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1 Introduction
In this article, we are interested in establishing the existence of multiple solutions to the
following Kirchhof-type systems in Orlicz–Sobolev spaces

⎧
⎨

⎩

–Mi(
∫

�
�i(|∇ui|) dx)( div(αi(|∇ui|)∇ui)) = λFui (x, u1, . . . , un) in �,

ui = 0 on ∂�,
(1.1)

for 1 ≤ i ≤ n, where � is a bounded domain in R
N (N ≥ 3), with smooth boundary ∂�

and λ is a positive parameter, F : � × R
n → R is a measurable function with respect to

x ∈ � for every (t1, . . . , tn) ∈ R
n and is C1 with respect to (t1, t2, . . . , tn) ∈ R

n for a.e. x ∈ �;
Fti denotes the partial derivative of F with respect to ti. Also Mi : R → R (i = 1, 2, . . . , n),
are continuous and increasing functions satisfying the following boundedness condition:

(M) There exist positive numbers m0
i , M0

i such that

m0
i ≤ Mi(t) ≤ M0

i , for all t ≥ 0 (i = 1, 2, . . . , n).

Throughout this article we assume that for i = 1, . . . , n, the functions αi : (0, +∞) → R are
such that the mappings ϕi : R →R defined by

ϕi(t) =

⎧
⎨

⎩

αi(|t|)t for t �= 0,

0 for t = 0,
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are odd, strictly increasing homeomorphisms from R onto R. For the functions ϕi above,
let us define �i(t) =

∫ t
0 ϕi(s) ds for all t ∈R.

Notice that if i = 1, then problem (1.1) becomes
⎧
⎨

⎩

–M(
∫

�
�(|∇u|) dx)( div(α(|∇u|)∇u)) = λf (x, u) in �,

u = 0 on ∂�.
(1.2)

It should be mentioned that if ϕ(t) = p|t|p–2t for all t ∈R, p > 1 then problem (1.2) becomes
the well-known p-Kirchhoff-type equation

⎧
⎨

⎩

–M(
∫

�
|∇u|p dx)�pu = λf (x, u) in �,

u = 0 on ∂�.
(1.3)

Problem (1.3) is related to the stationary problem

ρ
∂2u
∂t2 –

(
ρ0

h
+

E
2L

∫ L

0

∣
∣
∣
∣
∂u
∂x

∣
∣
∣
∣

2

dx
)

∂2u
∂x2 = 0,

where ρ , ρ0, h, E, L are constants, for 0 < x < L, t ≥ 0, and where u = u(x, t) is the lat-
eral displacement at the space coordinate x and time t, E the Young modulus, ρ the mass
density, h the cross-section area, L the length, and ρ0 the initial axial tension, proposed
by Kirchhoff [17] as an extension of the classical D’Alembert’s wave equation for free vi-
brations of elastic strings. This is an example of a nonlinear problem. One can refer to
[3–5, 9, 13, 14, 20–23, 26–28, 30–32] for more relevant problems and techniques.

Now, we recall some basic facts about Orlicz and Orlicz–Sobolev spaces (see [2, 29] and
the references therein). Let ϕi and �i be as introduced at the beginning of the paper. Set

�∗
i (t) =

∫ t

0
ϕ–1

i (s) ds, for all t ∈ R.

We see that �i, for 1 ≤ i ≤ n, are Young functions, that is, �i(0) = 0, �i are convex, and
limt→∞ �i(t) = +∞.

Also, since �i(t) = 0 if and only if t = 0,

lim
t→0

�i(t)
t

= 0 and lim
t→∞

�i(t)
t

= +∞,

then �i are called N-functions. The functions �∗
i , for 1 ≤ i ≤ n are called the complemen-

tary functions of �i and they satisfy

�∗
i (t) = sup

{
st – �i(s); s ≥ 0

}
, for all t ≥ 0.

We observe that �∗
i are also N-functions and the following Young’s inequality holds:

st ≤ �i(s) + �∗
i (t), for all s, t ≥ 0.

