KerM, 0} �= 0, J : Im Q → KerM is a homeomorphism.

Then the abstract equation Mx = Nx has at least one solution in domM∩ �̄.

Lemma 2.2 ([23]) If f : R → R is continuously differentiable. Let a > 0 and p > 1 be two
constants. Then, for t ∈R, the following inequality holds:

∣∣f (t)
∣∣ ≤ (2a)– 1

p

(∫ t+a

t–a

∣∣u(s)
∣∣p ds

) 1
p

+ a(2a)– 1
p

(∫ t+a

t–a

∣∣u′(s)
∣∣p ds

) 1
p

.

3 Main results
Denote

CT =
{

x|x ∈ C(R,R), x(t + T) = x(t)
}

, C1
T =

{
x|x ∈ C1(R,R), x(t + T) = x(t)

}
.

Let X = C1
T with the norm ‖x‖ = max{|x|0, |x′|0}. Let Z = CT with the norm |x|0 =

max0≤t≤T |x(t)|. Denote the operators M, Nλ as follows:

M : domM∩X →Z , (Mu)(t) =
(
φp

(
u′))′(t), t ∈R, (3.1)

Nλ : Z →Z ,

(Nλu)(s) = cλu′(s) – λuq(s)
(
1 – u(s)

)[
u
(
s – τ (s)

)
– a

]
– λf

(
u(s)

)
– λh(s), s ∈R,λ ∈ [0, 1],

(3.2)

where domM = {u ∈ X : φp(u′) ∈ C1
T }. By (3.1) and (3.2), Eq. (1.1) is equivalent to the

operator equation Nx = Mx, where N1 = N . Then we have

KerM =
{

u ∈ domM∩ X : u(t) = ã, ã ∈R, t ∈R
}

,

ImM =
{

z ∈Z :
∫ T

0
z(s) ds = 0

}
.

Obviously, Ker M ∼= R, ImM is a closed set in Z , so we have the following lemma.
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Lemma 3.1 If the operator M is defined by (3.1), then M is a quasi-linear operator.
Let

P : X → KerM, (Pu)(s) = u(0), s ∈R,

Q : Z →Z/ ImM, (Qz)(t) =
1
T

∫ T

0
z(s) ds, t ∈R.

Now, we show that the operator Nλ is M-compact.

Lemma 3.2 If h, τ ∈ C(R,R) with h(s) = h(s + T) and τ (s) = τ (s + T), then Nλ is M-
compact.

Proof For convenience of proof, let

G(s, u) := cu′(s) – uq(s)
(
1 – u(s)

)[
u
(
s – τ (s)

)
– a

]
– f

(
u(s)

)
– h(s). (3.3)

Then (3.2) can be rewritten

(Nλu)(s) = λG(s, u).

Let Z1 = Im Q. For each bounded set � ⊂X �= ∅, define the operator R : �× [0, 1] → Ker P
by

R(u,λ)(s) =
∫ s

0
φp̃

[
au +

∫ t

0
λ
(
G(r, u) – (QG)(r)

)
dr

]
dt, s ∈ [0, T], (3.4)

where p̃ > 1, 1
p̃ + 1

p = 1, G is defined by (3.3), and au is a constant which depends on u. We
claim that au exists uniquely in (3.4). Using

∫ s

0
φp̃

[
au +

∫ t

0
λ
(
G(r, u) – (QG)(r)

)
dr

]
dt ∈ CT ,

we can choose au ∈R such that

∫ T

0
φp̃

[
au +

∫ t

0
λ
(
G(r, u) – (QG)(r)

)
dr

]
dt = 0. (3.5)

Let

F (ã) =
∫ T

0
φp̃

[
ã +

∫ t

0
λ
(
G(r, u) – (QG)(r)

)
dr

]
dt,

Â = sup
λ∈[0,1],t∈[0,T]

∫ t

0
λ
(
G(r, u) – (QG)(r)

)
dr,

Ǎ = inf
λ∈[0,1],t∈[0,T]

∫ t

0
λ
(
G(r, u) – (QG)(r)

)
dr.

