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Abstract
Consider a double degenerate parabolic equation arising from the electrorheological
fluids theory and many other diffusion problems. Let vε be the viscous solution of the
equation. By showing that |∇vε| ∈ L∞(0, T ; Lp(x)loc (�)) and ∇vε → ∇v almost
everywhere, the existence of weak solutions is proved by the viscous solution
method. By imposing some restriction on the nonlinear damping terms, the stability
of weak solutions is established. The innovation lies in that the homogeneous
boundary value condition is substituted by the condition a(x)|x∈∂� = 0, where a(x) is
the diffusion coefficient. The difficulties come from the nonlinearity of |∇v|p(x)–2 as
well as the nonlinearity of |v|α(x).
MSC: 35K55; 35K92; 35K85; 35R35
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1 Introduction
The initial-boundary value problem of a doubly degenerate parabolic equation

vt = div
(
a(x)|v|α(x)|∇v|p(x)–2∇v

)
+ f

(
x, t, v, |∇v|), (x, t) ∈ QT = � × (0, T), (1.1)

v(x, 0) = v0(x), x ∈ �, (1.2)

v(x, t) = 0, (x, t) ∈ ∂� × (0, T), (1.3)

is considered, where p(x) > 1, α(x) and a(x) are nonnegative C(�) functions, f (x, t, v, |∇v|)
is a continuous function and is called the nonlinear damping term. This equation comes
from non-Newtonian fluid, the so-called electrorheological fluids, the heat conduction,
and many other diffusion problems.

What first caught our attention is the heat conduction equation with a damping term

vt = v�v – γ |∇v|2. (1.4)

The author of [5] showed that the uniqueness is not true. The author of [31] and [33]
generalized the results of [5] to a more general equation

vt = �v – g(x)|v|q–1|∇v|2, (1.5)
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where q ≥ 1, g(x) ≥ 0 and there is a point x0 ∈ � such that g(x0) > 0. Based on these facts,
one may conjecture that the heat conduction equation with a nonlinear damping term

vt = v�v + f
(
x, t, v, |∇v|) (1.6)

is ill-posed.
The second aspect that attracted our attention is the so-called electrorheological fluids

equation

vt = div
(|∇v|p(x)–2∇v

)
, (1.7)

which has been widely studied by many mathematicians, one can refer to [8, 9, 11–16] and
the references therein. A more complicated equation

vt = div
(
a(x, t, v)|∇v|p(x)–2∇v

)
(1.8)

was studied in [2, 3]. Though the existence of weak solutions to equation (1.8) has been
shown, the uniqueness result only for the case of |a(x, t, u) – a(x, t, v)| ≤ ω(|u – v|),

lim
ε→∞

∫ 1

ε

ds
ω(s)β

= ∞ (1.9)

has been proved, where 1 < β < p+

p+–1 . In other words, the general uniqueness problem of
equation (1.8) remains open till today.

Let a(x) satisfy

a(x) = 0, x ∈ ∂�, a(x) > 0, x ∈ �. (1.10)

Then equation (1.1) is degenerate on the boundary ∂�. If α(x) = 0, p(x) = p is a constant
and f (x, t, v, |∇v|) = 0, on the stability of weak solutions, that the degeneracy of a(x)|x∈∂�

may take place of the usual boundary value condition (1.3) was revealed in [20, 21]. More-
over, whether

vt = div
(
a(x)|v|α(x)|∇v|p(x)–2∇v

)
+

N∑

i=1

∂bi(v)
∂xi

(1.11)

or

vt = div
(
a(x)|∇v|p–2∇v

)
– b(x)|∇v|q, (1.12)

similar results have been obtained in [27] and [25] respectively. For the other related pa-
pers, one can refer to [19, 23, 24] etc.

For equation (1.1), compared with equation (1.7), there exists another diffusion coeffi-
cient a(x). Compared with equation (1.11), the convective term

∑N
i=1

∂bi(v)
∂xi

is replaced by a
nonlinear damping term f (x, t, v, |∇v|). Considering all these factors, compared the damp-
ing term f (x, t, v, |∇v|) with the degeneracy of a(x)|x∈∂�, the latter plays a leading role when
the uniqueness problem is considered. Maybe such a conclusion can be explained by the
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fact that equation (1.1) represents the model that the diffusion process is more dominant
than the damping phenomena. For example, for an epidemic model of diseases, it is im-
possible to know in advance that v = 0 on the boundary ∂�. Thus, imposing the boundary
value condition (1.3) seems unreasonable, while the condition a(x)|x∈∂� = 0 can be ex-
plained as some anthropogenic interferences are made to control the epidemic across the
border ∂�. In accord with this fact, in theory, we conjecture that under the condition
a(x)|x∈∂� = 0, one can deduce that v = 0 on the boundary ∂�. This conjecture was par-
tially proved in [22] several years ago, and we are not ready to discuss this conjecture in
this paper for the time being.

The main aim of this paper is to establish the well-posedness theory for equation (1.1).
To accomplish this aim, the nonlinearity of |v|α(x) and the nonlinearity of the damping
term f (x, t, v, |∇v|) are the main difficulties to overcome. The extinction, the positivity, the
large time behavior of the solutions and v = 0 on the boundary ∂�, all these important
contents remain to be studied in the future.

Let us give the definition of weak solution.

Definition 1.1 If v(x, t) satisfies

v ∈ L∞(QT ),
∂v
∂t

∈ W′(QT ), a(x)|v|α(x)|∇v|p(x) ∈ L1(QT ),

and for any function ϕ ∈ C1
0(QT ),

∫∫

QT

(
∂v
∂t

ϕ + a(x)|v|α(x)|∇v|p(x)–2∇v · ∇ϕ

)
dx dt =

∫∫

QT

f
(
x, t, v, |∇v|)ϕ dx dt (1.13)

and

lim
t→0

∫

�

v(x, t)φ(x) dx =
∫

�

v0(x)φ(x) dx (1.14)

for any φ(x) ∈ C∞
0 (�), then we say that v(x, t) is a weak solution of equation (1.1) with

initial value (1.2).

Here, the basic Banach space W(QT ) and its dual space W′(QT ) are defined by Antontsev
and Shmarev in [2]. In addition, let

p+ = max
x∈�

p(x), p– = min
x∈�

p(x),

and set q(x) = p(x)
p(x)–1 as usual. The main results in this paper are the following theorems.