We define the numbers

(pi)0 := inf
t>0

tϕ(t)
�(t)

, and (pi)0 := sup
t>0

tϕ(t)
�(t)

.
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Throughout this paper, we assume the following condition:

N < (pi)0 ≤ tϕi(t)
�i(t)

≤ (pi)0 < ∞, for all t > 0. (1.4)

The Orlicz spaces L�i (�), for 1 ≤ i ≤ n, defined by the N-functions �i are the spaces of
measurable functions u : � →R such that

‖u‖L�i
:= sup

{∣
∣
∣
∣

∫

�

u(x)v(x) dx
∣
∣
∣
∣ :

∫

�

�∗
i
(∣
∣v(x)

∣
∣
)

dx ≤ 1
}

< ∞.

Then (L�i (�),‖ · ‖L�i
) are Banach spaces whose norms are equivalent to the Luxemburg

norm

‖u‖�i := inf

{

k > 0;
∫

�

�i

(
u(x)

k

)

dx ≤ 1
}

.

For Orlicz spaces, the Hölder’s inequality takes the form

∫

�

uv dx ≤ 2‖u‖L�i
‖v‖L�∗

i
for all u ∈ L�i (�) and v ∈ L�∗

i
(�), 1 ≤ i ≤ n.

The Orlicz–Sobolev spaces W 1,�i (�), 1 ≤ i ≤ n are the spaces defined by

W 1,�i (�) =
{

u ∈ L�i (�),
∂u
∂xj

∈ L�i (�), j = 1, . . . , N
}

.

These are Banach spaces with respect to the norms:

‖u‖1,�i := ‖u‖�i +
∥
∥|∇u|∥∥

�i
, 1 ≤ i ≤ n.

Now, we introduce the Orlicz–Sobolev spaces W 1,�i
0 (�), for 1 ≤ i ≤ n, as the closure of

C∞
0 (�) in W 1,�i (�) which can be renormed by equivalent norms:

‖u‖i :=
∥
∥|∇u|∥∥

�i
.

The relation (1.4) implies that �i and �∗
i , for 1 ≤ i ≤ n, both satisfy the �2-condition

[1, 12], i.e.,

�i(2t) ≤ k�i(t) for all t ≥ 0,

where k is a positive constant. Furthermore, we assume that �i satisfy in the following
conditions:

For each x ∈ �̄, the functions t → �i(x,
√

t) are convex for all t ∈ [0,∞). (1.5)

Condition �2 for �i assures that for each i ∈ {1, . . . , n} the Orlicz spaces L�i (�) are sep-
arable. Also the �2 condition and (1.5) assure that L�i (�) are uniformly convex spaces,
and thus reflexive Banach spaces (see [25, Proposition 2.2]), implying that Orlicz–Sobolev
spaces W 1,�i

0 (�), i ∈ {1, . . . , n} are reflexive Banach spaces also [16].
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We define the space X :=
∏n

i=1 W 1,�i
0 (�) for problem (1.1) which is a reflexive Banach

space with respect to the norm

‖u‖ =
n∑

i=1

‖ui‖i, u = (u1, . . . , un) ∈ X.

Remark 1.1 In [12] we see that the Orlicz–Sobolev spaces W 1,�i
0 (�), i = 1, . . . , n, are con-

tinuously embedded in W 1,(pi)0
0 (�). On the other hand, since we assume that (pi)0 > N , we

conclude that W 1,(pi)0
0 (�) are compactly embedded in C0(�̄), see [19]. Thus, we have that

W 1,�i
0 (�) are compactly embedded in C0(�̄).

So, X ↪→ C0(�̄) × · · · × C0(�̄) is compact. We set a constant C > 0 such that

C := max

{

sup
ui∈W 1,�i

0 \{0}

maxx∈�̄ |ui(x)|(pi)0

‖ui‖(pi)0

i

: for 1 ≤ i ≤ n
}

< +∞. (1.6)

Proposition 1.1 ([24, Lemma 1]) Let u ∈ W 1,�i
0 (�), then the following relations hold:

(I) ‖u‖(pi)0
i ≤ ∫

�
�i(|∇u(x)|) dx ≤ ‖u‖(pi)0

i if ‖u‖i > 1, i = 1, . . . , n,
(II) ‖u‖(pi)0

i ≤ ∫

�
�i(|∇u(x)|) dx ≤ ‖u‖(pi)0

i if ‖u‖i < 1, i = 1, . . . , n.