By (3.5), we have F (Â) ≥ 0 and F (Ǎ) ≤ 0. Thus, F (ã) is a monotone increasing function
for ã, and there exists uniquely au ∈ [Â, Ǎ] such that (3.5) holds. Hence, R(u,λ)(s) is well
defined.
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Firstly, we show that R(u,λ) is completely continuous on � × [0, 1]. From the assump-
tions of Lemma 3.2, R(u,λ) is uniformly bounded on � × [0, 1]. Now we show that R(u,λ)
is equicontinuous on � × [0, 1]. Let each s1, s2 ∈ [0, T], ε > 0 be sufficiently small. There is
δ > 0, for |s1 – s2| < δ, we have

∣∣R(u,λ)(s1) – R(u,λ)(s2)
∣∣ =

∫ s1

0
φp̃

[
au +

∫ t

0
λ
(
G(r, u) – (QG)(r)

)
dr

]
dt

–
∫ s2

0
φp̃

[
au +

∫ t

0
λ
(
G(r, u) – (QG)(r)

)
dr

]
dt

=
∫ s2

s1

φp̃

[
au +

∫ t

0
λ
(
G(r, u) – (QG)(r)

)
dr

]
dt

< ε.

Hence, R(u,λ) is equicontinuous on � × [0, 1]. Using the Arzelà–Ascoli theorem, R(u,λ)
is completely continuous on � × [0, 1].

Next, we show that Nλ is M-compact by four steps, i.e., four conditions of Definition 2.2
are all satisfied.

Step 1. In view of Q2 = Q, then Q(I –Q)Nλ(�) = 0 and (I –Q)Nλ(�) ⊂ Ker Q = ImM. Fur-
thermore, ∀z ∈ ImM, then Qz = 0 and z = (I – Q)z. Hence, condition (a) of Definition 2.2
holds.

Step 2. ∀u ∈ �, if QNλ(u) = λ
T

∫ T
0 G(s, u) ds = 0, λ ∈ (0, 1), then 1

T
∫ T

0 G(s, u) ds = 0, i.e.,
QN(u) = 0. The inverse is true.

Step 3. If λ = 0, then au = 0. Thus, R(u, 0) = 0. Furthermore, ∀u ∈ �λ = {u ∈ �̄ : Mu =
Nλu}, we have

(
φp

(
u′))′ = λG(s, u) and Q

[
G(s, u)

]
= 0. (3.6)

Choose au = φp(u′(0)). It follows by (3.6) that

R(u,λ)(s) =
∫ s

0
φp̃

[
φp

(
u′(0)

)
+

∫ t

0
λ
(
G(r, u) – (QG)(r)

)
dr

]
dt

=
∫ s

0
φp̃

[
φp

(
u′(0)

)
+

∫ t

0

(
φp

(
u′(r)

))′ dr
]

dt

=
∫ s

0
u′(s) ds

= u(s) – u(0)

=
[
(I – P)u

]
(s).

Step 4. ∀u ∈ �, λ ∈ [0, 1],

M
[
Pu + R(u,λ)

]
(s)

=
[
φp

([
u(0) +

∫ s

0
φp̃

[
au +

∫ t

0
λ
(
G(r, u) – (QG)(r)

)
dr

]
dt

]′)]′

=
[
φp(φp̃

(
au +

∫ s

0
λ
(
G(r, u) – (QG)(r)

)
dr

)]′
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=
[

au +
∫ s

0
λ
(
G(r, u) – (QG)(r)

)
dr

]′

=
[
(I – Q)Nλu

]
(s).

The proof is completed. �

Remark 3.1 The proof of Lemma 3.2 is similar to the proof of [24]. For the convenience of
readers, we give a detailed proof of Lemma 3.2.

In this section, we need the following assumptions:
(H1) There exists a constant b > 0 such that

uf (u) ≤ –b|u|p, ∀u ∈R,

where p > 1 is defined by (1.1).
(H2) There exist constants p and q satisfying the following inequality:

p > 2q + 4,

where p > 1 and q > 0 are defined by (1.1).
(H3) If q is an even number, then there exists a constant D > 1 such that

f (u) < 0 for u > D

and

f (u) < 0 for u < –D.

If q is an odd number, then there exists a constant D > 1 such that

f (u) < 0 for u > D

and

f (u) > 0 for u < –D.

Theorem 3.1 Suppose that
∫ T

0 h(s) ds = 0, τ ′(s) < 1 for s ∈ [0, T], and assumptions (H1)–
(H3) hold. Then Eq. (1.1) has at least one T-periodic wave solution.

Proof We complete the proof by three steps.
Step 1. Let �1 = {u ∈ domM : Mu = Nλu,λ ∈ (0, 1)}. We claim that �1 is a bounded set.