Theorem 1.2 If a(x) ∈ C(�) satisfies (1.10), f (x, t, v, |∇v|) ≤ 0 when v < 0,

0 ≤ v0(x) ∈ L∞(�), a(x)|v0|α(x)|∇v0|p(x) ∈ L1(�), (1.15)

and
(i) when p– ≥ 2,

∣
∣f

(
x, t, v, |∇v|)∣∣ ≤ c

(
a(x)|v|) 2α(x)

p(x) |∇v|2, (1.16)
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(ii) when p– > 1,

∣∣f
(
x, t, v, |∇v|)∣∣ ≤ c

(
a(x)|v|) α(x)

p(x) |∇v|. (1.17)

Then equation (1.1) with initial value (1.2) has a nonnegative solution v(x, t).

Theorem 1.3 Let u(x, t) and v(x, t) be two solutions of equation (1.1) with the initial values
u0(x) and v0(x) respectively and with the same homogeneous boundary value condition

u(x, t) = v(x, t) = 0, (x, t) ∈ ∂� × (0, T). (1.18)

If α(x) ∈ C1
0(�), a(x) ∈ C(�) satisfy (1.10) and the nonlinear damping term satisfies

(i) when p– ≥ 2,

∣
∣f

(
x, t, u, |∇u|) – f

(
x, t, v, |∇v|)∣∣

≤ c|u – v|[(a(x)|v|) 2α(x)
p(x) |∇v|2 +

(
a(x)|u|) 2α(x)

p(x) |∇u|2],
(1.19)

(ii) when p– > 1,

∣∣f
(
x, t, u, |∇u|) – f

(
x, t, v, |∇v|)∣∣

≤ c|u – v|[(a(x)|v|) α(x)
p(x) |∇v| +

(
a(x)|u|) α(x)

p(x) |∇u|].
(1.20)

Then
∫

�

∣∣u(x, t) – v(x, t)
∣∣dx ≤ c

∫

�

∣∣u0(x) – v0(x)
∣∣dx, a.e. t ∈ [0, T). (1.21)

In particular, if α(x) ≡ 0, besides Theorem 1.3, we have the following theorem.

Theorem 1.4 Let u(x, t) and v(x, t) be two solutions of equation (1.1) with the initial val-
ues u0(x) and v0(x) respectively and with the same homogeneous boundary value condition
(1.18). If α(x) ≡ 0, p– ≥ 2, a(x) ∈ C(�) satisfy(1.10) and the nonlinear damping term sat-
isfies

∣
∣f

(
x, t, u, |∇u|) – f

(
x, t, v, |∇v|)∣∣ ≤ ca(x)

(|∇v|2 + |∇u|2), (1.22)

then
∫

�

∣∣u(x, t) – v(x, t)
∣∣2 dx ≤ c

∫

�

∣∣u0(x) – v0(x)
∣∣2 dx, a.e. t ∈ [0, T). (1.23)

Moreover, since the diffusion coefficient a(x) satisfies (1.10), we can obtain a stability
theorem without the boundary value condition (1.18).

Theorem 1.5 Let u(x, t) and v(x, t) be two solutions of equation (1.2) with the initial values
u0(x) and v0(x) respectively. If α(x) ∈ C1

0(�), a(x) satisfies

λ1–p+
∫

�\�λ

|∇a|p(x) dx ≤ c, (1.24)
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and the nonlinear damping term satisfies (1.16) and (1.19), then the stability of weak solu-
tions is true in the sense of (1.21).

Here and in what follows, λ > 0 is a small enough constant, and we define �λ = {x ∈ � :
a(x) > λ}.

Compared with Theorem 1.3, there is not boundary value condition (1.18) in Theo-
rem 1.4. Instead, condition (1.24) is imposed. Comparing with other related works [2, 3],
the most distinctive assumption in this paper is that α(x) ∈ C1

0(�). Since

∣∣uα(x) – vα(x)∣∣ ≤ c|u – v|α(x)

is always true, and in particular infx∈� α(x) = 0, but maxx∈� α(x) can be larger than p+

p+–1 .
This fact implies that when α(x) ∈ C1

0(�), uα(x) is beyond the restriction (1.9). So, The-
orem 1.3 and Theorem 1.4 have some essential improvements from the works [2, 3]. In
the next research, we will try to do some work when α(x) is not limited to C1

0(�). By the
way, from [4, 5] [33] and [31], in order to obtain the well-posedness of weak solutions to
equation (1.1), the damping term f (x, t, u,∇u) must satisfy some restrictions, for example,
condition (1.19) and condition (1.20) in our paper. A similar condition was first introduced
by Karlsen and Ohlberger in their paper [10], in which the uniqueness of weak solutions
to the equation

ut = ∇(
K(x, t)∇A(u)

)
+

N∑

i=1

∂bi(u, x, t)
∂xi

+ c(u, x, t)

is proved. Although, as one of the reviewers pointed out, condition (1.19) or condition
(1.20) is reasonable, are there other conditions to replace condition (1.19) or condition
(1.20)? This is also an interesting problem.

2 The proof of Theorem 1.2
In this section, we prove Theorem 1.2.

Let us consider an approximate problem

vεt – div
((

a(x) + ε
)(|vε|α(x) + ε

)|∇vε|p(x)–2∇vε

)
= f

(
x, t, vε , |∇vε|

)
, (x, t) ∈ QT , (2.1)

vε(x, t) = 0, (x, t) ∈ ∂� × (0, T), (2.2)

vε(x, 0) = vε0(x), x ∈ �, (2.3)

where vε0 ∈ C∞
0 (�), |vε0|L∞(�) ≤ |v0|L∞(�), a(x)|∇vε0|(x)p converges to a(x)|∇v0(x)|p in

L1(�) uniformly. Since f (x, t, vε , |∇vε|) ≤ 0 when vε < 0 and satisfies (1.16) or (1.17), the
above problem (2.1)–(2.3) has a unique nonnegative solution vε ∈ L∞(0, T ; W 1,p

loc (�)), and

‖vε‖L∞(QT ) ≤ c, (2.4)

one can refer to [3, 7, 18]for details.

Lemma 2.1 If uε ∈ L∞(0, T ; L2(�))∩W(QT ), ‖uεt‖W′(QT ) ≤ c, ‖∇(|uε|q–1uε)‖p,QT ≤ c, then
there is a subsequence of {uε} which is relatively compact in Ls(QT ) with s ∈ (1,∞). Here,
q ≥ 1.
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This lemma can be found in [17].

