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1 Introduction
In this paper, we consider the existence and uniqueness of nontrivial solutions of the fol-
lowing fractional boundary value problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dβ

0+ (Dα
0+ u(t)) = f (t, u(t), Dν

0+ u(t)) + g(t, u(t), (Ku)(t)) – b, t ∈ (0, 1),

u(0) = u′(0) = · · · = u(n–2)(0) = 0,

Dα
0+ u(0) = (Dα

0+ u)′(0) = · · · = (Dα
0+ u)(n–2)(0) = 0,

Dγ

0+ u(1) =
∑m–2

i=1 ξiDγ

0+ u(ηi), Dα
0+ u(1) =

∑m–2
i=1 ζiDα

0+ u(ηi),

(1.1)

where b > 0, Dα
0+ , Dβ

0+ , Dγ

0+ , Dν
0+ are the Riemann–Liouville fractional derivatives with n –

1 < α, β ≤ n, n – 2 < γ ≤ n – 1, n ≥ 2 (n ∈ N), α – γ – 1 > 0, 0 < ν ≤ γ , 0 < ξi, ηi, ζi < 1,
i = 1, 2, 3, . . . , m – 2, m ≥ 2,

∑m–2
i=1 ξiη

α–γ –1
i < 1,

∑m–2
i=1 ζiη

β–1
i < 1. f , g : [0, 1] × (–∞, +∞) ×

(–∞, +∞) −→ (–∞, +∞) are continuous.
In recent years, much attention has been paid to multi-point boundary value problems

involving fractional order; see [1–29] and the references therein. We should mention re-
lated studies in [1–22], which motivated us to consider the problem (1.1). Lv [1] studied
the existence of positive solutions of the following multi-point boundary value problem:

⎧
⎨

⎩

Dα
0+ u(t) + f (t, u(t)) = 0, t ∈ (0, 1),

u(0) = 0, Dβ

0+ u(1) =
∑m–2

i=1 ξiDβ

0+ u(ηi),
(1.2)

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13661-021-01497-7
http://crossmark.crossref.org/dialog/?doi=10.1186/s13661-021-01497-7&domain=pdf
http://orcid.org/0000-0001-7974-4843
mailto:syb6662004@163.com


Sang and He Boundary Value Problems         (2021) 2021:20 Page 2 of 28

where 1 < α ≤ 2, 0 ≤ β ≤ 1, 0 ≤ α – β – 1, 0 < ξi, ηi < 1 (i = 1, 2, . . . , m – 2), and
∑m–2

i=1 ξiη
α–β–1
i < 1. f : [0, 1] × [0, +∞) −→ [0, +∞) is a continuous function. Lv [1] first ob-

tained the Green’s function of linear boundary value problem corresponding to the prob-
lem (1.2), which has been adopted in the proof of main theorems in [2–4]. Furthermore,
Lv [2] studied the existence of solutions for nonlinear fractional m-point boundary value
problems involving p-Laplacian operators by the fixed point index theorem. Li, Luo and
Zhou [5] discussed Eq. (1.2) in the case of m = 3 by using some fixed point theorems.

Very recently, Wang, Zhang and Wang [6] considered the following nonlinear fractional
boundary value problem:

⎧
⎨

⎩

–Dα
0+ u(t) = f (t, u(t), u(t)) + g(t, u(t)), 0 < t < 1, n – 1 < α ≤ n,

u(i)(0) = 0, i = 0, . . . , n – 2, Dν
0+ u(1) = bDν

0+ u(ξ ), n – 2 < ν ≤ n – 1,
(1.3)

where n – 1 < α ≤ n (n > 2, n ∈ N), n – 2 < ν ≤ n – 1, 0 ≤ b ≤ 1, 0 < ξ < 1 satisfying α –
ν – 1 ≥ 0 and 0 ≤ bξα–ν–1 < 1. They established the existence and uniqueness of solutions
of (1.3) by applying the properties of Green function and fixed point theorems for sum-
type operator. On the other hand, they also gave the physical application of our system
(1.1). The main feature of [6] is that the value of α is extended from 1 < α ≤ 2 in (1.2) to
n – 1 < α ≤ n. Liang and Zhang [7] considered the existence of solutions of the problem
(1.3) when n = 4, ν = 2 and f (t, u(t), u(t)) = 0. Moreover, Jleli and Samet [8] gave some
sufficient conditions under which the problem (1.3) has a unique positive solution when
b = 0.

We note that Wang [9] studied the existence and uniqueness of positive solutions for
singular fractional differential equations as follows:

⎧
⎨

⎩

Dα
0+ u(t) + p(t)f (t, u(t), Dβ

0+ u(t)) + q(t)g(t, u(t), (Hu)(t)) = 0, 0 < t < 1,

u(0) = u′(0) = · · · = u(n–2)(0) = 0, [Dγ

0+ u(t)]t=1 = k(u(1)),
(1.4)

where n – 1 < α ≤ n, n > 3, 1 ≤ β ≤ γ ≤ n – 2, p, q ∈ C((0, 1), [0, +∞)), p(t) and q(t) are
allowed to be singular at t = 0 or t = 1. f , g : (0, 1) × [0, +∞) × [0, +∞) −→ [0, +∞) are
continuous, and k : [0, 1) −→ [0, +∞) is also continuous. What attracts our attention is
the nonlinear term contains not only the derivative term but also the operator term (Hu).
Similarly, Zhang and Tian [10] also studied the problem (1.4) with derivative term, but
the difference is that the function g does not include the operator term. In [11], Ji et al.
also investigated positive solutions for the nonlinear fractional differential equation with
a derivative term. Goodrich [12] first obtained the Green function of the problem (1.4)
when k(u(1)) = 0. In [13–15], they considered the fractional differential equations with
integer order derivative, and they did not consider the boundary condition [Dγ

0+ u(t)]t=1.
Zhang [16] considered the singular fractional differential equations with multiple deriva-
tive terms, and obtained the existence of positive solutions.

We should mention the work of Jong [3], which directly is related to our problem (1.1).
Jong investigated the following nonlinear fractional m-point boundary value problem with
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p-Laplacian operator:

⎧
⎪⎪⎨

⎪⎪⎩

Dβ

0+ (ϕp(Dα
0+ u))(t) = f (t, u(t)), t ∈ (0, 1),

u(0) = 0, Dα
0+ u(0) = 0,

Dγ

0+ u(1) =
∑m–2

i=1 ξiDγ

0+ u(ηi), ϕp(Dα
0+ u)(1) =

∑m–2
i=1 ζiϕp(Dα

0+ u)(ηi),

(1.5)

where 1 < α,β ≤ 2, 3 < α+β ≤ 4, 0 < γ ≤ 1, α–γ –1 > 0, 0 < ξi, ηi, ζi < 1,
∑m–2

i=1 ξiη
α–γ –1
i < 1,

∑m–2
i=1 ζiη

β–1
i < 1, the p-Laplacian operator is defined as ϕp(s) = |s|p–2s, p > 1. Jong ob-

tained that the problem (1.5) has a unique solution which is given by u(t) =
∫ 1

0 G(t, s) ×
ϕ–1

p (
∫ 1

0 H(s, τ )f (τ , u(τ )) dτ ) ds. He first gave the Green function H(s, τ ). The main tool of
[3] is the Banach contraction mapping principle. Furthermore, he also showed the unique-
ness of the problem (1.5) in [4] by the classic fixed point theorem of mixed monotone op-
erators. Li and Qi [17] focused on p-Laplacian boundary value problems of higher order
nonlinear differential equations. Tan and Li [18] used Kuratowski’s noncompactness mea-
sure and Sadovskii’s fixed point theorem to study the problem (1.5) when the boundary
condition ϕp(Dα

0+ u)(1) =
∑m–2

i=1 ζiϕp(Dα
0+ u)(ηi) is removed. Wang and Xiang [19] consid-

ered the problem (1.5) when all boundary conditions are replaced by u(0) = 0, Dα
0+ u(0) = 0,

u(1) = au(ξ ) and Dν
0+ u(1) = bDα

0+ u(η). Wang, Xiang and Liu [20] investigated the problem
(1.5) when the boundary conditions are replaced by u(0) = 0, Dα

0+ u(0) = 0 and u(1) = au(ξ ).
We should point out that the main tools and methods adopted in [1–20] are cone map-

ping theory. Therefore, nonlinearities in the problems (1.2)–(1.5) are usually required to
be non-negative. But more and more authors are beginning to remove this restriction im-
posed on nonlinear terms. Very recently, Sang and Ren [21] dealt with the following frac-
tional boundary value problem:

⎧
⎨

⎩

–Dα
0+ u(t) = f (t, u(t), u(t)) + g(t, u(t), u(t)) – b, 0 < t < 1,

u(i)(0) = 0, 0 ≤ i ≤ n – 2, [Dβ

0+ u(t)]t=1 = 0,
(1.6)

where n – 1 < α ≤ n, 1 ≤ β ≤ n – 2, n ≥ 3 (n ∈ N), b > 0 is a constant, f , g : [0, 1] ×
(–∞, +∞) × (–∞, +∞) −→ (–∞, +∞) are two continuous functions. In fact, Zhai and
Wang [22] have introduced ϕ–(h, e) operators, and established the existence and unique-
ness of a nontrivial solution for a class of nonlinear fractional equations by using partial
order method.

In this paper, the first goal is to obtain the fixed point of the solution of the operator
equation M(x, x) + N(x, x) + e = x, where M and N are two mixed monotone operators. We
will generalize the results of cone mapping to the non-cone case. Then we will provide
some sufficient conditions under which the problem (1.1) has a unique solution and con-
struct two iterative sequences of unique solution. Compared with [6, 9], we do not demand
the assumption that nonlinearities are non-negative, and the more general boundary con-
ditions are adopted.