Proposition 1.2 ([21, Lemma 2.1]) Let u ∈ W 1,�i
0 (�) and

∫

�

�i
(∣
∣∇u(x)

∣
∣
)

dx ≤ r

for some 0 < r < 1. Then one has ‖u‖i < 1.

Proposition 1.3 ([7, Remark 2.1]) Let u ∈ W 1,�i
0 (�) be such that ‖u‖i = 1. Then

∫

�

�i
(∣
∣∇u(x)

∣
∣
)

dx = 1.

Our aim is to prove the existence and multiplicity solutions for problem (1.1); so we
study problem (1.1) by using the results as follows.

First, we recall the following three critical points theorem, obtained by G. Bonanno and
S.A. Marano in [8].

Theorem 1.1 Let X be a reflexive real Banach space, J : X → R be a sequentially weakly
lower semicontinuous and continuously Gâteaux differentiable functional that is bounded
on bounded subsets of X and whose Gâteaux derivative admits a continuous inverse on
X∗, and let I : X → R be a continuously Gâteaux differentiable functional whose Gâteaux
derivative is compact and satisfies J(0) = I(0) = 0. Assume that there exist r > 0 and v̄ ∈ X,
with r < J(v̄) such that:

(a1)
supJ–1(–∞,r] I(u)

r < I(v̄)
J(v̄) ;

(a2) for each λ ∈ �r := ] J(v̄)
I(v̄) , r

supJ–1(–∞,r] I(u) [ the functional J – λI is coercive.
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Then, for each compact interval [α,β] ⊆ �r , there exists ρ > 0 with the following property:
for every λ ∈ [α,β], the equation

J ′(u) – λI ′(u) = 0

has at least three solutions in X whose norms are less than ρ .

Here, we recall a multiple critical points theorem of Bonanno et al. [6].

Theorem 1.2 Let X be a reflexive real Banach space, let J , I : X → R be two Gâteaux dif-
ferentiable functionals such that J is strongly continuous, sequentially weakly lower semi-
continuous and coercive, and I is sequentially weakly upper semicontinuous. For every
r > infX J , let

ϕ(r) := inf
u∈J–1(–∞,r)

supv∈J–1(–∞,r) I(v) – I(u)
r – J(u)

,

γ := lim inf
r→+∞ ϕ(r), δ := lim inf

r→(infX J)+
ϕ(r).

Then the following properties hold:
(a) If γ < +∞, then for each λ ∈ ]0, 1

γ
[, either

(a1) hλ := J – λI possesses a global minimum, or
(a2) there is a sequence {un} of critical points (local minima) of hλ such that

lim
n→+∞ J(un) = +∞;

(b) If δ < +∞, then for each λ ∈ ]0, 1
δ
[, either

(b1) there is a global minimum of J that is a local minimum of hλ, or
(b2) there is a sequence {un} of pairwise distinct critical points (local minima) of hλ

that weakly converges to a global minimum of J with

lim
n→+∞ J(un) = inf

u∈X
J(u).

2 Main results
Definition 2.1 We say that u = (u1, u2, . . . , un) is a weak solution to the system (1.1) if
u = (u1, u2, . . . , un) ∈ X and

n∑

i=1

Mi

(∫

�

�i
(∣
∣∇ui(x)

∣
∣
)

dx
)∫

�

αi
(∣
∣∇ui(x)

∣
∣
)∇ui(x)∇vi(x) dx

– λ

∫

�

n∑

i=1

Fui

(
x, u1(x), . . . , un(x)

)
vi(x) dx = 0,

for every v = (v1, v2, . . . , vn) ∈ X.
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Set p := max{(pi)0 : i = 1, . . . , n}, m0 := min{m0
i : i = 1, . . . , n} and m1 := max{M0

i : i =
1, . . . , n}. For all σ > 0, we define the set

Q(σ ) :=

{

(t1, . . . , tn) ∈R
n :

n∑

i=1

|ti| ≤ σ

}

.

We need the following proposition in the proof of the main results.