Proof of Theorem 1.2 At first, let us multiply (2.1) by vε . Since f (x, t, v, |∇v|) ≤ 0 when v < 0
and satisfies (1.16), by the Young inequality, we have:

(i) when p– ≥ 2, f (x, t, vε , |∇vε|) satisfies (1.16), we have

1
2

∫

�

v2
ε dx +

∫∫

QT

(
a(x) + ε

)(|vε|α(x) + ε
)|∇vε|p(x) dx dt

=
1
2

∫

�

v2
ε0 dx +

∫∫

QT

f (x, t, vε , |∇vε)|vε dx dt

≤ 1
2

∫

�

v2
ε0 dx + c

∫∫

QT

(
a(x)|v|) 2α(x)

p(x) |∇v|2 dx dt

≤ 1
2

∫

�

v2
ε0 dx +

∫∫

QT

[
εa(x)|vε|α(x)|∇vε|p(x) + c(ε)

]
dx dt

≤ c;

(2.5)

(ii) when p– > 1, f (x, t, vε , |∇vε|) satisfies (1.17), we have

1
2

∫

�

v2
ε dx +

∫∫

QT

(
a(x) + ε

)(|vε|α(x) + ε
)|∇vε|p(x) dx dt

=
1
2

∫

�

v2
ε0 dx +

∫∫

QT

f (x, t, vε , |∇vε)
∣∣∣
∣vε dx dt

≤ 1
2

∫

�

v2
ε0 dx + c

∫∫

QT

(
a(x)|v|) α(x)

p(x)

∣∣
∣∣∇v|dx dt

≤ 1
2

∫

�

v2
ε0 dx +

∫∫

QT

[
εa(x)|vε|α(x)|∇vε|p(x) + c(ε)

]
dx dt

≤ c.

(2.6)

Then

∫∫

QT

a(x)|vε|α(x)|∇vε|p(x) dx dt ≤
∫∫

QT

(
a(x) + ε

)(|vε|α(x) + ε
)|∇vε|p(x) dx dt ≤ c, (2.7)

which implies

∫∫

QT

a(x)
∣∣∇v

α(x)
p(x) +1
ε

∣∣p(x) dx dt ≤ c. (2.8)

Secondly, according to the definition of Banach space W(QT ) [2], C∞
0 (QT ) is dense in

W(QT ). Now, for any u ∈ C∞
0 (QT ), ‖u‖W (QT ) = 1, we have

〈vεt , u〉 = –
∫∫

QT

(
a(x) + ε

)(|vε|α(x) + ε
)|∇vε|p(x)–2∇vε · ∇u dx dt

+
∫∫

QT

f
(
x, t, vε , |∇vε|

)
u dx dt.

(2.9)
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According to condition (1.16) or (1.17), by the Young inequality, we easily deduce

∣
∣∣
∣

∫∫

QT

f
(
x, t, vε , |∇vε|

)
u dx dt

∣
∣∣
∣

≤ c
∫∫

QT

[
a(x)|vε||∇vε|p(x) + 1

]

≤ c.

(2.10)

(2.9)–(2.10) yield

∣∣〈vεt , u〉∣∣ ≤ c
[∫∫

QT

(
a(x) + ε

)(|vε|α(x) + ε
)|∇vε|p(x) dx dt

]

+ c
∫∫

QT

|∇u|p(x) dx dt + c

≤ c

(2.11)

and

‖vεt‖W′(QT ) ≤ c. (2.12)

Let λ > 0 be a small enough constant, set Dλ = {x ∈ � : dist(x, ∂�) > λ}, and let ϕ ∈ C∞
0 (�),

0 ≤ ϕ ≤ 1 satisfy

ϕ|D2λ
= 1, ϕ|�\Dλ

= 0.

Then

∣
∣〈(ϕvε)t , u

〉∣∣ =
∣
∣〈ϕvεt , u〉∣∣ ≤ ∣

∣〈vεt , u〉∣∣

and

∥
∥(

ϕ(x)v
α(x)
p(x) +1
ε

)
t

∥
∥

W′(QT ) ≤ ∥
∥v

α(x)
p(x) +1
εt

∥
∥

W′(QT ) ≤ c‖vεt‖W′(QT ) ≤ c, (2.13)

as well as

∫

�

∣
∣∇(

ϕv
α(x)
p(x) +1
ε

)∣∣p(x) dx dt ≤ c(λ)
(

1 +
∫

Dλ

∣
∣∇v

α(x)
p(x) +1
ε

∣
∣p(x) dx dt

)
≤ c(λ),

or equivalently,

∥
∥∇(

ϕv
α(x)
p(x) +1
ε

)∥∥
Ls(0,T ;Lp(x)(�)) ≤ c (2.14)

for any s ∈ (1,∞). By (2.13)–(2.14), ϕv
α(x)
p(x) +1
ε is relatively compact in Ls(QT ). Then

ϕv
α(x)
p(x) +1
ε → ϕv1 a.e. in QT . Due to the arbitrariness of λ, we know v

α(x)
p(x) +1
ε → v1 a.e. in

QT .
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By (2.4), v ∈ L∞(QT ), and

vε ⇀ ∗v, weakly star in L∞(QT ),

it must be

v1 = v
α(x)
p(x) +1.

Thus, vε → v a.e. in QT .
Moreover, since a(x) is positive in �, (2.8) yields

∇v
α(x)
p(x) +1
ε ⇀ ∇v

α(x)
p(x) +1 in L1(0, T ; Lp(x)

loc (�)
)
. (2.15)

Now, we want to show the local integral of ∇v. For any φ(x) ∈ C1
0(�), if we choose

(v
α(x)
p(x) +1
ε – v

α(x)
p(x) +1)φ as the test function, then

∫ T

0

∫

�

∂vε

∂t
(
v

α(x)
p(x) +1
ε – v

α(x)
p(x) +1)

φ dx dt

+
∫ T

0

∫

�

φ(x)
(
a(x) + ε

)(|vε|α(x) + ε
)|∇vε|p(x)–2∇vε∇

(
v

α(x)
p(x) +1
ε – v

α(x)
p(x) +1)dx dt

+
∫ T

0

∫

�

(
a(x) + ε

)(|vε|α(x) + ε
)|∇vε|p(x)–2∇vε

(
v

α(x)
p(x) +1
ε – v

α(x)
p(x) +1)∇φ dx dt

=
∫ T

0

∫

�

f (x, t, vε , |∇vε)
(
v

α(x)
p(x) +1
ε – v

α(x)
p(x) +1)

φ dx dt.