Our paper is organized as follows. In Sect. 2, we will introduce some definitions and
give some lemmas to prove the main conclusions. In Sect. 3, the existence of fixed point
for the operator equation associated with the problem (1.1) is established. Then, based on
our abstract results, the existence and uniqueness of the solution of the problem (1.1) are
proved.
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2 Preliminaries and related lemmas
In this section, we give some definitions and lemmas that are useful for the proof of our
main results.

In this paper, (E,‖ ·‖) is a real Banach space. A partially ordered structure in E is induced
by a cone P ⊂ E, i.e. x ≤ y if and only if y – x ∈ P. θ is the zero element. P is called normal
if there exists N > 0 such that θ ≤ x ≤ y ⇒ ‖x‖ ≤ N‖y‖. Given h > θ , we denote by Ph

Ph = {x ∈ E | there exist λ > 0,μ > 0 such that λh ≤ x ≤ μh}.

Let e ∈ P with θ ≤ e ≤ h, denote

Ph,e = {x ∈ E | x + e ∈ Ph}.

Definition 2.1 ([30, 31]) If A(x, y) is increasing in x, and decreasing in y, then A : Ph,e ×
Ph,e → E is a mixed monotone operator. That is, for every ui, vi ∈ Ph,e (i = 1, 2) with u1 ≥ v1,
u2 ≤ v2, we have A(u1, u2) ≥ A(v1, v2).

Definition 2.2 ([32, 33]) The Riemann–Liouville fractional derivative of order α > 0 of a
function h ∈ C[0, 1] is defined by

Dα
0+ h(t) =

1
(n – α)

(
d
dt

)n ∫ t

0
h(s)(t – s)n–α–1 ds,

where n = [α] + 1. The Riemann–Liouville fractional integral of order α > 0 of a function
h is given by

Iα
0+ h(t) =

1
(α)

∫ t

0
(t – s)α–1h(s) ds.

Definition 2.3 ([32]) Let α > –1, ν > 0 and t > 0. Then

Dν
0+ tα =

(α + 1)
(α – ν + 1)

tα–ν .

Lemma 2.1 ([34]) Let u ∈ C[0, 1] ∩ L1[0, 1], α > 0, then

Iα
0+ Dα

0+ u(t) = u(t) + c1tα–1 + c2tα–2 + · · · + cntα–n,

where ci ∈R, i = 1, 2, . . . , n and n = [α] + 1.

Lemma 2.2 Let
∑m–2

i=1 ξiη
α–γ –1
i �= 1. If y(t) ∈ C[0, 1], then the boundary value problem

⎧
⎪⎪⎨

⎪⎪⎩

Dα
0+ u(t) + y(t) = 0, 0 < t < 1, n – 1 < α ≤ n,

u(0) = u′(0) = · · · = u(n–2)(0) = 0,

Dγ

0+ u(1) =
∑m–2

i=1 ξiDγ

0+ u(ηi), n – 2 < γ ≤ n – 1,

has a unique solution

u(t) =
∫ 1

0
G(t, s)y(s) ds,
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where

G(t, s) = G1(t, s) + G2(t, s),

G1(t, s) =
1

(α)

⎧
⎨

⎩

tα–1(1 – s)α–γ –1 – (t – s)α–1, 0 ≤ s ≤ t ≤ 1,

tα–1(1 – s)α–γ –1, 0 ≤ t ≤ s ≤ 1,

and

G2(t, s) =
1

A(α)

⎧
⎨

⎩

tα–1 ∑
0≤s≤ηi

ξi[ηα–γ –1
i (1 – s)α–γ –1 – (ηi – s)α–γ –1], 0 ≤ t ≤ 1,

tα–1 ∑
ηi≤s≤1 ξiη

α–γ –1
i (1 – s)α–γ –1, 0 ≤ t ≤ 1,

with

A = 1 –
m–2∑

i=1

ξiη
α–γ –1
i .

Proof Using Lemma 2.1, we get

u(t) + c1tα–1 + c2tα–2 + · · · + cntα–n = –Iα
0+ y(t).

It follows from the condition u(0) = u′(0) = · · · = u(n–2)(0) = 0 that cn = cn–1 = · · · = c2 = 0.
Thus

u(t) = –Iα
0+ y(t) – c1tα–1.

The rest of our proof can be obtained from Lemma 2.1 in [1]. �

Lemma 2.3 Let
∑m–2

i=1 ζiη
β–1
i �= 1. If f : [0, 1] × (–∞, +∞) × (–∞, +∞) → (–∞, +∞) be a

continuous function. Then the problem (1.1) has the following unique solution:

u(t) =
∫ 1

0
G(t, s)

(∫ 1

0
H(s, τ )

(
f
(
τ , u(τ ), Dν

0+ u(τ )
)

+ g
(
τ , u(τ ), (Ku)(τ )

)
– b

)
dτ

)

ds,

where

H(t, s) = H1(t, s) + H2(t, s),

in which

H1(t, s) =
1

(β)

⎧
⎨

⎩

tβ–1(1 – s)β–1 – (t – s)β–1, 0 ≤ s ≤ t ≤ 1,

tβ–1(1 – s)β–1, 0 ≤ t ≤ s ≤ 1,

H2(t, s) =
1

B(β)

⎧
⎨

⎩

tβ–1 ∑
0≤s≤ηi

ζi[ηβ–1
i (1 – s)β–1 – (ηi – s)β–1], 0 ≤ t ≤ 1,

tβ–1 ∑
ηi≤s≤1 ζiη

β–1
i (1 – s)β–1, 0 ≤ t ≤ 1,
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where

B = 1 –
m–2∑

i=1

ζiη
β–1
i .

Proof Let h ∈ C[0, 1], consider the boundary value problem:

⎧
⎨

⎩

Dβ

0+ v(t) + h(t) = 0, 0 < t < 1, n – 1 < β ≤ n,

v(0) = v′(0) = · · · = v(n–2)(0) = 0, v(1) =
∑m–2

i=1 ζiv(ηi).

Similarly, using Lemma 2.1, we deduce

v(t) + c1tβ–1 + c2tβ–2 + · · · + cntβ–n = –Iβ

0+ h(t).

It follows from the condition v(0) = v′(0) = · · · = v(n–2)(0) = 0 that cn = cn–1 = · · · = c2 = 0.
Thus

v(t) = –Iβ

0+ h(t) – c1tβ–1.

The rest of our proof can be derived from Lemma 2.4 in [3]. �

Lemma 2.4 Let

C(s) =
1
A

∑

0≤s≤ηi

ξi
[
η

α–γ –1
i (1 – s)α–γ –1 – (ηi – s)α–γ –1] +

∑

s≥ηi

ξiη
α–γ –1
i (1 – s)α–γ –1,

D =
1
A

(

1 +
m–2∑

i=1

ξi
(
1 – η

α–γ –1
i

)
)

.

Then the function G(t, s) defined in Lemma 2.2 satisfies the following conditions:

C(s)tα–1 ≤ (α)G(t, s) ≤ Dtα–1,

and

C(s)tα–ν–1 ≤ (α – ν)Dν
0+ G(t, s) ≤ Dtα–ν–1,

for every t, s ∈ [0, 1].

Proof Since G1(t, s) ≥ 0 for t ∈ [0, 1], s ∈ [0, 1], it follows that

G(t, s) ≥ G2(t, s) =
C(s)
(α)

tα–1.
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At the same time, we have

G(t, s) = G1(t, s) + G2(t, s)

≤ 1
(α)

tα–1 +
1

A(α)

m–2∑

i=1

ξitα–1

=
1

A(α)

(

1 +
m–2∑

i=1

ξi
(
1 – η

α–γ –1
i

)
)

tα–1

=
D

(α)
tα–1.

Consequently

C(s)tα–1 ≤ (α)G(t, s) ≤ Dtα–1.

Similarly

Dν
0+ G(t, s) ≥ Dν

0+ G2(t, s) =
C(s)

(α – ν)
tα–ν–1

and

Dν
0+ G(t, s) = Dν

0+ G1(t, s) + Dν
0+ G2(t, s)

≤ 1
(α – ν)

tα–ν–1 +
1

A(α – ν)

m–2∑

i=1

ξitα–ν–1

=
1

A(α – ν)

(

1 +
m–2∑

i=1

ξi
(
1 – η

α–γ –1
i

)
)

tα–ν–1

=
D

(α – ν)
tα–ν–1.

Hence

C(s)tα–ν–1 ≤ (α – ν)Dν
0+ G(t, s) ≤ Dtα–ν–1. �

Lemma 2.5 ([4]) Let

E(s) =
1
B

∑

0≤s≤ηi

ζi
[
η

β–1
i (1 – s)β–1 – (ηi – s)β–1] +

∑

s≥ηi

ζiη
β–1
i (1 – s)β–1

and

F =
1
B

(

1 +
m–2∑

i=1

ζi
(
1 – η

β–1
i

)
)

.

Then

E(s)tβ–1 ≤ (β)H(t, s) ≤ Ftβ–1,

for every t, s ∈ [0, 1].
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Lemma 2.6 Let P be a normal cone and T : Ph,e ×Ph,e −→ E be a mixed monotone operator.
Assume that the following conditions hold:

(i) for every λ ∈ (0, 1) and u, v ∈ Ph,e, there exists ϕ(λ, u, v) > λ such that

T
(
λu + (λ – 1)e,λ–1v +

(
λ–1 – 1

)
e
) ≥ ϕ(λ, u, v)T(u, v) +

(
ϕ(λ, u, v) – 1

)
e;

(ii) for fixed t ∈ (0, 1) and u ∈ Ph,e, ϕ(t, u, v) is decreasing in v, and for fixed t ∈ (0, 1) and
v ∈ Ph,e, ϕ(t, u, v) is increasing in u;

(iii) there exists t0 ∈ (0, 1) such that

t0

ϕ(t0, h, h)
h +

(
t0

ϕ(t0, h, h)
– 1

)

e ≤ T(h, h) ≤ 1
t0

h +
(

1
t0

– 1
)

e.