Proposition 2.1 Let T : X → X∗ be the operator defined by

T(u1, . . . , un)(v1, . . . , vn) =
n∑

i=1

Mi

(∫

�

�i
(∣
∣∇ui(x)

∣
∣
)

dx
)

×
∫

�

αi
(∣
∣∇ui(x)

∣
∣
)∇ui(x)∇vi(x) dx,

for every u = (u1, . . . , un), v = (v1, . . . , vn) ∈ X. Then T admits a continuous inverse on X∗,
where X∗ denotes the dual of X.

Proof By applying the Minty–Browder theorem [33, Theorem 26.A(d)], it is sufficient to
verify that T is coercive, hemicontinuous, and uniformly monotone. Since

(pi)0 ≤ tϕi(t)
�i(t)

, for all t > 0,

by Proposition 1.1, for each u ∈ X with ‖ui‖i > 1, we have

T(u1, . . . , un)(u1, . . . , un)

=
n∑

i=1

Mi

(∫

�

�i
(∣
∣∇ui(x)

∣
∣
)

dx
)∫

�

αi
(∣
∣∇ui(x)

∣
∣
)∣
∣∇ui(x)

∣
∣2 dx

≥
n∑

i=1

Mi

(∫

�

�i
(∣
∣∇ui(x)

∣
∣
)

dx
)∫

�

�i
(∣
∣∇ui(x)

∣
∣
)

dx

≥ m0

n∑

i=1

‖ui‖2(pi)0
i ,

so if (pi)0 > N then T is coercive. The fact that T is hemicontinuous can be verified using
standard arguments. Similar to proof given in [18, Lemma 3.2], T is strictly monotone.
Therefore, in view of Minty–Browder theorem, there exists T–1 : X∗ → X, and, by a similar
method as that given in [10], one has that T–1 is continuous. �

Now, we define the energy functional of problem (1.1) by hλ : X →R:

hλ(u) = J(u) – λI(u),

for all u = (u1, . . . , un) ∈ X, where

J(u) =
n∑

i=1

M̂i

(∫

�

�i
(∣
∣∇ui(x)

∣
∣
)

dx
)

, M̂i(t) =
∫ t

0
Mi(s) ds, i = 1, 2, . . . , n,
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I(u) =
∫

�

F
(
x, u1(x), . . . , un(x)

)
dx.

Note that the weak solutions of (1.1) are exactly the critical points of hλ. Similar arguments
as in [25, Lemma 4.2] imply that J and I are continuously Gâteaux differentiable function-
als and whose Gâteaux differentials at the point u = (u1, . . . , un) ∈ X are the functionals
J ′(u) and I ′(u) given by

J ′(u)(v) =
n∑

i=1

Mi

(∫

�

�i
(∣
∣∇ui(x)

∣
∣
)

dx
)∫

�

αi
(∣
∣∇ui(x)

∣
∣
)∇ui(x)∇vi(x) dx,

I ′(u)(v) =
∫

�

n∑

i=1

Fui

(
x, u1(x), . . . , un

)
vi(x) dx.

Moreover, I ′ : X → X∗ is a compact derivative. For this purpose, it is enough to show that
I ′ is strongly continuous on X, so for a fixed (u1, u2, . . . , un) ∈ X, let (u1k , u2k , . . . , unk) ⇀

(u1, u2, . . . , un) weakly in X as k → +∞. Since X is compactly embedded in C0(�̄) × · · · ×
C0(�̄), we have that (u1k , u2k , . . . , unk) converges uniformly to (u1, u2, . . . , un) on � as k →
+∞. Since F(x, ·, . . . , ·) is C1 in R

n for every x ∈ �, and the partial derivatives of F are
continuous in R

n for every x ∈ �, Fui (x, u1k , . . . , unk) → Fui (x, u1, . . . , un) strongly as k →
+∞, thus I ′(u1k , . . . , unk) → I ′(u1, . . . , un) strongly as k → +∞. So I ′ is strongly continuous
on X, which implies that I ′ is a compact operator [33].

Lemma 2.1 J is coercive and sequentially weakly lower semicontinuous.