(2.16)

We have the following facts:

lim
ε→0

∫ T

0

∫

�

∂vε

∂t
(
v

α(x)
p(x) +1
ε – v

α(x)
p(x) +1)

φ dx dt =
〈
∂vε

∂t
,
(
v

α(x)
p(x) +1
ε – v

α(x)
p(x) +1)

φ

〉
= 0, (2.17)

lim
ε→0

∫ T

0

∫

�

f (x, t, vε , |∇vε)
(
v

α(x)
p +1

ε – v
α(x)
p(x) +1)

φ dx dt = 0 (2.18)

and

∣∣
∣∣

∫ T

0

∫

�

(
a(x) + ε

)(|vε|α(x) + ε
)|∇vε|p(x)–2∇vε

(
v

α(x)
p(x) +1
ε – v

α(x)
p(x) +1)∇φ dx dt

∣∣
∣∣

≤ ∥
∥(

a(x) + ε
)(|vε|α(x) + ε

)|∇vε|p(x)–2∇vε

∥
∥

L1(0,T ;L
p(x)

p(x)–1 (�))

· c
∥∥∇φ(v – vε)

∥∥
L∞(0,T ;Lp(x)(�)),

(2.19)

which goes to zero as ε → 0. By (2.17)–(2.18), we can deduce that

lim
ε→0

∫ T

0

∫

�

φ(x)
(
a(x) + ε

)(|vε|α(x) + ε
)|∇vε|p(x)–2∇vε∇

(
v

α(x)
p(x) +1
ε – v

α(x)
p(x) +1)dx dt

= 0,
(2.20)
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which implies that

lim
ε→0

∫ T

0

∫

�

φ(x)
(
a(x) + ε

)(|vε|α(x) + ε
)|α(x)|∇vε|p(x)–2∇vε∇v

α(x)
p(x) +1 dx dt

= lim
ε→0

∫ T

0

∫

�

φ(x)
(
a(x) + ε

)(|vε|α(x) + ε
)|∇vε|p(x)–2∇vε∇v

α(x)
p(x) +1
ε dx dt

≤ lim
ε→0

∫ T

0

∫

�

φ(x)
(
a(x) + ε

)(|vε|α(x) + ε
)|∇vε|p(x) dx dt

≤ c,

(2.21)

and we have

∫ T

0

∫

�

φ(x)a(x)|vε|α(x)|∇vε|p(x)∇vε∇v
α(x)
p(x) +1 dx dt

=
∫ T

0

∫

�

(
α(x)
p(x)

+ 1
)

φ(x)a(x)|vε|α(x)(1+ 1
p(x) )|∇vε|p(x)∇vε∇vdxdt

≤ c
∫ T

0

∫

�

φ(x)
(
a(x) + ε

)(|vε|α(x) + ε
)|α(x)|∇vε|p(x)–2∇vε∇v

α(x)
p(x) +1 dx dt

≤ c.

(2.22)

Since |vε|α(x)|∇vε|p(x)–2∇vε ∈ L1(0, T ; L
p(x)

p(x)–1
loc (�)), we can deduce the local integral of ∇v,

i.e.,

∇v ∈ L∞(
0, T ; Lp(x)

loc (�)
)
. (2.23)

For any large enough n, m, vn = vε|ε= 1
n

and vm = vε|ε= 1
m

are two viscous solutions. Then

∂(vn – vm)
∂t

= div

[(
a(x) +

1
n

)(
|vn|α(x) +

1
n

)
|∇vn|p(x)–2∇vn

–
(

a(x) +
1
m

)(
|vm|α(x) +

1
m

)
|∇vm|p(x)–2∇vm

]

+
[
f
(
x, t, vn, |∇vn|

)
– f

(
x, t, vm, |∇um|)].

(2.24)

Egoroff’s theorem yields, for fixed δ > 0, a closed set Eδ ⊂ QT such that the measure
μ(QT – Eδ) ≤ δ and vn ⇒ v uniformly on Eδ . By drawing the methods of [26–28], we can
extrapolate that

∫∫

Eδ

a(x)|v|α(x)|∇vn – ∇vm|p dx dt → 0, (2.25)

from which we can deduce ∇vn → ∇v a.e. in QT . Thus, we have

vε ⇀ ∗v in L∞(QT ),
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(
a(x) + ε

)(|vε|α + ε
)|∇vε|p(x)–2∇vε ⇀ a(x)|v|α(x)|∇v|p(x)–2∇u in Lp–(

0, T ; L
p(x)

p(x)–1 (�)
)
.

In the end, the initial value is true in the sense of (1.14) can be shown as that of [1]. Thus,
v is a weak solution of equation (1.1) in the sense of Definition 1.1. �

3 The global stability
For small η > 0, we define gη(x) to be an odd function, when s ≥ 0, gη(x) has the form

gη(s) =

⎧
⎨

⎩

1, s ≥ η,
s2

η2 e1– s2
η2 , 0 ≤ s ≤ η,

Gη(s) =
∫ s

0
gη(s) ds,

lim
η→0

gη(s) = sgn s, lim
η→0

sg ′
η(s) = 0, lim

η→0
Gη(s) = |s|.

Proceeding as in [28], we can prove the following lemma, we omit the details here.

Lemma 3.1 Let u ∈ W(QT ), ut ∈ W′(QT ). Then ∀ a.e. t1, t2 ∈ (0, T),

∫ t2

t1

∫

�

gη(u)ut dx dt =
[∫

�

[
Gη(u)(x, t2) – Gη(u)(x, t1)

]
dx

]
.

The following lemma is the basic characteristics of the variable exponent Sobolev spaces
[6, 12, 32].

Lemma 3.2
(i) The spaces (Lp(x)(�),‖ · ‖Lp(x)(�)), (W 1,p(x)(�),‖ · ‖W 1,p(x)(�)), and W 1,p(x)

0 (�) are
reflexive Banach spaces.

(ii) The p(x)-Hölder inequality. Let p(x) and q(x) be real functions with 1
p(x) + 1

q(x) = 1.
Then, for any u ∈ Lp(x)(�) and v ∈ Lq(x)(�), we have

∣∣
∣∣

∫

�

uv dx
∣∣
∣∣ ≤ 2‖u‖Lp(x)(�)‖v‖Lq(x)(�).

(iii) ‖u‖Lp(x)(�) and
∫
�

|u|p(x) dx satisfy

If ‖u‖Lp(x)(�) = 1, then
∫

�

|u|p(x) dx = 1.

If ‖u‖Lp(x)(�) > 1, then ‖u‖p–

Lp(x)(�) ≤
∫

�

|u|p(x) dx ≤ ‖u‖p+

Lp(x)(�).

If ‖u‖Lp(x)(�) < 1, then ‖u‖p+

Lp(x)(�) ≤
∫

�

|u|p(x) dx ≤ ‖u‖p–

Lp(x)(�).