In fact, ∀u ∈ �1, then Mu = Nλu, i.e.,

(
ϕp

(
u′))′(s) = cλu′(s) – λuq(s)

(
1 – u(s)

)[
u
(
s – τ (s)

)
– a

]
– λf

(
u(s)

)
– λh(s). (3.7)



Xu and Du Boundary Value Problems         (2021) 2021:16 Page 7 of 11

Multiply both sides of Eq. (3.7) by u(s) and integrate over [0, T], then

∣∣u′∣∣p
p = λ

∫ T

0
uq+1(s)

(
1 – u(s)

)[
u
(
s – τ (s)

)
– a

]
ds

+ λ

∫ T

0
f
(
u(s)

)
u(s) ds + λ

∫ T

0
h(s)u(s) ds.

(3.8)

From (3.8), Hölder’s inequality, assumptions (H1) and (H2), we have

∣∣u′∣∣p
p + λb|u|pp

≤ λ

∫ T

0

∣∣uq+1(s)u
(
s – τ (s)

)∣∣ds + λ

∫ T

0

∣∣uq+2(s)u
(
s – τ (s)

)∣∣ds

+ λa
∫ T

0

∣∣uq+2(s)
∣∣ds + λa

∫ T

0

∣∣uq+1(s)
∣∣ds + λ

∫ T

0

∣∣h(s)u(s)
∣∣ds

≤ λ

2

∫ T

0
|u|2(q+1)(s) ds + λ

∫ T

0

∣∣u(
s – τ (s)

)∣∣2 ds +
λ

2

∫ T

0
|u|2(q+2)(s) ds

+ λaT
p–q–2

p |u|q+2
p + λaT

p–q–1
p |u|q+1

p + λ|h|p̃|u|p

≤ λ

2
T

p–2q–2
p |u|2q+2

p +
λ

2
T

p–2q–4
p |u|2q+4

p + λ�T
p–2

p |u|2p

+ λaT
p–q–2

p |u|q+2
p + λaT

p–q–1
p |u|q+1

p + λ|h|p̃|u|p,

(3.9)

where � = maxt∈[0,T]
1

1–τ ′(μ(t)) , μ(t) is an inverse function of t – τ (t), 1
p̃ + 1

p = 1, p̃ > 1. By
(3.9) we have

∣∣u′∣∣p
p ≤ 1

2
T

p–2q–2
p |u|2q+2

p +
1
2

T
p–2q–4

p |u|2q+4
p + �T

p–2
p |u|2p

+ aT
p–q–2

p |u|q+2
p + aT

p–q–1
p |u|q+1

p + |h|p̃|u|p
(3.10)

and

|u|pp ≤ 1
2b

T
p–2q–2

p |u|2q+2
p +

1
2b

T
p–2q–4

p |u|2q+4
p +

1
b
�T

p–2
p |u|2p

+
a
b

T
p–q–2

p |u|q+2
p +

a
b

T
p–q–1

p |u|q+1
p +

1
b
|h|p̃|u|p.

(3.11)

If |u|p > 1, by (3.11) and assumption (H2), we have

|u|p–2q–4
p ≤ 1

2b
T

p–2q–2
p +

1
2b

T
p–2q–4

p +
1
b
�T

p–2
p

+
a
b

T
p–q–2

p +
a
b

T
p–q–1

p +
1
b
|h|p̃,

then there exists a constant M1 > 0 such that

|u|p ≤ M1. (3.12)
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Thus,

|u|p ≤ max{M1, 1} =: M̃1. (3.13)

On the other hand, if |u|p > 1, by (3.10) and (3.12) then there exists a constant M2 > 0 such
that

∣∣u′∣∣
p ≤ M2.

Thus,

∣∣u′∣∣
p ≤ max{M2, 1} =: M̃2. (3.14)

In Lemma 2.2, let t = 0, a = T > 0. If f (t) ∈ C1
T , then

∣∣f (t)
∣∣ ≤ T– 1

p

(∫ T

0

∣∣f (s)
∣∣p ds

) 1
p

+ T– 1
p̃

(∫ T

0

∣∣f ′(s)
∣∣p ds

) 1
p

. (3.15)

From (3.13)–(3.15), we have

∣∣u(s)
∣∣ ≤ T– 1

p M̃1 + T– 1
p̃ M̃2 := ρ1

and

|u|0 = max
s∈[0,T]

∣∣u(s)
∣∣ ≤ ρ1. (3.16)

By (3.7) we have

∣∣u′(s)
∣∣p–1 ≤ c

∣∣u′(s)
∣∣ + ρ

q
1 (1 + ρ1)[ρ1 + a] + fρ1 + |h|0, s ∈ [0, T], (3.17)

where fρ1 = max|u|≤ρ1 |f (u)|. If |u′(s)| > 1, by (3.17) we get

∣∣u′(s)
∣∣p–2 ≤ c + ρ

q
1 (1 + ρ1)[ρ1 + a] + fρ1 + |h|0, s ∈ [0, T]. (3.18)

In view of (3.18) and p > 2, there exists a positive constant L1 such that

∣∣u′(s)
∣∣ ≤ max{1, L1} := ρ2.