Proof For all t ≥ 0, we have

J(u) ≥
n∑

i=1

m0
i

(∫

�

�i
(∣
∣∇ui(x)

∣
∣
)

dx
)

, i = 1, 2, . . . , n,

and, by Proposition 1.1, for all u ∈ X with ‖ui‖i > 1, we have

J(u) ≥
n∑

i=1

m0‖ui‖(pi)0
i ,

from which it follows that J is coercive. Moreover, since �i for 1 ≤ i ≤ n are convex, J is a
convex functional, and thus it is sequentially weakly lower semicontinuous. �

Three weak solutions

Theorem 2.1 Assume that condition (M) holds and
(h1) F(x, 0, . . . , 0) = 0, for a.e. x ∈ �.
(h2) There exist α(x) ∈ L1(�) and n positive constants βi, with βi < (pi)0 for 1 ≤ i ≤ n,

such that

0 ≤ F(x, t1, . . . , tn) ≤ α(x)

(

1 +
n∑

i=1

|ti|βi

)

,

for a.e. x ∈ �, (t1, . . . , tn) ∈R
n.
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(h3) There exist x0 ∈ �, D > 0, δ > 0, 0 < bi < ( C
m0

)
1

(pi)0 , and

m0
π

N
2

�(1 + N
2 )

(
D
2

)N(
2N – 1

)
n∑

i=1

�i

(
2δ

D

)

> 1

such that

∫

�

sup
|t1|<b1,...,|tn|<bn

F(x, t1, . . . , tn) dx <
min{m0

C (bi)(pi)0 : 1 ≤ i ≤ n}
m1

π
N
2

�(1+ N
2 )

( D
2 )N (2N – 1)

∑n
i=1 �i( 2δ

D )

×
∫

B(x0, D
2 )

F(x, δ, . . . , δ) dx.

Furthermore, set

λ :=
m1

π
N
2

�(1+ N
2 )

( D
2 )N (2N – 1)

∑n
i=1 �i( 2δ

D )
∫

B(x0, D
2 ) F(x, δ, . . . , δ) dx

,

λ :=
min{m0

C (bi)(pi)0 : 1 ≤ i ≤ n}
∫

�
sup|t1|<b1,...,|tn|<bn F(x, t1, . . . , tn) dx

,

then, for each λ ∈ � := (λ,λ), problem (1.1) possesses at least three distinct weak solutions
in X.

Proof Our aim is to apply Theorem 1.1 to our problem, so we check that the functionals
J , I satisfy the conditions of Theorem 1.1. We set u0 = (0, . . . , 0). Then by the definitions of
I , J and from (h1), we have J(u0) = I(u0) = 0. Let x0 ∈ �, D > 0, and take

w(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 x ∈ � \ B(x0, D),

δ, x ∈ B(x0, D
2 ),

2δ
D (D – |x – x0|) x ∈ B(x0, D) \ B(x0, D

2 ).

Let ū = (w(x), . . . , w(x)) and r = min{m0
C (bi)(pi)0 : 1 ≤ i ≤ n}. Clearly, ū ∈ X and from (h3) we

have

J(ū) =
n∑

i=1

M̂i

(∫

�

�i
(∣
∣∇w(x)

∣
∣
)

dx
)

≥
n∑

i=1

m0
i

∫

�

�i
(∣
∣∇w(x)

∣
∣
)

dx

≥
n∑

i=1

m0�i

(
2δ

D

)
π

N
2

�(1 + N
2 )

(
D
2

)N(
2N – 1

)

> r.
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On the other way, when J(u) ≤ r for u = (u1, . . . , un) ∈ X,

n∑

i=1

M̂i

(∫

�

�
(∣
∣∇ui(x)

∣
∣
)

dx
)

≤ r.

Hence, since 0 < bi < ( C
m0

)
1

(pi)0 , using Propositions 1.1 and 1.2, we have

m0‖ui‖(pi)0

i < r,

and from (1.6) we obtain

∣
∣ui(x)

∣
∣ <

(
Cr
m0

) 1
(pi)0

= bi, for 1 ≤ i ≤ n.

Therefore, for every u = (u1, . . . , un) ∈ X,

sup
u∈J–1(–∞,r)

I(u) = sup
u∈J–1(–∞,r)

∫

�

F
(
x, u1(x), . . . , un(x)

)
dx

≤
∫

�

sup
|t1|≤b1,...,|tn|≤bn

F(x, t1, . . . , tn) dx.