Theorem 3.3 Let u(x, t) and v(x, t) be two solutions of equation (1.1) with the initial values
u0(x) and v0(x) respectively and with the same homogeneous boundary value condition
(1.18). If α(x) ∈ C1

0(�), the nonlinear damping term satisfies
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(A) p– ≥ 2,

∣
∣f

(
x, t, u, |∇u|) – f

(
x, t, u, |∇v|)∣∣

≤ cf1(x, t)|u – v|[|v| 2α(x)
p(x) |∇v|2 + |u| 2α(x)

p(x) |∇u|2],
(3.1)

(B) p– > 1,

∣∣f
(
x, t, u, |∇u|) – f

(
x, t, u, |∇v|)∣∣

≤ cf1(x, t)|u – v|[|v| α(x)
p(x) |∇v| + |u| 2α(x)

p(x) |∇u|],
(3.2)

and one of the following conditions is true:
(i)

a(x)–1f1(x, t) ≤ c, (3.3)

(ii) there is a constant r ≥ 2 + 2
p(x)–2 such that

∫∫

QT

a(x)1–rf1(x, t)r dx dt ≤ c, (3.4)

then

∫

�

∣
∣u(x, t) – v(x, t)

∣
∣dx ≤ c

∫

�

∣
∣u0(x) – v0(x)

∣
∣dx, a.e. t ∈ [0, T).

Proof We only give the proof of case (A). Case (B) can be proved in a similar way, we omit
the details.

Since u(x, t) and v(, t) satisfy the same homogeneous boundary value condition (1.18),
we can choose gη(u – v) as the test function. Then

∫ t

0

∫

�

∂(u – v)
∂t

gη(u – v) dx dt

+
∫ t

0

∫

�

a(x)|u|α(x)(|∇u|p(x)–2∇u – |∇v|p(x)–2∇v
)∇(u – v)g ′

η(u – v) dx dt

+
∫ t

0

∫

�

a(x)
(|u|α(x) – |v|α(x))|∇v|p(x)–2∇v∇(u – v)g ′

η(u – v) dx dt

=
∫ t

0

∫

�

[
f
(
x, t, u, |∇u|) – f

(
x, t, v, |∇v|)]gη(u – v) dx dt.

(3.5)

There are two facts much in evidence in (3.5). One is that, by Lemma 3.1, we have

lim
η→0

∫ t

0

∫

�

gη(u – v)
∂(u – v)

∂t
dx dt

=
∫

�

∣
∣u(x, t) – v(x, t)

∣
∣dx –

∫

�

∣
∣u0(x) – v0(x)

∣
∣dx.

(3.6)
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Another one is that, by the monotonicity of the operator |∇u|r–2∇u, we have
∫

�

a(x)|u|α(x)(|∇u|p(x)–2∇u – |∇v|p(x)–2∇v
)∇(u – v)g ′

η(u – v) dx ≥ 0. (3.7)

Let us discuss the other terms in (3.5). In the first place, α(x) ∈ C1
0(�), we set �α = {x ∈

� : α(x) > 0} and define

Dt =
{

x ∈ � : u(x, t) �= v(x, t)
}

,

D1t = �α ∩ Dt , D2t = (� \ �α) ∩ Dt .

Since (2.23) yields |∇u|p(x), |∇v|p(x) ∈ L1
loc(QT ), using the fact limη→0 g ′

η(s)s = 0 and the
Lebesgue dominated convergence theorem, we have

lim
η→0

∫ t

0

∫

�

a(x)
∣∣|u|α(x) – |v|α(x)∣∣|∇v|p(x)g ′

η(u – v) dx dt

= lim
η→0

∫ t

0

∫

D1t

a(x)
∣
∣|u|α(x) – |v|α(x)∣∣|∇v|p(x)g ′

η(u – v) dx dt

=
∫ t

0

∫

D1t

lim
η→0

a(x)α(x)|ξ |α(x)–1|u – v||∇v|p(x)g ′
η(u – v) dx dt

= 0,

(3.8)

and similarly

lim
η→0

∫ t

0

∫

�

a(x)
∣
∣|u|α(x) – |v|α(x)∣∣|∇u|pg ′

η(u – v) dx = 0. (3.9)

According to (3.8)–(3.9), we can obtain

lim
η→0

∣
∣∣
∣

∫ t

0

∫

�

a(x)
(|u|α(x) – |v|α(x))|∇v|p(x)–2∇v∇(u – v)g ′

η(u – v) dx dt
∣
∣∣
∣

≤ lim
η→0

∫ t

0

∫

D1t

a(x)
∣
∣|u|α(x) – |v|α(x)|∣∣|∇v|p(x)–1(|∇u| + |∇v|)g ′

η(u – v) dx dt

≤ c lim
η→0

∫ t

0

∫

D1t

a(x)
∣
∣|u|α(x) – |v|α(x)∣∣|∇v|p(x)–1∣∣∇u

∣
∣g ′

η(u – v) dx dt

+ lim
η→0

∫ t

0

∫

D1t

a(x)
∣
∣|u|α(x) – |v|α(x)|∣∣|∇v|p(x)g ′

η(u – v) dx dt

≤ c lim
η→0

(∫ t

0

∫

D1t

a(x)
∣∣|u|α(x) – |v|α(x)|∣∣|∇v|p(x)g ′

η(u – v) dx dt
) 1

q+

·
(∫ t

0

∫

D1t

a(x)
∣∣|u|α(x) – |v|α(x)∣∣|∇u|p(x)g ′

η(u – v) dx dt
) 1

p+

+ lim
η→0

∫ t

0

∫

D1t

a(x)
∣∣|∇v|p(x)∣∣|u|α(x) – |v|α(x)∣∣∣∣g ′

η(u – v) dx dt

= 0,

(3.10)

where p+ and q+ follow from (iii) of Lemma 3.2.
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In the second place, since the nonlinear damping term satisfies (3.1), using the Hölder
inequality, we have:

(i) By (3.3),

∣
∣∣∣lim
η→0

∫ t

0

∫

�

[
f
(
x, t, u, |∇u|) – f

(
x, t, v, |∇v|)]gη(u – v) dx dt

∣
∣∣∣

≤ c
∫ t

0

∫

�

a(x)
[|v| 2α(x)

p(x) |∇v|2 + |u| 2α(x)
p(x) |∇u|2]∣∣a(x)–1f1(x, t)

∣
∣|u – v|dx dt

≤ c
(∫ t

0

∫

�

a(x)
[|u|α(x)|∇u|p(x) + |v|α(x)|∇v|p(x)]dx dt

) 2
p21

·
(∫ t

0

∫

�

a(x)|u – v| p(x)
p(x)–2 dx dt

) 1
p22

≤ c
(∫ t

0

∫

�

|u – v| p(x)
p(x)–2 dx dt

) 1
p22

≤ c
(∫ t

0

∫

�

∣∣u(x, t) – v(x, t)
∣∣dx dt

) 1
p22

,

(3.11)

where p21 = maxx∈�
p(x)

2 or minx∈�
p(x)

2 according to (iii) of Lemma 3.2, p22 has a similar
sense.