Thus,

∣∣u′∣∣
0 = max

s∈[0,T]

∣∣u′(s)
∣∣ ≤ ρ2. (3.19)

In view of (3.16) and (3.19), we have

‖u‖ < max{ρ1,ρ2} + 1 := ρ. (3.20)
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Step 2. Let �2 = {u ∈ KerM : QNu = 0}. We claim that �2 is a bounded set. In fact,
∀u ∈ �2, then u = e0, e0 ∈R. Then

∫ T

0

[
eq

0(1 – e0)[e0 – a] + f (e0)
]

ds = 0,

i.e.,

eq
0(1 – e0)[e0 – a] + f (e0) = 0. (3.21)

If q is even and |e0| > D, by assumption (H3) then

eq
0(1 – e0)[e0 – a] + f (e0) < 0

which is a contradiction to (3.21). Thus, |e0| ≤ D. If q is odd, by assumption (H3) we also
have |e0| ≤ D. Hence, �2 is a bounded set.

Step 3. Let � = {u ∈ X : ‖u‖ < ρ}, where ρ is defined by (3.20), then �1 ∪ �2 is a subset
of �. Based on the above proof, ∀(u,λ) ∈ ∂� × (0, 1), Mu �= Nλu holds. Due to the results
of Step 2, condition (A2) of Lemma 2.1 is also satisfied. We claim that condition (A3) of
Lemma 2.1 is satisfied. In fact, take the homotopy

H(u,μ) = μu + (1 – μ)JQNu, u ∈ �̄ ∩ KerM,μ ∈ [0, 1],

where J : Im Q → KerM is a homeomorphism with Je = e, e ∈ R. ∀u ∈ ∂� ∩ KerM, then
u = e1, |e1| = ρ > D, and

H(u,μ) = –e1μ + (1 – μ)
1
T

∫ T

0

[
–eq

1(1 – e1)(e1 – a) – f (e1)
]

ds

= –e1μ – (1 – μ)
[
eq

1(1 – e1)(e1 – a) + f (e1)
]
.

By using assumption (H1), we have H(u,μ) �= 0. And then, by the degree theory,

deg{JQN ,� ∩ Ker M, 0} = deg
{

H(·, 0),� ∩ KerM, 0
}

= deg
{

H(·, 1),� ∩ KerM, 0
}

= deg{–I,� ∩ KerM, 0} �= 0.

Applying Lemma 2.1, we reach the conclusion. �

4 Example
As an application of Theorem 3.1, we consider the following equation:

∂y
∂t

=
∂

∂x

(∣∣∣∣ ∂y
∂x

∣∣∣∣
p–2

∂y
∂x

)
+ yq(1 – y)(yτ (t) – a) + g(t, x), t ≥ 0, x ∈ R. (4.1)

Let g(t, x) = h(x + ct), y(t, x) = u(x + ct) = u(s), then (4.1) is transformed into the following
equation:

cu′(s) =
(
φp

(
u′(s)

))′ + uq(s)
(
1 – u(s)

)[
u
(
s – τ (s)

)
– a

]
+ f

(
u(s)

)
+ h(s).
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Let p = 8, q = 1, f (u) = –u9esin u, τ (s) = 1
2 cos s, h(s) = sin s. It is not difficult to verify that

assumptions (H1)–(H3) hold. Therefore, Theorem 3.1 guarantees the existence of at least
one periodic wave solution for Eq. (4.1).

5 Conclusion
In this article, we study non-Newtonian filtration equations with variable delay. By using
a generalization of Mawhin’s continuation theorem and some mathematic analysis meth-
ods, we obtain some existence results of periodic wave solutions for the non-Newtonian
filtration equation with variable delay. The novelty of the present paper is that it is the
first to discuss the existence of periodic wave solutions for the non-Newtonian filtration
equations with time-varying delay. Our results improve and extend some corresponding
results in the literature. However, many important questions about non-Newtonian filtra-
tion equations remain to be studied, such as exponential stability and asymptotic stability
problems, non-Newtonian filtration equations with impulse effects and stochastic effects,
etc. We hope to focus on the above issues in future studies.
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