On the other hand, we have

J(ū) =
n∑

i=1

M̂i

(∫

�

�i
(∣
∣∇w(x)

∣
∣
)

dx
)

≤ m1
π

N
2

�(1 + N
2 )

(
D
2

)N(
2N – 1

)
n∑

i=1

�i

(
2δ

D

)

and

I(ū) >
∫

B(x0, D
2 )

F(x, δ, . . . , δ) dx.

So, from (h3), we have

supu∈J–1(–∞,r) I(u)
r

≤
∫

�
sup|t1|≤b1,...,|tn|≤bn F(x, t1, . . . , tn) dx

min{m0
C (bi)(pi)0 : 1 ≤ i ≤ n} <

I(ū)
J(ū)

.

Hence, we observe that the condition (a1) of Theorem 1.1 is satisfied.
From (h2), it follows that the function J – λI is coercive for every positive parameter λ,

in particular for every

λ ∈ � ⊆
(

J(ū)
I(ū)

,
r

supJ(u)≤r I(u)

)

,

so the condition (a2) of Theorem 1.1 holds. Then all the assumptions of Theorem 1.1
are fulfilled. By Theorem 1.1, we know that there exist an open interval � ⊆ [0,∞) and a
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positive constant ρ such that, for any λ ∈ �, problem (1.1) has at least three weak solutions
whose norms are less than ρ . �

Theorem 2.2 Assume that conditions (M) and (h1) hold and consider the following:
(h4) F(x, t1, . . . , tn) ≥ 0 for every (x, t1, . . . , tn) ∈ � ×R

n
+.

(h5) There exist x0 ∈ � and values D,� > 0 such that B(x0, D) ⊆ �,

lim
t→0+

�i(t)
t(pi)0 < �, (2.1)

and for

A := lim inf
σ→0+

∫

�
sup(t1,...,tn)∈Q(σ ) F(x, t1, . . . , tn) dx

σ p ,

B := lim sup
(t1,...,tn)→(0+,...,0+)

∫

B(x0, D
2 ) F(x, t1, . . . , tn) dx
∑n

i=1 ti(pi)0 ,

one has

A < LB,

where L = min{L(pi)0 , i = 1, 2, . . . , n},

L(pi)0 =
�(1 + N

2 )

(
∑n

i=1( C
m0

)
1

(pi)0 )pm1�π
N
2 ( 2

D )(pi)0–N (2N – 1)
. (2.2)

Then for every

λ ∈ � :=
1

(
∑n

i=1( C
m0

)
1

(pi)0 )p

(
1

LB
,

1
A

)

,

problem (1.1) admits a sequence of pairwise distinct weak solutions which strongly con-
verges to zero in X.

Proof We apply the part (b) of Theorem 1.2 and show that δ < ∞. Let {σk} be a sequence
of positive numbers such that limk→+∞ σk = 0 then

lim
k→+∞

∫

�
sup(t1,...,tn)∈Q(σk ) F(x, t1, . . . , tn) dx

σ
p
k

= lim inf
σ→0+

∫

�
sup(t1,...,tn)∈Q(σ ) F(x, t1, . . . , tn) dx

σ p

= A < +∞.

(2.3)

Putting

rk =
σ

p
k

(
∑n

i=1( C
m0

)
1

(pi)0 )p
for all k ∈N,
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J–1(] – ∞, rk[
)

:=
{

u = (u1, u2, . . . , un) ∈ X : J(u) < rk
}

⊆
{

u ∈ X :
n∑

i=1

M̂i

(∫

�

�i
(|∇ui|

)
dx

)

≤ rk

}

,

by Propositions 1.1 and 1.2, for k large enough (0 < rk < 1),

m0‖ui‖(pi)0

i < rk ,

and from (1.6) we have maxx∈�̄ |ui(x)|(pi)0 ≤ C‖ui‖(pi)0

i . Then we obtain for all x ∈ �,

∣
∣ui(x)

∣
∣ ≤

(
Crk

m0

) 1
(pi)0

.

Thus

n∑

i=1

∣
∣ui(x)

∣
∣ ≤

n∑

i=1

(
Crk

m0

) 1
(pi)0 ≤ r

1
p
k

n∑

i=1

(
C

m0

) 1
(pi)0 ≤ σk .

Then we have

J–1(–∞, rk) ⊆
{

u ∈ X :
n∑

i=1

∣
∣ui(x)

∣
∣ ≤ σk

}

.