(ii) Since r ≥ 2 + 2
p(x)–2 , there is p(x)

p(x)–2
(r–1)p(x)–2r

p(x) ≥ 1. By (3.4), there are two constants
l1 > 1, l2 > 1 such that

∣∣
∣∣lim
η→0

∫ t

0

∫

�

[
f
(
x, t, u, |∇u|) – f

(
x, t, v, |∇v|)]gη(u – v) dx dt

∣∣
∣∣

≤ c
∫ t

0

∫

�

[|v| 2α(x)
p(x) |∇v|2 + |u| 2α(x)

p(x) |∇u|2]∣∣f1(x, t)
∣∣|u – v|dx dt

≤
(∫ t

0

∫

�

a(x)
[|u|α(x)|∇u|p(x) + |v|α(x)|∇v|p(x)]dx dt

) 2
p21

·
(∫ t

0

∫

�

a(x)
∣∣a(x)–1f1(x, t)(u – v)

∣∣
p(x)

p(x)–2 dx dt
) 1

p22

≤ c
(∫ t

0

∫

�

a(x)
∣
∣a(x)–1f1(x, t)

∣
∣

p(x)
p(x)–2

(p(x)–2)r
p(x) dx dt

) 1
l1

·
(∫ t

0

∫

�

|u – v| p(x)
p(x)–2

(r–1)p(x)–2r
p(x) dx dt

) 1
l2

≤ c
(∫ t

0

∫

�

∣
∣u(x, t) – v(x, t)

∣
∣dx dt

) 1
l2

.

(3.12)

Now, let η → 0 in (3.5). According to (3.11)–(3.12), there is a constant l3 > 1 such that

∫

�

∣∣u(x, t) – v(x, t)
∣∣dx ≤

∫

�

∣∣u0(x) – v0(x)
∣∣dx + c

(∫ t

0

∫

�

∣∣u(x, t) – v(x, t)
∣∣dx dt

) 1
l3

.

By a generalized Gronwall inequality [26], we have the conclusion. �
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Proof of Theorem 1.3 If the nonlinear damping term satisfies (1.19)

∣∣f
(
x, t, u, |∇u|) – f

(
x, t, v, |∇v|)∣∣

≤ c
[(

a(x)|v|) 2α(x)
p(x) |∇v|2 +

(
a(x)|u|) 2α(x)

p(x) |∇u|2]|u – v|,

we easily show that there is a constant l > 1 such that

∣∣∣
∣lim
η→0

∫ t

0

∫

�

[
f
(
x, t, u, |∇u|) – f

(
x, t, v, |∇v|)]gη(u – v) dx dt

∣∣∣
∣

≤ c
(∫ t

0

∫

�

∣
∣u(x, t) – v(x, t)

∣
∣dx dt

) 1
l
.

(3.13)

Proceeding as in the proof of Theorem 3.3, we have the conclusion. If the nonlinear damp-
ing term satisfies (1.20), we can prove the conclusion in a similar way, and we do not repeat
the details here. �

Theorem 3.4 Let p– ≥ 2, u(x, t) and v(x, t) be two solutions of equation (1.1) with the ini-
tial values u0(x) and v0(x) respectively and with the same homogeneous boundary value
condition (1.18). If α(x) ≡ 0, the nonlinear damping term satisfies

∣∣f
(
x, t, u, |∇u|) – f

(
x, t, u, |∇v|)∣∣ ≤ cf1(x, t)

(|∇v|2 + |∇u|2) (3.14)

and condition (3.3) or (3.4) is true, then

∫

�

∣
∣u(x, t) – v(x, t)

∣
∣2 dx ≤ c

∫

�

∣
∣u0(x) – v0(x)

∣
∣2 dx, a.e. t ∈ [0, T).

Proof Since u(x, t) and v(, t) satisfy the same homogeneous boundary value condition
(1.18), we can choose (u – v) as the test function. Then

∫ t

0

∫

�

∂(u – v)
∂t

(u – v) dx dt

+
∫ t

0

∫

�

a(x)|u|α(x)(|∇u|p(x)–2∇u – |∇v|p(x)–2∇v
)∇(u – v) dx dt

=
∫ t

0

∫

�

[
f
(
x, t, u, |∇u|) – f

(
x, t, v, |∇v|)](u – v) dx dt.

(3.15)

By Lemma 3.1, we have

∫ t

0

∫

�

(u – v)
∂(u – v)

∂t
dx dt

=
1
2

∫

�

∣∣u(x, t) – v(x, t)
∣∣dx –

1
2

∫

�

∣∣u0(x) – v0(x)
∣∣dx

(3.16)

and
∫

�

a(x)
(|∇u|p(x)–2∇u – |∇v|p(x)–2∇v

)∇(u – v) dx ≥ 0. (3.17)
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At the same time, since the nonlinear damping term satisfies (3.14), using the Hölder
inequality, we have the following:

(i) By (3.3), there is a constant l > 1 such that

∣
∣∣
∣

∫ t

0

∫

�

[
f
(
x, t, u, |∇u|) – f

(
x, t, v, |∇v|)](u – v) dx dt

∣
∣∣
∣

≤ c
∫ t

0

∫

�

a(x)
(|∇v|2 + |∇u|2)∣∣a(x)–1f1(x, t)

∣
∣|u – v|dx dt

≤ c
(∫ t

0

∫

�

a(x)
(|∇u|p(x) + |∇v|p(x))dx dt

) 2
p21

·
(∫ t

0

∫

�

a(x)|u – v| p(x)
p(x)–2 dx dt

) 1
p22

≤ c
(∫ t

0

∫

�

|u – v| p(x)
p(x)–2 dx dt

) 1
p22

≤ c
(∫ t

0

∫

�

∣
∣u(x, t) – v(x, t)

∣
∣2 dx dt

) 1
l
,

(3.18)

where p21 = maxx∈�
p(x)

2 or minx∈�
p(x)

2 according to (iii) of Lemma 3.2, p22 has a similar
sense.