Then:
(1) T has a unique fixed point x∗ in Ph,e;
(2) there exist initial values u0, v0 ∈ Ph,e, and s ∈ (0, 1) such that

sv0 ≤ u0 < v0, u0 ≤ T(u0, v0) ≤ T(v0, u0) ≤ v0;

(3) for any x0, y0 ∈ Ph,e, taking the iterative sequences as follows:

xn = T(xn–1, yn–1), yn = T(yn–1, xn–1), n = 1, 2, . . .

we have xn → x∗ and yn → x∗ as n → ∞.

Proof By (i), we have

T
(
λ–1u +

(
λ–1 – 1

)
e,λv + (λ – 1)e

)

≤ [
ϕ
(
λ,λ–1u +

(
λ–1 – 1

)
e,λv + (λ – 1)e

)]–1T(u, v)

+
([

ϕ
(
λ,λ–1u +

(
λ–1 – 1

)
e,λv + (λ – 1)e

)]–1 – 1
)
e,

(2.1)

for every λ ∈ (0, 1), u, v ∈ Ph,e. We can find a positive integer k with

(
ϕ(t0, h, h)

t0

)k

≥ 1
t0

.

Let

un = T(un–1, vn–1), vn = T(vn–1, un–1), n = 1, 2, . . . .

xn = tn
0 h +

(
tn
0 – 1

)
e, yn = t–n

0 h +
(
t–n
0 – 1

)
e, n = 1, 2, . . . .

Thus

xn = t0xn–1 + (t0 – 1)e, yn = t–1
0 yn–1 +

(
t–1
0 – 1

)
e, n = 1, 2, . . . .

Denote u0 := xk , v0 := yk , then u0, v0 ∈ Ph,e,

u0 ≤ v0, u1 = T(u0, v0) ≤ T(v0, u0) = v1.
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Since T is mixed monotone, we get

un ≤ vn, n = 1, 2, . . . .

By the conditions (ii) and (iii), combining with (2.1), we have

u1 = T(u0, v0)

= T
(
tk
0h +

(
tk
0 – 1

)
e, t–k

0 h +
(
t–k
0 – 1

)
e
)

= T
(
t0

(
tk–1
0 h +

(
tk–1
0 – 1

)
e
)

+ (t0 – 1)e, t–1
0

(
t–k+1
0 h +

(
t–k+1
0 – 1

)
e
)

+
(
t–1
0 – 1

)
e
)

≥ ϕ
(
t0, tk–1

0 h +
(
tk–1
0 – 1

)
e, t–k+1

0 h +
(
t–k+1
0 – 1

)
e
)
T

(
tk–1
0 h +

(
tk–1
0 – 1

)
e, t–k+1

0 h

+
(
t–k+1
0 – 1

)
e
)

+
(
ϕ
(
t0, tk–1

0 h +
(
tk–1
0 – 1

)
e, t–k+1

0 h +
(
t–k+1
0 – 1

)
e
)

– 1
)
e

≥ ϕ
(
t0, tk–1

0 h +
(
tk–1
0 – 1

)
e, t–k+1

0 h +
(
t–k+1
0 – 1

)
e
)[

ϕ
(
t0, tk–2

0 h +
(
tk–2
0 – 1

)
e,

t–k+2
0 h +

(
t–k+2
0 – 1

)
e
)
T

(
tk–2
0 h +

(
tk–2
0 – 1

)
e, t–k+2

0 h +
(
t–k+2
0 – 1

)
e
)

+
(
ϕ
(
t0, tk–2

0 h +
(
tk–2
0 – 1

)
e, t–k+2

0 h +
(
t–k+2
0 – 1

)
e
)

– 1
)
e
]

+
(
ϕ
(
t0, tk–1

0 h +
(
tk–1
0 – 1

)
e, t–k+1

0 h +
(
t–k+1
0 – 1

)
e
)

– 1
)
e

= ϕ
(
t0, tk–1

0 h +
(
tk–1
0 – 1

)
e, t–k+1

0 h +
(
t–k+1
0 – 1

)
e
)
ϕ
(
t0, tk–2

0 h +
(
tk–2
0 – 1

)
e, t–k+2

0 h

+
(
t–k+2
0 – 1

)
e
)
T

(
tk–2
0 h +

(
tk–2
0 – 1

)
e, t–k+2

0 h +
(
t–k+2
0 – 1

)
e
)

+
[
ϕ
(
t0, tk–1

0 h

+
(
tk–1
0 – 1

)
e, t–k+1

0 h +
(
t–k+1
0 – 1

)
e
)
ϕ
(
t0, tk–2

0 h +
(
tk–2
0 – 1

)
e, t–k+2

0 h

+
(
t–k+2
0 – 1

)
e
)

– 1
]
e

≥ · · · ≥ ϕ
(
t0, tk–1

0 h +
(
tk–1
0 – 1

)
e, t–k+1

0 h +
(
t–k+1
0 – 1

)
e
)
ϕ
(
t0, tk–2

0 h +
(
tk–2
0 – 1

)
e,

t–k+2
0 h +

(
t–k+2
0 – 1

)
e
)

. . .ϕ(t0, h, h)T(h, h) +
[
ϕ
(
t0, tk–1

0 h +
(
tk–1
0 – 1

)
e, t–k+1

0 h

+
(
t–k+1
0 – 1

)
e
)
ϕ
(
t0, tk–2

0 h +
(
tk–2
0 – 1

)
e, t–k+2

0 h +
(
t–k+2
0 – 1

)
e
) · · ·ϕ(t0, h, h) – 1

]
e

≥ tk–1
0 ϕ(t0, h, h)T(h, h) +

(
tk–1
0 ϕ(t0, h, h) – 1

)
e

≥ tk–1
0 ϕ(t0, h, h)

(
t0

ϕ(t0, h, h)
h +

(
t0

ϕ(t0, h, h)
– 1

)

e
)

+
(
tk–1
0 ϕ(t0, h, h) – 1

)
e

= tk
0h +

(
tk
0 – tk–1

0 ϕ(t0, h, h)
)
e +

(
tk–1
0 ϕ(t0, h, h) – 1

)
e

= tk
0h +

(
tk
0 – 1

)
e = xk = u0

and

v1 = T(v0, u0)

= T
(
t–k
0 h +

(
t–k
0 – 1

)
e, tk

0h +
(
tk
0 – 1

)
e
)

≤ ϕ
(
t0, t–k

0 h +
(
t–k
0 – 1

)
e, tk

0h +
(
tk
0 – 1

)
e
)–1T

(
t–k+1
0 h +

(
t–k+1
0 – 1

)
e, tk–1

0 h

+
(
tk–1
0 – 1

)
e
)

+
(
ϕ
(
t0, t–k

0 h +
(
t–k
0 – 1

)
e, tk

0h +
(
tk
0 – 1

)
e
)–1 – 1

)
e

≤ ϕ
(
t0, t–k

0 h +
(
t–k
0 – 1

)
e, tk

0h +
(
tk
0 – 1

)
e
)–1

ϕ
(
t0, t–k+1

0 h +
(
t–k+1
0 – 1

)
e, tk–1

0 h

+
(
tk–1
0 – 1

)
e
)–1T

(
t–k+1
0 h +

(
t–k+1
0 – 1

)
e, tk–1

0 h +
(
tk–1
0 – 1

)
e
)

+
[
ϕ
(
t0, t–k

0 h
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+
(
t–k
0 – 1

)
e, tk

0h +
(
tk
0 – 1

)
e
)–1

ϕ
(
t0, t–k+1

0 h +
(
t–k+1
0 – 1

)
e, tk–1

0 h

+
(
tk–1
0 – 1

)
e
)–1 – 1

]
e

≤ · · · ≤ ϕ
(
t0, t–k

0 h +
(
t–k
0 – 1

)
e, tk

0h +
(
tk
0 – 1

)
e
)–1

ϕ
(
t0, t–k+1

0 h +
(
t–k+1
0 – 1

)
e,

tk–1
0 h +

(
tk–1
0 – 1

)
e
)–1 · · ·ϕ(

t0, t–1
0 h +

(
t–1
0 – 1

)
e, t0h + (t0 – 1)e

)–1T(h, h)

+
[
ϕ
(
t0, t–k

0 h +
(
t–k
0 – 1

)
e, tk

0h +
(
tk
0 – 1

)
e
)–1

ϕ
(
t0, t–k+1

0 h +
(
t–k+1
0 – 1

)
e, tk–1

0 h

+
(
tk–1
0 – 1

)
e
)–1 · · ·ϕ(

t0, t–1
0 h +

(
t–1
0 – 1

)
e, t0h + (t0 – 1)e

)–1 – 1
]
e

≤ ϕ
(
t0, t–1

0 h +
(
t–1
0 – 1

)
e, t0h + (t0 – 1)e

)–kT(h, h)

+
[
ϕ
(
t0, t–1

0 h +
(
t–1
0 – 1

)
e, t0h + (t0 – 1)e

)–k – 1
]
e

≤ ϕ
(
t0, t–1

0 h, t0h
)–kT(h, h) +

[
ϕ
(
t0, t–1

0 h, t0h
)–k – 1

]
e

≤ ϕ(t0, h, h)–kT(h, h) +
[
ϕ(t0, h, h)–k – 1

]
e

≤ ϕ(t0, h, h)–k[t–1
0 h +

(
t–1
0 – 1

)
e
]

+
[
ϕ(t0, h, h)–k – 1

]
e

= ϕ(t0, h, h)–kt–1
0 h + ϕ(t0, h, h)–kt–1

0 e – e

≤ t–k
0 h +

(
t–k
0 – 1

)
e = yk = v0.