From condition (h1), we have minX J = J(0, . . . , 0) = I(0, . . . , 0) = 0.

ϕ(rk) = inf
u∈J–1(]–∞,rk [)

supv∈J–1(]–∞,rk [) I(v) – I(u)
rk – J(u)

≤ supv∈J–1(]–∞,rk [) I(v)
rk

≤
( n∑

i=1

(
C

m0

) 1
(pi)0

)p ∫

�
sup(t1,t2,...,tn)∈Q(σk ) F(x, t1, . . . , tn) dx

σ
p
k

.

(2.4)

Let δ := lim infr→0+ ϕ(r). It follows from (2.3) and (2.4) that

δ ≤ lim inf
k→+∞

ϕ(rk)

≤
( n∑

i=1

(
C

m0

) 1
(pi)0

)p

lim
k→+∞

∫

�
sup(t1,t2,...,tn)∈Q(σk ) F(x, t1, . . . , tn) dx

σ
p
k

≤
( n∑

i=1

(
C

m0

) 1
(pi)0

)p

A < +∞.

So � ⊆ ]0, 1
δ
[. For a fixed λ ∈ �, we claim that the functional hλ is unbounded from below.

Indeed, since

1
λ

<

( n∑

i=1

(
C

m0

) 1
(pi)0

)p

LB,
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we can consider n positive real sequences {di,k}n
i=1 and η > 0 such that

√∑n
i=1 d2

i,k → 0 as
k → +∞ and

1
λ

< η < L

( n∑

i=1

(
C

m0

) 1
(pi)0

)p ∫

B(x0, D
2 ) F(x, d1,k , . . . , dn,k) dx

∑n
i=1 d(pi)0

i,k

. (2.5)

Let {uk(x) = (u1k , u2k , . . . , unk)} ⊆ X be a sequence defined by

uik(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0, x ∈ �̄ \ B(x0, D),
2di,k

D (D – |x – x0|), x ∈ B(x0, D) \ B(x0, D
2 ),

di,k , x ∈ B(x0, D
2 ),

for 1 ≤ i ≤ n. Then

J(uk) =
n∑

i=1

M̂i

(∫

�

�i
(|∇uik|

)
dx

)

< m1

∫

B(x0,D)\B(x0, D
2 )

�i

(
2di,k

D

)

dx.

Moreover, from (2.1) and since limk→∞
2di,k

D = 0, there exist ζ > 0 and ni ∈ N i = 1, . . . , n
such that 2di,k

D ∈ (0, ζ ), and

�i

(
2di,k

D

)

< �

(
2
D

)(pi)0

d(pi)0

i,k for all n ≥ ni (i = 1, . . . , n),

∫

B(x0,D)\B(x0, D
2 )

�i

(
2di,k

D

)

dx <
π

N
2

�(1 + N
2 )

�

(
2
D

)(pi)0–N

d(pi)0

i,k
(
2N – 1

)
.

From (2.2), for all n ≥ max{n1, . . . , n2}, we have

J(uk) ≤ 1

(
∑n

i=1( C
m0

)
1

(pi)0 )p

n∑

i=1

d(pi)0

i,k

L(pi)0
. (2.6)

By (h4), we have

I(uk) =
∫

�

F(x, u1k , . . . , unk) dx ≥
∫

B(x0, D
2 )

F(x, d1,k , . . . , dn,k) dx. (2.7)

By (2.5), (2.6), and (2.7), we have

hλ(uk) = J(uk) – λI(uk)

≤ 1

(
∑n

i=1( C
m0

)
1

(pi)0 )p

n∑

i=1

d(pi)0

i,k

L(pi)0
– λ

∫

B(x0, D
2 )

F(x, d1,k , . . . , di,k) dx
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<
1 – λη

L(
∑n

i=1( C
m0

)
1

(pi)0 )p

n∑

i=1

d(pi)0

i,k

< 0 = hλ(0, . . . , 0),

for every n ∈ N large enough. Then (0, . . . , 0) is not a local minimum of hλ. Thus, owing
to the fact that (0, . . . , 0) is the unique global minimum of J , there exists a sequence {uk =
(u1k , . . . , unk)} of pairwise distinct critical points of hλ such that limk→+∞ ‖uk‖ = 0, and this
completes the proof. �

We illustrate this abstract existence result with the following example.