(ii) Since r ≥ 2 + 2
p(x)–2 , there is p(x)

p(x)–2
(r–1)p(x)–2r

p(x) ≥ 1. By (3.14), there are constants l1 > 1,
l2 > 1, and l3 > 1 such that

∣
∣∣
∣

∫ t

0

∫

�

[
f
(
x, t, u, |∇u|) – f

(
x, t, v, |∇v|)](u – v) dx dt

∣
∣∣
∣

≤ c
∫ t

0

∫

�

(|∇v|2 + |∇u|2)∣∣f1(x, t)
∣∣|u – v|dx dt

≤
(∫ t

0

∫

�

a(x)
(|∇u|p(x) + |∇v|p(x))dx dt

) 2
p21

·
(∫ t

0

∫

�

a(x)
∣
∣a(x)–1f1(x, t)(u – v)

∣
∣

p(x)
p(x)–2 dx dt

) 1
p22

≤ c
(∫ t

0

∫

�

a(x)
∣∣a(x)–1f1(x, t)

∣∣
p(x)

p(x)–2
(p(x)–2)r

p(x) dx dt
) 1

l1

·
(∫ t

0

∫

�

|u – v| p(x)
p(x)–2

(r–1)p(x)–2r
p(x) dx dt

) 1
l2

≤ c
(∫ t

0

∫

�

∣∣u(x, t) – v(x, t)
∣∣2 dx dt

) 1
l3

.

(3.19)

According to (3.18)–(3.19), there is a constant l4 > 1 such that

∫

�

∣∣u(x, t) – v(x, t)
∣∣2 dx ≤

∫

�

∣∣u0(x) – v0(x)
∣∣2 dx + c

(∫ t

0

∫

�

∣∣u(x, t) – v(x, t)
∣∣2 dx dt

) 1
l4

.

By a generalized Gronwall inequality [26], we have the conclusion. �
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Proof of Theorem 1.4 Since the nonlinear damping term satisfies

∣
∣f

(
x, t, u, |∇u|) – f

(
x, t, v, |∇v|)∣∣

≤ ca(x)
(|∇v|2 + |∇u|2),

proceeding as in the proof of Theorem 3.4, we have the conclusion. �

4 The global stability if
∫
� a(x)1–p(x) dx < ∞

Recalling that, by a weak characteristic function χ (x) of �, χ (x) ∈ C(�) and

χ (x) = 0, x ∈ ∂�, χ (x) > 0, x ∈ �, (4.1)

we can set another weak characteristic function as

χλ(x) =

⎧
⎨

⎩
1, χ (x) ≥ λ,
χ (x)
λ

, χ (x) ≤ λ.
(4.2)

In this section, we explore the stability of weak solutions by the weak characteristic func-
tion method [29, 30].

Theorem 4.1 Suppose that u(x, t) and v(x, t) are two solutions of equation (1.2) with the
initial values u0(x), v0(x) respectively. If there is a weak characteristic function χ (x) ∈ C1(�)
satisfying

1
λ

(∫

�\�λ

a(x)|∇χ |p(x) dx
) 1

p+

< ∞, (4.3)

α(x) ∈ C1
0(�), the nonlinear damping term satisfies (3.1) and one of (3.3) (3.4), then

∫

�

∣∣u(x, t) – v(x, t)
∣∣dx ≤ c

∫

�

∣∣u0(x) – v0(x)
∣∣dx, a.e. t ∈ [0, T).

Proof Since α(x) ∈ C1
0(�), as before we set �α = {x ∈ � : α(x) > 0} and

D1t = �α ∩ {
x ∈ � : u(x, t) �= v(x, t)

}
, D2t = (� \ �α) ∩ {

x ∈ � : u(x, t) �= v(x, t)
}

,

as well as

Dt =
{

x ∈ � : u(x, t) �= v(x, t)
}

.
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By choosing gη(u – v)φλ(x) as a test function, since

∫∫

Qt

a(x)χλ(x)
[|u|α(x)|∇u|p(x)–2∇u – |v|α(x)|∇v|p(x)–2∇v

]∇(u – v)g ′
η(u – v) dx dt

=
∫ t

0

∫

Dt

a(x)χλ(x)
[|u|α(x)|∇u|p(x)–2∇u – |v|α(x)|∇v|p(x)–2∇v

]∇(u – v)g ′
η(u – v) dx dt

=
∫ t

0

∫

D1t

a(x)χλ(x)
[|u|α(x)|∇u|p(x)–2∇u – |v|α(x)|∇v|p(x)–2∇v

]∇(u – v)g ′
η(u – v) dx dt

+
∫ t

0

∫

D2t

a(x)χλ(x)
[|∇u|p(x)–2∇u – |∇v|p(x)–2∇v

]∇(u – v)g ′
η(u – v) dx dt,

we have

∫ t

0

∫

�

∂(u – v)
∂t

χλ(x)gη(u – v) dx dt

+
∫ t

0

∫

D1t

a(x)χλ(x)|u|α(x)(|∇u|p(x)–2∇u – |∇v|p(x)–2∇v
)∇(u – v)g ′

η(u – v) dx dt

+
∫ t

0

∫

D1t

a(x)χλ(x)
(|u|α(x) – |v|α(x))|∇v|p(x)–2∇v∇(u – v)g ′

η(u – v) dx dt

+
∫ t

0

∫

D2t

a(x)χλ(x)
[|∇u|p(x)–2∇u – |∇v|p(x)–2∇v

]∇(u – v)g ′
η(u – v) dx dt

+
∫ t

0

∫

D1t

a(x)|u|α(x)(|∇u|p(x)–2∇u – |∇v|p(x)–2∇v
)∇χλgη(u – v) dx dt (4.4)

+
∫ t

0

∫

D1t

a(x)
(|u|α(x) – |v|α(x))|∇v|p(x)–2∇v∇χλgη(u – v) dx dt

+
∫ t

0

∫

D2t

a(x)
(|∇u|p(x)–2∇u – |∇v|p(x)–2∇v

)∇χλ(x)gη(u – v) dx dt

=
∫ t

0

∫

�

[
f
(
x, t, u, |∇u|) – f

(
x, t, v, |∇v|)]χλ(x)gη

(
(u – v)

)
dx dt

≤
∫ t

0

∫

D1t

f1(x, t)|u – v|[|v| 2α(x)
p(x) |∇v|2 + |u| 2α(x)

p(x) |∇u|2]dx dt.