Thus

u0 ≤ T(u0, v0) ≤ T(v0, u0) ≤ v0.

We deduce for all n ∈N that

u0 ≤ u1 ≤ · · · ≤ un ≤ · · · ≤ vn ≤ · · · ≤ v1 ≤ v0. (2.2)

In addition

un ≥ u0 ≥ sv0 + (s – 1)e ≥ svn + (s – 1)e, n = 1, 2, . . . .

Let

tn = sup
{

t > 0 | un ≥ tvn + (t – 1)e
}

.

Thus we have un ≥ tnvn + (tn – 1)e, n = 1, 2, . . . . Consequently {tn} is increasing with {tn} ⊂
(0, 1]. Assume that tn → t∗ as n → ∞, then t∗ = 1. If not, 0 < t∗ < 1.

Next, we need to prove that t∗ = 1. If 0 < t∗ < 1, we should discuss the following two
cases.

Case 1: there is an integer N such that tN = t∗. In this case, we have tn = t∗ for all n > N .
Then

un+1 = T(un, vn) ≥ T
(
tnvn + (tn – 1)e, t–1

n un +
(
t–1
n – 1

)
e
)

= T
(
t∗vn +

(
t∗ – 1

)
e,

(
t∗)–1un +

((
t∗)–1 – 1

)
e
)

≥ ϕ
(
t∗, vn, un

)
T(vn, un) +

(
ϕ
(
t∗, vn, un

)
– 1

)
e

≥ ϕ
(
t∗, u0, v0

)
T(u0, v0) +

(
ϕ
(
t∗, u0, v0

)
– 1

)
e.
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We can get t∗ = tn+1 ≥ ϕ(t∗) > t∗ from the definition of tn+1, which is a contradic-
tion.

Case 2: for all n, tn < t∗, we have

un+1 = T(un, vn) ≥ T
(
tnvn + (tn – 1)e, t–1

n un +
(
t–1
n – 1

)
e
)

= T
(

tn

t∗
(
t∗vn +

(
t∗ – 1

)
e
)

+
(

tn

t∗ – 1
)

e,
(

tn

t∗

)–1((
t∗)–1un +

((
t∗)–1 – 1

)
e
)

+
((

tn

t∗

)–1

– 1
)

e
)

≥ ϕ

(
tn

t∗ , t∗vn +
(
t∗ – 1

)
e,

(
t∗)–1un +

((
t∗)–1 – 1

)
e
)

T
(
t∗vn +

(
t∗ – 1

)
e,

(
t∗)–1un

+
((

t∗)–1 – 1
)
e
)

+
(

ϕ

(
tn

t∗ , t∗vn +
(
t∗ – 1

)
e,

(
t∗)–1un +

((
t∗)–1 – 1

)
e
)

– 1
)

e

≥ ϕ

(
tn

t∗ , t∗vn +
(
t∗ – 1

)
e,

(
t∗)–1un +

((
t∗)–1 – 1

)
e
)

[
ϕ
(
t∗, vn, un

)
T(vn, un)

+
(
ϕ
(
t∗, vn, un

)
– 1

)
e
]

+
(

ϕ

(
tn

t∗ , t∗vn +
(
t∗ – 1

)
e,

(
t∗)–1un +

((
t∗)–1 – 1

)
e
)

– 1
)

e

≥ ϕ

(
tn

t∗ , t∗u0 +
(
t∗ – 1

)
e,

(
t∗)–1v0 +

((
t∗)–1 – 1

)
e
)

ϕ
(
t∗, u0, v0

)
T(vn, un)

+
(

ϕ

(
tn

t∗ , t∗u0 +
(
t∗ – 1

)
e,

(
t∗)–1v0 +

((
t∗)–1 – 1

)
e
)

ϕ
(
t∗, u0, v0

)
– 1

)

e.

By the definition of tn+1, we have

tn+1 ≥ ϕ

(
tn

t∗ , t∗u0 +
(
t∗ – 1

)
e,

(
t∗)–1v0 +

((
t∗)–1 – 1

)
e
)

ϕ
(
t∗, u0, v0

) ≥ tn

t∗ ϕ
(
t∗, u0, v0

)
.

Let n → ∞, we have t∗ ≥ ϕ(t∗, u0, v0) > t∗, which is a contradiction. Consequently t∗ = 1.
Since P is normal, we have

‖un+p – un‖ ≤ M(1 – tn)‖v0 + e‖, ‖vn – vn+p‖ ≤ M(1 – tn)‖v0 + e‖,

where M is the normality constant. Let n → ∞, we get

‖un+p – un‖ −→ 0, ‖vn – vn+p‖ −→ 0.

Therefore un and vn are Cauchy sequences. Repeating the proof of Lemma 2.3 in Sang and
Ren [21], we derive that our conclusions hold. �

Lemma 2.7 Let P be a normal cone and T : Ph,e ×Ph,e −→ E be a mixed monotone operator.
Assume that the condition (i) in Lemma 2.6 is satisfied. In addition, ϕ(t, u, v) is decreasing
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in u and increasing in v for every t ∈ (0, 1). Furthermore, there exists t0 ∈ (0, 1) such that

t0h + (t0 – 1)e ≤ T(h, h)

≤ 1
t0

ϕ
(
t0, t–1

0 h +
(
t–1
0 – 1

)
e, t0h + (t0 – 1)e

)
h

+
[

1
t0

ϕ
(
t0, t–1

0 h +
(
t–1
0 – 1

)
e, t0h + (t0 – 1)e

)
– 1

]

e.

(2.3)

Then the conclusions (1), (2), (3) in Lemma 2.6 hold.

Proof As in the proof of Lemma 2.6, we only need to check that u1 = T(u0, v0) ≥ u0 and
v1 = T(v0, u0) ≤ v0 hold. For every t ∈ (0, 1), since ϕ(t, u, v) is decreasing in u and increasing
in v, by (2.3), we have

u1 = T(u0, v0)

= T
(
tk
0h +

(
tk
0 – 1

)
e, t–k

0 h +
(
t–k
0 – 1

)
e
)

≥ [
ϕ
(
t0, tk–1

0 h +
(
tk–1
0 – 1

)
e, t–k+1

0 h +
(
t–k+1
0 – 1

)
e
)
ϕ
(
t0, tk–2

0 h +
(
tk–2
0 – 1

)
e, t–k+2

0 h

+
(
t–k+2
0 – 1

)
e
) · · ·ϕ(t0, h, h)

]
T(h, h) +

[
ϕ
(
t0, tk–1

0 h +
(
tk–1
0 – 1

)
e, t–k+1

0 h

+
(
t–k+1
0 – 1

)
e
)
ϕ
(
t0, tk–2

0 h +
(
tk–2
0 – 1

)
e, t–k+2

0 h +
(
t–k+2
0 – 1

)
e
) · · ·ϕ(t0, h, h) – 1

]
e

≥ [
ϕ(t0, h, h)

]kT(h, h) +
([

ϕ(t0, h, h)
]k – 1

)
e

≥ [
ϕ(t0, h, h)

]k[t0h + (t0 – 1)e
]

+
([

ϕ(t0, h, h)
]k – 1

)
e

≥ tk
0h +

(
tk
0 – 1

)
e = xk = u0

and

v1 = T(v0, u0)

= T
(
t–k
0 h +

(
t–k
0 – 1

)
e, tk

0h +
(
tk
0 – 1

)
e
)

≤ [
ϕ
(
t0, t–k

0 h +
(
t–k
0 – 1

)
e, tk

0h +
(
tk
0 – 1

)
e
)–1

ϕ
(
t0, t–k+1

0 h +
(
t–k+1
0 – 1

)
e,

tk–1
0 h +

(
tk–1
0 – 1

)
e
)–1 · · ·ϕ(

t0, t–1
0 h +

(
t–1
0 – 1

)
e, t0h + (t0 – 1)e

)–1]T(h, h)

+
[
ϕ
(
t0, t–k

0 h +
(
t–k
0 – 1

)
e, tk

0h +
(
tk
0 – 1

)
e
)–1

ϕ
(
t0, t–k+1

0 h +
(
t–k+1
0 – 1

)
e,

tk–1
0 h +

(
tk–1
0 – 1

)
e
)–1 · · ·ϕ(

t0, t–1
0 h +

(
t–1
0 – 1

)
e, t0h + (t0 – 1)e

)–1 – 1
]
e

≤ t–k+1
0 ϕ

(
t0, t–1

0 h +
(
t–1
0 – 1

)
e, t0h + (t0 – 1)e

)–1T(h, h)

+
[
t–k+1
0 ϕ

(
t0, t–1

0 h +
(
t–1
0 – 1

)
e, t0h + (t0 – 1)e

)–1 – 1
]
e

≤ t–k
0 h +

(
t–k
0 – 1

)
e = yk = v0.