Example 2.1 Let � ⊂ R
3 be a bounded domain with |�| = 1 and assume i = 2. Similar to

[15, Remark 3.6], we have

ϕ1(t) =

⎧
⎨

⎩

|t|4t
log(1+|t|) if t �= 0,

0 if t = 0.

By [11, Example 3], one has (p1)0 = 5 < (p1)0 = 6. Thus the condition (1.4) is satisfied. More-
over, owing to

lim
t→0+

1
t5

∫ t

0

|s|4s
log(1 + |s|) ds =

1
5

,

the condition (2.1) is also fulfilled (for example, take � = 1
N = 1

3 ). Now let

ϕ2(t) = log
(
1 + |t|2)|t|2t, t ∈ R.

Then by [11, Example 2], one has (p2)0 = 4 < (p2)0 = 6. So the condition (1.4) is satisfied.
Moreover, owing to

lim
t→0+

1
t4

∫ t

0
log

(
1 + |s|2)|s|2s ds = 0,

the condition (2.1) is also fulfilled (here we take � = 1
N = 1

3 , again). So we see that with the
above choices, ϕ1 and ϕ2 satisfy the assumptions of Theorem 2.2. Let F : R2 → [0,∞) be
a continuous function defined by

F(s, t) =

⎧
⎨

⎩

s6(1 + sin(ln(1 + |t|))), (s, t) �= (0, 0),

0, (s, t) = (0, 0),

A = lim inf
σ→0+

∫

�
max|s|+|t|≤σ F(s, t) dx

σ 6 = |�| lim inf
σ→0+

max|s|+|t|≤σ F(s, t)
σ 6 = 2,

B = lim sup
s,t→0+

∫

B(x0, D
2 ) F(s, t) dx

s6 + t6 =
∣
∣
∣
∣B

(

x0,
D
2

)∣
∣
∣
∣ lim sup

s,t→0+

F(s, t)
s6 + t6 =

∣
∣
∣
∣B

(

x0,
D
2

)∣
∣
∣
∣.

Then

λ1 =
7m1

3

(
2
D

)6

> 0 and λ2 =
m0

27C
> 0,
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with this condition 213 < 3m0D6

7m1C . Then for λ ∈ ]λ1,λ2[, the following system:

⎧
⎪⎪⎨

⎪⎪⎩

–M1(
∫

�
�1(|∇u|) dx) div( |∇u|4

log(1+|∇u|)∇u) = λFu(x, u, v) in �,

–M2(
∫

�
�2(|∇v|) dx) div(log(1 + |∇v|2)|∇v|2∇v) = λFv(x, u, v) in �,

u = v = 0 on ∂�,

admits a sequence of pairwise distinct weak solutions which strongly converges to zero in
W 1,�1

0 (�) × W 1,�2
0 (�).
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18. Kristály, A., Mihăilescu, M., Rădulescu, V.: Two non-trivial solutions for a non-homogeneous Neumann problem: an

Orlicz–Sobolev space setting. Proc. R. Soc. Edinb., Sect. A 139(2), 367–379 (2009)
19. Kurdila, A.J., Zabarankin, M.: Convex Functional Analysis, Systems Control: Foundations Applications. Birkhäuser, Basel

(2005)



Heidari and Razani Boundary Value Problems         (2021) 2021:22 Page 15 of 15

20. Li, Q., Yang, Z.: Existence of positive solutions for a quasilinear elliptic systems of p-Kirchhoff type. Differ. Equ. Appl.
6(1), 73–80 (2014)

21. Makvand Chaharlang, M., Razani, A.: Existence of infinitely many solutions for a class of nonlocal problems with
Dirichlet boundary condition. Commun. Korean Math. Soc. 34(1), 155–167 (2019)

22. Makvand Chaharlang, M., Razani, A.: A fourth order singular elliptic problem involving p-biharmonic operator. Taiwan.
J. Math. 23(3), 589–599 (2019)

23. Makvand Chaharlang, M., Razani, A.: Two weak solutions for some Kirchhoff-type problem with Neumann boundary
condition. Georgian Math. J. (2020). https://doi.org/10.1515/gmj-2019-2077
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