As usual, we now analyze every term in (4.4). In the first place, we have

lim
λ→0

∫ t

0

∫

�

χλ

∂Gη(u – v)
∂t

dx dt

=
∫

�

∣∣u(x, t) – v(x, t)
∣∣dx –

∫

�

∣∣u0(x) – v0(x)
∣∣dx

(4.5)

and

∫ t

0

∫

D1t

χλ(x)a(x)|u|α(x)(|∇u|p(x)–2∇u – |∇v|p(x)–2∇v
)∇(u – v)g ′

η(u – v) dx dt ≥ 0, (4.6)

∫ t

0

∫

D2t

χλ(x)a(x)
(|∇u|p(x)–2∇u – |∇v|p(x)–2∇v

)∇(u – v)g ′
η(u – v) dx ≥ 0. (4.7)
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In the second place, since |∇u|p(x), |∇v|p(x) ∈ L1
loc(QT ), using the fact limη→0 g ′

η(s)s = 0 and
the Lebesgue dominated convergence theorem, we have

lim
η→0

lim
λ→0

∫ t

0

∫

D1t

χλ(x)a(x)
∣∣|u|α(x) – |v|α(x)∣∣|∇u|p(x)g ′

η(u – v) dx = 0, (4.8)

lim
η→0

lim
λ→0

∫ t

0

∫

D1t

χλ(x)a(x)
∣∣|u|α(x) – |v|α(x)∣∣|∇v|p(x)g ′

η(u – v) dx = 0, (4.9)

thus

lim
η→0

lim
λ→0

∣
∣∣
∣

∫

D1t

χλ(x)a(x)
(|u|α(x) – |v|α(x))|∇v|p(x)–2∇v∇(u – v)g ′

η(u – v) dx dt
∣
∣∣
∣

= lim
η→0

∣
∣∣∣

∫ t

0

∫

D1t

a(x)
(|u|α(x) – |v|α(x))|∇v|p(x)–2∇v∇(u – v)g ′

η(u – v) dx dt
∣
∣∣∣

≤ lim
η→0

∫ t

0

∫

D1t

a(x)
∣∣|u|α(x) – |v|α(x)|∣∣|∇v|p(x)–1(|∇u| + |∇v|)g ′

η(u – v) dx dt

≤ c lim
η→0

∫ t

0

∫

D1t

a(x)
∣
∣|u|α(x) – |v|α(x)∣∣|∇v|p(x)–1|∇u|g ′

η(u – v) dx dt

+
∫ t

0

∫

D1t

a(x)
∣
∣|u|α(x) – |v|α(x)|∣∣|∇v|p(x)g ′

η(u – v) dx dt

≤ c lim
η→0

∫ t

0

(∫

D1t

a(x)
∣
∣|u|α(x) – |v|α(x)|∣∣|∇v|p(x)g ′

η(u – v) dx
) 1

q1

·
(∫

D1t

a(x)
∣∣|u|α(x) – |v|α(x)∣∣|∇u|p(x)g ′

η(u – v) dx
) 1

p1
dt

+ lim
η→0

∫ t

0

∫

D1t

a(x)
∣∣|∇v|p(x)∣∣|u|α(x) – |v|α(x)∣∣∣∣g ′

η(u – v) dx dt

= 0.

(4.10)

Here, p1 is p+ or p– according to (iii) of Lemma 3.2, q1 is q+ or q–.
In the third place, we denote Dλ = {x ∈ � : χ (x) > λ}. If we choose λ small enough, then

for �α = {x ∈ � : α(x) > 0},

�α ⊂ Dλ, � \ Dλ ⊂ � \ �α ,

there is a constant cα such that φ(x) > cα provided x ∈ �α . According to the definition of
the weak characteristic function χ (x),

∇χλ(x) = 0, x ∈ �α .

If we define that

D3t =
{

(x, t) ∈ QT : u(x, t) �= v(x, t), x ∈ Dλ

}
,

D4t = (� \ Dλ) ∩ {
x ∈ � : u(x, t) �= v(x, t)

}
,
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then

∫ t

0

∫

D1t

a(x)|u|α(x)(|∇u|p(x)–2∇u – |∇v|p(x)–2∇v
)∇χλ(u – v)g ′

η(u – v) dx dt

= 0,
(4.11)

and

∫ t

0

∫

D1t

a(x)
(|u|α(x) – |v|α(x))|∇v|p(x)–2∇v∇χλ(u – v)g ′

η(u – v) dx dt

= 0.
(4.12)

In the fourth place, since

∫ t

0

∫

Dλ

a(x)|∇u|p(x) dx dt ≤ c,
∫ t

0

∫

Dλ

a(x)|∇v|p(x) dx dt ≤ c,

by (4.3),

∣
∣∣
∣

∫ t

0

∫

D2t

a(x)
(|∇u|p(x)–2∇u – |∇v|p(x)–2)∇v∇χλgη(u – v) dx dt

∣
∣∣
∣

=
∣
∣∣
∣

∫ t

0

∫

D2t∩D3t

a(x)
(|∇u|p–2∇u – |∇v|p–2∇v

)∇χλgη(u – v) dx dt
∣
∣∣
∣

+
∣
∣∣
∣

∫ t

0

∫

D4t

a(x)
(|∇u|p–2∇u – |∇v|p–2∇v

)∇χλgη(u – v) dx dt
∣
∣∣
∣

=
∣
∣∣
∣

∫ t

0

∫

D4t

a(x)
(|∇u|p–2∇u – |∇v|p–2∇v

)∇χλgη(u – v) dx dt
∣
∣∣
∣

≤ 1
λ

∫

�\Dλ

a(x)
(|∇u|p(x)–2∇u – |∇v|p(x)–2∇v

)|∇χ |dx

≤
∫ t

0

[(∫

�\Dλ

a(x)
(|∇u|p(x) + |∇v|p(x))dx

) 1
q+

· 1
λ

(∫

�\Dλ

a(x)|∇χ |p(x) dx
) 1

p+

dt

→ 0

(4.13)

as λ → 0. Here, we have used the fact

∫

�\Dλ

a(x)|∇χ |p(x) dx ≤
∫

�\�λ

a(x)|∇χ |p(x) dx.

At last, for the nonlinear damping term satisfying (3.1), we can deal with it as in Theo-
rem 3.3, we omit the details here.

Letting η → 0 in (4.4), let λ → 0. The Gronwall inequality yields the conclusion. �
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Proof of Theorem 1.5 Only if we choose χ (x) = a(x), then

1
λ

(∫

�\Dλ

a(x)|∇χ |p(x) dx
) 1

p+

≤
(

λ1–p+
∫

�\�λ

|∇χ |p(x) dx
) 1

p+

≤ c,

and the conclusion follows clearly. �
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