The rest of the proof is similar to that of Lemma 2.6, we omit it here. �

3 Main results
In this section, we will establish the existence and uniqueness of nontrivial solution for
the problem (1.1). The main tools are fixed point theorems of an operator equation.
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Theorem 3.1 Let P be a normal cone in E, and let M, N : Ph,e × Ph,e −→ E be two mixed
monotone operators, and the following conditions are satisfied:

(L1) for all t ∈ (0, 1) and x, y ∈ Ph,e, there exists ψ(t, x, y) > t such that

M
(
tx + (t – 1)e, t–1y +

(
t–1 – 1

)
e
) ≥ ψ(t, x, y)M(x, y) +

(
ψ(t, x, y) – 1

)
e;

(L2) for fixed t ∈ (0, 1) and x ∈ Ph,e, ψ(t, x, y) is decreasing in y, and for fixed t ∈ (0, 1)
and y ∈ Ph,e, ψ(t, x, y) is increasing in x;

(L3) for all t ∈ (0, 1) and x, y ∈ Ph,e,

N
(
tx + (t – 1)e, t–1y +

(
t–1 – 1

)
e
) ≥ tN(x, y) + (t – 1)e;

(L4) there exists t0 ∈ (0, 1) such that

t0

ψ(t0, h, h)
h +

(
t0

ψ(t0, h, h)
– 1

)

e ≤ M(h, h) ≤ 1
t0

h +
(

1
t0

– 1
)

e,

N(h, h) ∈ Ph,e;

(L5) for all x, y ∈ Ph,e, there exists a constant δ > 0 such that

M(x, y) ≥ δN(x, y) + (δ – 1)e.

Then the operator equation M(x, x) + N(x, x) + e = x has a unique solution x∗ in Ph,e, and
for any initial values x0, y0 ∈ Ph,e, by setting the sequences {xn} and {yn} as follows:

xn = M(xn–1, yn–1) + N(xn–1, yn–1) + e, n = 1, 2, . . . ,

yn = M(yn–1, xn–1) + N(yn–1, xn–1) + e, n = 1, 2, . . . ,

we have xn → x∗ and yn → x∗ in E as n → ∞.

Proof For every xi, yi ∈ Ph,e (i = 1, 2) with x1 ≥ x2, y1 ≤ y2, the mixed monotone properties
of M(x, y) and N(x, y) lead to

M(x1, y1) ≥ M(x2, y2), N(x1, y1) ≥ N(x2, y2).

Now we define the operator T : Ph,e × Ph,e → E by

T(x, y) = M(x, y) + N(x, y) + e, for all x, y ∈ Ph,e. (3.1)

We have

T(x1, y1) = M(x1, y1) + N(x1, y1) + e ≥ M(x2, y2) + N(x2, y2) + e = T(x2, y2).

Thus, T is a mixed monotone operator. Note that N(h, h) ∈ Ph,e, there exist a1, a2 ∈ Ph,e

such that

a1h + (a1 – 1)e ≤ N(h, h) ≤ a2h + (a2 – 1)e.
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From (3.1), we have

T(h, h) = M(h, h) + N(h, h) + e.

By the condition (L4), we obtain

T(h, h) ≥ t0

ψ(t0, h, h)
h +

(
t0

ψ(t0, h, h)
– 1

)

e + a1h + (a1 – 1)e

=
(

t0

ψ(t0, h, h)
+ a1

)

h +
(

t0

ψ(t0, h, h)
+ a1 – 1

)

e

and

T(h, h) ≤ 1
t0

h +
(

1
t0

– 1
)

e + a2h + (a2 – 1)e

=
(

1
t0

+ a2

)

h +
(

1
t0

+ a2 – 1
)

e.

Hence, the condition (iii) in Lemma 2.6 is proved. Next, by the condition (L4), we have

M(x, y) + δM(x, y) ≥ δN(x, y) + (δ – 1)e + δM(x, y),

M(x, y) ≥ δ

1 + δ
T(x, y) –

e
1 + δ

. (3.2)

By conditions (L1), (L3), (3.1) and (3.2), for every x, y ∈ Ph,e, we obtain

T
(
tx + (t – 1)e, t–1y +

(
t–1 – 1

)
e
)

– tT(x, y)

= M
(
tx + (t – 1)e, t–1y +

(
t–1 – 1

)
e
)

+ N
(
tx + (t – 1)e, t–1y +

(
t–1 – 1

)
e
)

+ e

– t
(
M(x, y) + N(x, y) + e

)

≥ ψ(t, x, y)M(x, y) +
(
ψ(t, x, y) – 1

)
e + tN(x, y) + (t – 1)e + e – tM(x, y)

– tN(x, y) – te

=
(
ψ(t, x, y) – t

)
M(x, y) +

(
ψ(t, x, y) – 1

)
e

≥ (
ψ(t, x, y) – t

)
(

δ

1 + δ
T(x, y) –

e
1 + δ

)

+
(
ψ(t, x, y) – 1

)
e

=
δ(ψ(t, x, y) – t)

1 + δ
T(x, y) +

(

ψ(t, x, y) – 1 –
ψ(t, x, y) – t

1 + δ

)

e.

Therefore

T
(
tx + (t – 1)e, t–1y +

(
t–1 – 1

)
e
)

≥
(

δ(ψ(t, x, y) – t)
1 + δ

+ t
)

T(x, y) +
(

ψ(t, x, y) – 1 –
ψ(t, x, y) – t

1 + δ

)

e

=
δψ(t, x, y) + t

1 + δ
T(x, y) +

(
δψ(t, x, y) + t

1 + δ
– 1

)

e.

(3.3)
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Let ϕ(t, x, y) = δψ(t,x,y)+t
1+δ

. Then ϕ(t, x, y) > t, t ∈ (0, 1), together with (3.3), we obtain

T
(
tx + (t – 1)e, t–1y +

(
t–1 – 1

)
e
) ≥ ϕ(t, x, y)T(x, y) +

(
ϕ(t, x, y) – 1

)
e, ∀x, y ∈ Ph,e.

Thus condition (i) in Lemma 2.6 is proved. By (L2), for every x1 ≥ x2 and y1 ≤ y2 with
xi, yi ∈ Ph,e, i = 1, 2, we have

ψ(t, x1, y1) ≥ ψ(t, x2, y2).

Therefore

ϕ(t, x1, y1) =
δψ(t, x1, y1) + t

1 + δ
≥ δψ(t, x2, y2) + t

1 + δ
= ϕ(t, x2, y2).

Thus we deduce condition (ii) in Lemma 2.6 to be met. According to Lemma 2.6, we get
the conclusions of Theorem 3.1. �

In terms of Lemma 2.7, we can establish the following theorem, which is parallel with
Theorem 3.1.

Theorem 3.1′ Let P be a normal cone in E, and M, N : Ph,e × Ph,e −→ E be two mixed
monotone operators. The assumptions (L1), (L3) and (L5) in Theorem 3.1 are satisfied.
Furthermore, for fixed t ∈ (0, 1) and x ∈ Ph,e, ψ(t, x, y) is increasing in y, and for fixed t ∈
(0, 1) and y ∈ Ph,e, ψ(t, x, y) is decreasing in x. In addition, N(h, h) ∈ Ph,e, and there exists
t0 ∈ (0, 1) such that

t0h + (t0 – 1)e ≤ M(h, h)

≤ 1
t0

ψ
(
t0, t–1

0 h +
(
t–1
0 – 1

)
e, t0h + (t0 – 1)e

)
h

+
[

1
t0

ψ
(
t0, t–1

0 h +
(
t–1
0 – 1

)
e, t0h + (t0 – 1)e

)
– 1

]

e.

Then the conclusions of Theorem 3.1 hold.

Define E = {x | x ∈ C[0, 1], Dν
0+ x ∈ C[0, 1]}. Then E is a Banach space with an order re-

lation u ≤ v if u(t) ≤ v(t), Dν
0+ u(t) ≤ Dν

0+ v(t). Let P ⊂ E be defined by P = {x ∈ E | x(t) ≥
0, Dν

0+ x(t) ≥ 0} for all t ∈ [0, 1]. It is clear that P is a normal cone. Let

e(t) = b
∫ 1

0
G(t, s)

(
sβ–1 – sβ

(β + 1)
+

∑m–2
i=1 ζi(ηβ–1

i – η
β

i )sβ–1

B(β + 1)

)

ds, t ∈ [0, 1].

Theorem 3.2 Assume that
(H1) f , g : [0, 1] × [–e∗, +∞) × [–e∗, +∞) → (–∞, +∞) are continuous. For every

t ∈ [0, 1], g(t, 0,K(L)) ≥ 0 with g(t, 0,K(L)) �≡ 0 where L ≥ bDF
β(α)(β) and

e∗ = max{e(t) : t ∈ [0, 1]};
(H2) for fixed t ∈ [0, 1] and y ∈ [–e∗, +∞), f (t, x, y), g(t, x, y) are increasing in

x ∈ [–e∗, +∞); for fixed t ∈ [0, 1] and x ∈ [–e∗, +∞), f (t, x, y), g(t, x, y) are
decreasing in y ∈ [–e∗, +∞);
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(H3) for all λ ∈ (0, 1), there exists ψ(λ, x, y) ∈ (λ, 1) such that for all t ∈ [0, 1],
(a) f (t,λx + (λ – 1)ρ1,λ–1Dν

0+ y + (λ–1 – 1)ρ2) ≥ ψ(λ, x, y)f (t, x, Dν
0+ y),

(b) g(t,λx + (λ – 1)ρ3,λ–1y + (λ–1 – 1)ρ3) ≥ λg(t, x, y), where x, y ∈ [–e∗, +∞),
ρ1,ρ3 ∈ [0, e∗], and ρ2 ∈ [0, e∗] with e∗ = max{Dν

0+ e(t) : t ∈ [0, 1]},
(c) for fixed t ∈ [0, 1] and y ∈ Ph,e, ψ(λ, x, y) are increasing in x ∈ Ph,e and for fixed

t ∈ [0, 1] and x ∈ Ph,e, ψ(λ, x, y) are decreasing in y ∈ Ph,e;
(H4) for all t ∈ [0, 1], x, y ∈ [–e∗, +∞), there exists δ > 0 such that

f (t, x, y) ≥ δg(t, x, 0);

(H5) K : C[0, 1] → C[0, 1] and satisfies
(a) Ku ≥ 0 for every u ∈ Ph,e,
(b) for u, v ∈ Ph,e, u ≤ v �⇒Ku ≤Kv,
(c) for all λ ∈ (0, 1) and u ∈ Ph,e,

K
(
λu + (λ – 1)ê

) ≥ λK(u) + (λ – 1)ê, ê ∈ [
0, e∗];

(H6) there exists t0 ∈ (0, 1) such that

t0

ψ(t0, h, h)
h(t) +

t0

ψ(t0, h, h)
e(t)

≤
∫ 1

0
G(t, s)

(∫ 1

0
H(s, τ )f

(
τ , h(τ ), Dν

0+ h(τ )
)

dτ

)

ds

≤ 1
t0

h(t) +
1
t0

e(t).

Then the problem (1.1) has a unique solution u∗ in Ph,e, where h(t) = Ltα–1, for all t ∈ [0, 1].
We can construct the following sequences:

ωn(t) =
∫ 1

0
G(t, s)

(∫ 1

0
H(s, τ )f

(
τ ,ωn–1(τ ), Dν

0+σn–1(τ )
)

dτ

)

ds

+
∫ 1

0
G(t, s)

(∫ 1

0
H(s, τ )g

(
τ ,ωn–1(τ ), (Kσn–1)(τ )

)
dτ

)

ds – e(t), n = 1, 2, . . . ,

σn(t) =
∫ 1

0
G(t, s)

(∫ 1

0
H(s, τ )f

(
τ ,σn–1(τ ), Dν

0+ωn–1(τ )
)

dτ

)

ds

+
∫ 1

0
G(t, s)

(∫ 1

0
H(s, τ )g

(
τ ,σn–1, (Kωn–1)(τ )

)
dτ

)

ds – e(t), n = 1, 2, . . . ,

for every initial value ω0,σ0 ∈ Ph,e,we have ωn → u∗ and σn → u∗ as n → ∞.

Proof By [3], we have

∫ 1

0
H(s, τ ) dτ =

∫ 1

0
H1(s, τ ) dτ +

∫ 1

0
H2(s, τ ) dτ

=
sβ–1 – sβ

(β + 1)
+

∑m–2
i=1 ζi(ηβ–1

i – η
β

i )sβ–1

B(β + 1)
.
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Furthermore, it follows from Lemmas 2.4 and 2.5 that

0 < e(t) ≤ b
∫ 1

0

Dtα–1

(α)

(∫ 1

0

Fsβ–1

(β)
dτ

)

ds

=
bDF

(α)(β)
tα–1

∫ 1

0
sβ–1 ds

=
bDF

β(α)(β)
tα–1

≤ Ltα–1 = h(t),

where L ≥ bDF
β(α)(β) . Hence, 0 < e(t) ≤ h(t). By Lemma 2.3, we find that the problem (1.1)

has the following expression:

u(t) =
∫ 1

0
G(t, s)

(∫ 1

0
H(s, τ )

(
f
(
τ , u(τ ), Dν

0+ u(τ )
)

+ g
(
τ , u(τ ), (Ku)(τ )

)
– b

)
dτ

)

ds

=
∫ 1

0
G(t, s)

∫ 1

0
H(s, τ )f

(
τ , u(τ ), Dν

0+ u(τ )
)

dτ ds

+
∫ 1

0
G(t, s)

∫ 1

0
H(s, τ )g

(
τ , u(τ ), (Ku)(τ )

)
dτ ds

–
∫ 1

0
G(t, s)b

∫ 1

0
H(s, τ ) dτ ds

=
∫ 1

0
G(t, s)

∫ 1

0
H(s, τ )f

(
τ , u(τ ), Dν

0+ u(τ )
)

dτ ds – e(t)

+
∫ 1

0
G(t, s)

∫ 1

0
H(s, τ )g

(
τ , u(τ ), (Ku)(τ )

)
dτ ds – e(t) + e(t).

For every t ∈ [0, 1] and u, v ∈ Ph,e, we consider the following operators:

M(u, v)(t) =
∫ 1

0
G(t, s)

∫ 1

0
H(s, τ )f

(
τ , u(τ ), Dν

0+ v(τ )
)

dτ ds – e(t) (3.4)

and

N(u, v)(t) =
∫ 1

0
G(t, s)

∫ 1

0
H(s, τ )g

(
τ , u(τ ), (Kv)(τ )

)
dτ ds – e(t). (3.5)

Clearly, u(t) is the solution of problem (1.1) is equivalent to u is the fixed point of
M(u, v)(t) + N(u, v)(t) + e. By (3.4) and (3.5), we get

Dν
0+ M(u, v)(t) =

∫ 1

0
Dν

0+ G(t, s)
∫ 1

0
H(s, τ )f

(
τ , u(τ ), Dν

0+ v(τ )
)

dτ ds – Dν
0+ e(t),

Dν
0+ N(u, v)(t) =

∫ 1

0
Dν

0+ G(t, s)
∫ 1

0
H(s, τ )g

(
τ , u(τ ), (Kv)(τ )

)
dτ ds – Dν

0+ e(t).
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(1) Firstly, we show that M, N : Ph.e × Ph.e → E are two mixed monotone operators. By
(H1) and (H2), for every ui, vi ∈ Ph,e (i = 1, 2) with u1 ≥ u2, v1 ≤ v2, we have

M(u1, v1)(t) =
∫ 1

0
G(t, s)

∫ 1

0
H(s, τ )f

(
τ , u1(τ ), Dν

0+ v1(τ )
)

dτ ds – e(t)

≥
∫ 1

0
G(t, s)

∫ 1

0
H(s, τ )f

(
τ , u2(τ ), Dν

0+ v2(τ )
)

dτ ds – e(t) = M(u2, v2)(t)

and

Dν
0+ M(u1, v1)(t) =

∫ 1

0
Dν

0+ G(t, s)
∫ 1

0
H(s, τ )f

(
τ , u1(τ ), Dν

0+ v1(τ )
)

dτ ds – Dν
0+ e(t)

≥
∫ 1

0
Dν

0+ G(t, s)
∫ 1

0
H(s, τ )f

(
τ , u2(τ ), Dν

0+ v2(τ )
)

dτ ds – Dν
0+ e(t)

= Dν
0+ M(u2, v2)(t).

Hence, M is a mixed monotone operator. Similarly, we deduce

N(u1, v1)(t) =
∫ 1

0
G(t, s)

∫ 1

0
H(s, τ )g

(
τ , u1(τ ), (Kv1)(τ )

)
dτ ds – e(t)

≥
∫ 1

0
G(t, s)

∫ 1

0
H(s, τ )g

(
τ , u2(τ ), (Kv2)(τ )

)
dτ ds – e(t) = N(u2, v2)(t)

and

Dν
0+ N(u1, v1)(t) =

∫ 1

0
Dν

0+ G(t, s)
∫ 1

0
H(s, τ )g

(
τ , u1(τ ), (Kv1)(τ )

)
dτ ds – Dν

0+ e(t)

≥
∫ 1

0
Dν

0+ G(t, s)
∫ 1

0
H(s, τ )g

(
τ , u2(τ ), (Kv2)(τ )

)
dτ ds – Dν

0+ e(t)

= Dν
0+ N(u2, v2)(t).

Thus, N is also a mixed monotone operator.
(2) Next, by (H3), for every t ∈ [0, 1] and λ ∈ (0, 1), there exists ψ(λ, u, v) ∈ (λ, 1) such

that, for every u, v ∈ Ph,e, we get

M
(
λu + (λ – 1)e,λ–1v +

(
λ–1 – 1

)
e
)
(t)

=
∫ 1

0
G(t, s)

∫ 1

0
H(s, τ )f

(
τ ,λu + (λ – 1)e, Dν

0+
(
λ–1v +

(
λ–1 – 1

)
e
))

dτ ds – e(t)

=
∫ 1

0
G(t, s)

∫ 1

0
H(s, τ )f

(
τ ,λu + (λ – 1)e,λ–1Dν

0+ v +
(
λ–1 – 1

)
Dν

0+ e
)

dτ ds – e(t)

≥
∫ 1

0
G(t, s)

∫ 1

0
H(s, τ )ψ

(
λ, u(τ ), v(τ )

)
f
(
τ , u(τ ), Dν

0+ v(τ )
)

dτ ds – e(t)

+ ψ(λ, u, v)e(t) – ψ(λ, u, v)e(t)

= ψ(λ, u, v)M(u, v)(t) +
(
ψ(λ, u, v) – 1

)
e(t)
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and

Dν
0+ M

(
λu + (λ – 1)e,λ–1v +

(
λ–1 – 1

)
e
)
(t)

=
∫ 1

0
Dν

0+ G(t, s)
∫ 1

0
H(s, τ )f

(
τ ,λu + (λ – 1)e, Dν

0+
(
λ–1v +

(
λ–1 – 1

)
e
))

dτ ds

– Dν
0+ e(t)

=
∫ 1

0
Dν

0+ G(t, s)
∫ 1

0
H(s, τ )f

(
τ ,λu + (λ – 1)e,λ–1Dν

0+ v +
(
λ–1 – 1

)
Dν

0+ e
)

dτ ds

– Dν
0+ e(t)

≥
∫ 1

0
Dν

0+ G(t, s)
∫ 1

0
H(s, τ )ψ

(
λ, u(τ ), v(τ )

)
f
(
τ , u(τ ), Dν

0+ v(τ )
)

dτ ds – Dν
0+ e(t)

+ ψ(λ, u, v)Dν
0+ e(t) – ψ(λ, u, v)Dν

0+ e(t)

= ψ(λ, u, v)Dν
0+ M(u, v)(t) +

(
ψ(λ, u, v) – 1

)
Dν

0+ e(t).

Thus, M(λu + (λ – 1)e,λ–1v + (λ–1 – 1)e) ≥ ψ(λ, u, v)M(u, v) + (ψ(λ, u, v) – 1)e.
In view of (H3)(b) and (H5), we derive

K
(
λ–1u +

(
λ–1 – 1

)
e
) ≤ λ–1(Ku) +

(
λ–1 – 1

)
e,

N
(
λu + (λ – 1)e,λ–1v +

(
λ–1 – 1

)
e
)
(t)

=
∫ 1

0
G(t, s)

∫ 1

0
H(s, τ )g(τ ,λu + (λ – 1)e,

(
K

(
λ–1v +

(
λ–1 – 1

)
e
))

dτ ds – e(t)

≥
∫ 1

0
G(t, s)

∫ 1

0
H(s, τ )g

(
τ ,λu + (λ – 1)e,λ–1(Kv) +

(
λ–1 – 1

)
e
)

dτ ds – e(t)

≥
∫ 1

0
G(t, s)

∫ 1

0
H(s, τ )λg

(
τ , u(τ ), (Kv)(τ )

)
dτ ds – e(t)

= λ

∫ 1

0
G(t, s)

∫ 1

0
H(s, τ )g

(
τ , u(τ ), (Kv)(τ )

)
dτ ds – e(t) + λe(t) – λe(t)

= λN(u, v)(t) + (λ – 1)e(t),

and

Dν
0+ N

(
λu + (λ – 1)e,λ–1v +

(
λ–1 – 1

)
e
)
(t)

=
∫ 1

0
Dν

0+ G(t, s)
∫ 1

0
H(s, τ )g(τ ,λu + (λ – 1)e,

(
K

(
λ–1v +

(
λ–1 – 1

)
e
))

dτ ds – Dν
0+ e(t)

≥
∫ 1

0
Dν

0+ G(t, s)
∫ 1

0
H(s, τ )g

(
τ ,λu + (λ – 1)e,λ–1(Kv) +

(
λ–1 – 1

)
e
)

dτ ds – Dν
0+ e(t)

≥
∫ 1

0
Dν

0+ G(t, s)
∫ 1

0
H(s, τ )λg

(
τ , u(τ ), (Kv)(τ )

)
dτ ds – Dν

0+ e(t)

= λ

∫ 1

0
Dν

0+ G(t, s)
∫ 1

0
H(s, τ )g

(
τ , u(τ ), (Kv)(τ )

)
dτ ds
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– Dν
0+ e(t) + λDν

0+ e(t) – λDν
0+ e(t)

= λDν
0+ N(u, v)(t) + (λ – 1)Dν

0+ e(t).

Thus, N(λu + (λ – 1)e,λ–1v + (λ–1 – 1)e) ≥ λN(u, v) + (λ – 1)e.
(3) In view of (H6), we have

M(h, h)(t) =
∫ 1

0
G(t, s)

∫ 1

0
H(s, τ )f

(
τ , h(τ ), Dν

0+ h(τ )
)

dτ ds – e(t)

≤ 1
t0

h(t) +
(

1
t0

– 1
)

e(t),

M(h, h)(t) ≥ t0

ψ(t0, h, h)
h(t) +

(
t0

ψ(t0, h, h)
– 1

)

e(t),

and

Dν
0+ M(h, h)(t) =

∫ 1

0
Dν

0+ G(t, s)
∫ 1

0
H(s, τ )f

(
τ , h(τ ), Dν

0+ h(τ )
)

dτ ds – Dν
0+ e(t)

≤ Dν
0+

1
t0

h(t) +
(

1
t0

– 1
)

Dν
0+ e(t),

Dν
0+ M(h, h)(t) ≥ Dν

0+
t0

ψ(t0, h, h)
h(t) +

(
t0

ψ(t0, h, h)
– 1

)

Dν
0+ e(t).

Thus,

t0

ψ(t0, h, h)
h +

(
t0

ψ(t0, h, h)
– 1

)

e ≤ M(h, h) ≤ ψ(t0, h, h)
t0

h +
(

ψ(t0, h, h)
t0

– 1
)

e.

Next we show that N(h, h) ∈ Ph,e. It suffices to prove that N(h, h) + e ∈ Ph. From Lemma 2.4
and the condition (H2), we have

N(h, h)(t) + e(t) =
∫ 1

0
G(t, s)

∫ 1

0
H(s, τ )g

(
τ , h(τ ), (Kh)(τ )

)
dτ ds

≤
∫ 1

0

Dtα–1

(α)

∫ 1

0
H(s, τ )g

(
τ , Lτα–1,K

(
Lτα–1))dτ ds

≤ Dtα–1

(α)

∫ 1

0

∫ 1

0
H(s, τ )g(τ , L, 0) dτ ds

=
Dh(t)
L(α)

∫ 1

0

∫ 1

0
H(s, τ )g(τ , L, 0) dτ ds,

N(h, h)(t) + e(t) =
∫ 1

0
G(t, s)

∫ 1

0
H(s, τ )g

(
τ , h(τ ), (Kh)(τ )

)
dτ ds

≥
∫ 1

0

C(s)
(α)

tα–1
∫ 1

0
H(s, τ )g

(
τ , Lτα–1,K

(
Lτα–1))dτ ds

≥ tα–1

(α)

∫ 1

0
C(s)

∫ 1

0
H(s, τ )g

(
τ , 0,K(L)

)
dτ ds

=
h(t)

L(α)

∫ 1

0
C(s)

∫ 1

0
H(s, τ )g

(
τ , 0,K(L)

)
dτ ds,
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and

Dν
0+ N(h, h)(t) + Dν

0+ e(t) =
∫ 1

0
Dν

0+ G(t, s)
∫ 1

0
H(s, τ )g

(
τ , h(τ ), (Kh)(τ )

)
dτ ds

≤
∫ 1

0

Dtα–ν–1

(α – ν)

∫ 1

0
H(s, τ )g

(
τ , Lτα–1,K

(
Lτα–1))dτ ds

≤ Dtα–ν–1

(α – ν)

∫ 1

0

∫ 1

0
H(s, τ )g(τ , L, 0) dτ ds

=
DDν

0+ h(t)
L(α)

∫ 1

0

∫ 1

0
H(s, τ )g(τ , L, 0) dτ ds,

Dν
0+ N(h, h)(t) + Dν

0+ e(t) =
∫ 1

0
Dν

0+ G(t, s)
∫ 1

0
H(s, τ )g

(
τ , h(τ ), (Kh)(τ )

)
dτ ds

≥
∫ 1

0

C(s)
(α – ν)

tα–ν–1
∫ 1

0
H(s, τ )g

(
τ , Lτα–1,K

(
Lτα–1))dτ ds

≥ tα–ν–1

(α – ν)

∫ 1

0
C(s)

∫ 1

0
H(s, τ )g

(
τ , 0,K(L)

)
dτ ds

=
Dν

0+ h(t)
L(α)

∫ 1

0
C(s)

∫ 1

0
H(s, τ )g

(
τ , 0,K(L)

)
dτ ds.

Let

l1 =
D

L(α)

∫ 1

0

∫ 1

0
H(s, τ )g(τ , L, 0) dτ ds,

l2 =
1

L(α)

∫ 1

0
C(s)

∫ 1

0
H(s, τ )g

(
τ , 0,K(L)

)
dτ ds.

Then l2h ≤ N(h, h) + e ≤ l1h, thus N(h, h) ∈ Ph,e. Therefore, the condition (L4) of Theo-
rem 3.1 is proved.

(4) For every u, v ∈ Ph,e and t ∈ [0, 1], we derive that

M(u, v)(t) =
∫ 1

0
G(t, s)

∫ 1

0
H(s, τ )f

(
τ , u(τ ), Dν

0+ v(τ )
)

dτ ds – e(t)

≥
∫ 1

0
G(t, s)

∫ 1

0
H(s, τ )δg

(
τ , u(τ ), 0

)
dτ ds – e(t)

≥
∫ 1

0
G(t, s)

∫ 1

0
H(s, τ )δg

(
τ , u(τ ), (Kv)(τ )

)
dτ ds – e(t)

= δ

∫ 1

0
G(t, s)

∫ 1

0
H(s, τ )g

(
τ , u(τ ), (Kv)(τ )

)
dτ ds – e(t) + δe(t) – δe(t)

= δN(u, v)(t) + (δ – 1)e(t)

and

Dν
0+ M(u, v)(t) =

∫ 1

0
Dν

0+ G(t, s)
∫ 1

0
H(s, τ )f

(
τ , u(τ ), Dν

0+ v(τ )
)

dτ ds – Dν
0+ e(t)

≥
∫ 1

0
Dν

0+ G(t, s)
∫ 1

0
H(s, τ )δg

(
τ , u(τ ), 0

)
dτ ds – Dν

0+ e(t)
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≥
∫ 1

0
Dν

0+ G(t, s)
∫ 1

0
H(s, τ )δg

(
τ , u(τ ), (Kv)(τ )

)
dτ ds – Dν

0+ e(t)

= δ

∫ 1

0
G(t, s)

∫ 1

0
H(s, τ )g

(
τ , u(τ ), (Kv)(τ )

)
dτ ds – Dν

0+ e(t)

+ δDν
0+ e(t) – δDν

0+ e(t)

= δDν
0+ N(u, v)(t) + (δ – 1)Dν

0+ e(t).

Therefore, M(u, v) ≥ δN(u, v) + (δ – 1)e. That is, the condition (L5) of Theorem 3.1 is sat-
isfied. Consequently, all the conditions of Theorem 3.1 are satisfied, the conclusions of
Theorem 3.2 hold. �

By the proof of Theorem 3.2, combining with Theorem 3.1′, we can obtain the following
result.

Theorem 3.2′ Assume that the conditions (H1), (H2), (H3)(a)(b), (H4) and (H5) in Theo-
rem 3.2 are satisfied. Moreover, for fixed t ∈ [0, 1] and y ∈ Ph,e, ψ(λ, x, y) are decreasing in
x ∈ Ph,e and for fixed t ∈ [0, 1] and x ∈ Ph,e, ψ(λ, x, y) are increasing in y ∈ Ph,e. In addition,
there exists t0 ∈ (0, 1) such that

t0h(t) + (t0 – 1)e(t)

≤
∫ 1

0
G(t, s)

(∫ 1

0
H(s, τ )f

(
τ , h(τ ), Dν

0+ h(τ )
)

dτ

)

ds – e(t)

≤ 1
t0

ψ
(
t0, t–1

0 h +
(
t–1
0 – 1

)
e, t0h + (t0 – 1)e

)
h(t)

+
[

1
t0

ψ
(
t0, t–1

0 h +
(
t–1
0 – 1

)
e, t0h + (t0 – 1)e

)
– 1

]

e(t).

Then the conclusions of Theorem 3.2 hold.

Lastly, let us give an example to illustrate our main results.

Example 3.1 Consider the following boundary value problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D
3
2
0+ (D

3
2
0+ u)(t) = 2t2 + 1 + (u(t) + 15

2( 3
2 )

+ 1) 1
3 + (u(t) + 15

2( 3
2 )

+ 1) 1
2

+ (D
1
8
0+ u(t) + 15

2( 3
2 )

+ 1)
–1
5

+ (
∫ t

0 (u(s) + 15
2( 3

2 )
) ds + 15

2( 3
2 )

+ 1)–1 – 10,

u(0) = 0, D
3
2
0+ u(0) = 0,

D
1
4
0+ u(1) = 1

10 D
1
4
0+ u( 1

4 ) + 1
10 D

1
4
0+ u( 1

2 ) + 1
10 D

1
4
0+ u( 3

4 ),

D
3
2
0+ u(1) = 1

10 D
3
2
0+ u( 1

4 ) + 1
10 D

3
2
0+ u( 1

2 ) + 1
10 D

3
2
0+ u( 3

4 ).

(3.6)

Then the problem (3.6) has a solution.

Proof The problem (1.1) becomes the problem (3.6) when we choose n = 2, α = 3
2 , β = 3

2 ,
γ = 1

4 , ν = 1
8 , b = 10, η1 = 1

4 , η2 = 1
2 , η3 = 3

4 , ξ1 = ξ2 = ξ3 = 1
10 , and ζ1 = ζ2 = ζ3 = 1

10 . Then we
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have

A = 1 –
m–2∑

i=1

ξiη
α–γ –1
i ≈ 0.7521 > 0,

B = 1 –
m–2∑

i=1

ζiη
β–1
i ≈ 0.7927 > 0,

F =
1
B

(

1 +
m–2∑

i=1

ζi
(
1 – η

β–1
i

)
)

≈ 1.5571,

D =
1
A

(

1 +
m–2∑

i=1

ξi
(
1 – η

α–γ –1
i

)
)

≈ 1.3988.

A direct computation leads to

∫ 1

0
H(s, τ ) dτ =

∫ 1

0
H1(s, τ ) dτ +

∫ 1

0
H2(s, τ ) dτ

=
s 1

2 – s 3
2

( 5
2 )

+
3

10 [ 1
4

1
2 – 1

4

3
2 + 1

2

1
2 – 1

2

3
2 + 3

4

1
2 – 3

4

3
2 ]s 1

2

B( 5
2 )

,

e(t) = 10
∫ 1

0
G(t, s)

∫ 1

0
H(s, τ ) dτ ds

= 10
∫ 1

0
G(t, s)

[
s 1

2 – s 3
2

( 5
2 )

+
3

10 [ 1
4

1
2 – 1

4

3
2 + 1

2

1
2 – 1

2

3
2 + 3

4

1
2 – 3

4

3
2 ]s 1

2

B( 5
2 )

]

ds

≤ 10
∫ 1

0

Dt 1
2

( 3
2 )

[
s 1

2 – s 3
2

( 5
2 )

+
3

10 [ 1
4

1
2 – 1

4

3
2 + 1

2

1
2 – 1

2

3
2 + 3

4

1
2 – 3

4

3
2 ]s 1

2

B( 5
2 )

]

ds

≤ 15
2( 3

2 )
t

1
2 = Lt

1
2 = h(t),

and

e∗ ≤ 15
2( 3

2 )
, D

1
8
0+ e(t) ≤ 15

( 3
2 )( 11

8 )
.

Let

f (t, u, v) = t2 + 1 +
(

u(t) +
15

2( 3
2 )

+ 1
) 1

2
+

(

v(t) +
15

2( 3
2 )

+ 1
)– 1

5
,

g(t, u, v) = t2 +
(

u(t) +
15

2( 3
2 )

+ 1
) 1

3
+

(

v(t) +
15

2( 3
2 )

+ 1
)–1

,

(Ku)(t) =
∫ t

0

(

u(s) +
15

2( 3
2 )

)

ds.
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For λ ∈ (0, 1) and ê ∈ [0, 15
2( 3

2 )
], we deduce

K
(
λu + (λ – 1)ê

)
=

∫ t

0

(

λu + (λ – 1)ê +
15

2( 3
2 )

)

ds

= λ

∫ t

0
u ds +

∫ t

0
(λ – 1)ê ds +

∫ t

0

15
2( 3

2 )
ds

≥ λ(Ku)(t) + (λ – 1)ê,

and (Ku) is increasing in u, thus (H5) is satisfied. It is easy to check that f , g : [0, 1] ×
[– 15

2( 3
2 )

, +∞) × [– 15
2( 3

2 )
, +∞) → (–∞, +∞) are continuous, f (t, u, v), g(t, u, v) are both in-

creasing in u and decreasing in v and g(t, 0,K(L)) = t2 + ( 15
2( 3

2 )
+ 1) 1

3 + (K(L) + 15
2( 3

2 )
+ 1)–1 >

0. Thus, (H1) and (H2) are satisfied.
For all λ ∈ (0, 1), t ∈ [0, 1], u, v ∈ Ph,e, ρ1,ρ3 ∈ [0, 15

2( 3
2 )

] and ρ2 ∈ [0, 15
( 3

2 )( 11
8 )

], there exists

ψ(λ, u, v) = λ
1
2 such that

f
(
t,λu + (λ – 1)ρ1,λ–1D

1
8
0+ v +

(
λ–1 – 1

)
ρ2

)

= t2 + 1 +
(

λu + (λ – 1)ρ1 +
15

2( 3
2 )

+ 1
) 1

2

+
(

λ–1D
1
8
0+ v +

(
λ–1 – 1

)
ρ2 +

15
2( 3

2 )
+ 1

)– 1
5

= t2 + 1 + λ
1
2

(

u +
(
1 – λ–1)ρ1 + λ–1 15

2( 3
2 )

+ λ–1
) 1

2

+ λ
1
5

(

D
1
8
0+ v + (1 – λ)ρ2 + λ

15
2( 3

2 )
+ λ

)– 1
5

≥ t2 + 1 + λ
1
2

(

u +
(
1 – λ–1) 15

2( 3
2 )

+ λ–1 15
2( 3

2 )
+ λ–1

) 1
2

+ λ
1
5

(

D
1
8
0+ v + (1 – λ)

15
( 3

2 )( 11
8 )

+ λ
15

2( 3
2 )

+ λ

)– 1
5

≥ t2 + 1 + λ
1
2

(

u +
15

2( 3
2 )

+ 1
) 1

2

+ λ
1
5

(

D
1
8
0+ v + (1 – λ)

15
2( 3

2 )
+ λ

15
2( 3

2 )
+ λ

)– 1
5

≥ t2 + 1 + λ
1
2

(

u +
15

2( 3
2 )

+ 1
) 1

2
+ λ

1
5

(

D
1
8
0+ v +

15
2( 3

2 )
+ 1

)– 1
5

≥ λ
1
2

[

t2 + 1 +
(

u +
15

2( 3
2 )

+ 1
) 1

2
+

(

D
1
8
0+ v +

15
2( 3

2 )
+ 1

)– 1
5
]

= ψ(λ, u, v)f
(
t, u, D

1
8
0+ v

)
.
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Moreover, we deduce

g
(
t,λu + (λ – 1)ρ3,λ–1v +

(
λ–1 – 1

)
ρ3

)

= t2 +
(

λu + (λ – 1)ρ3 +
15

2( 3
2 )

+ 1
) 1

3
+

(

λ–1v +
(
λ–1 – 1

)
ρ3 +

15
2( 3

2 )
+ 1

)–1

= t2 + λ
1
3

(

u +
(
1 – λ–1)ρ3 +

15λ–1

2( 3
2 )

+ λ–1
) 1

3
+ λ

(

v + (1 – λ)ρ3 +
15λ

2( 3
2 )

+ λ

)–1

≥ λt2 + λ

(

u +
(
1 – λ–1) 15

2( 3
2 )

+
15λ–1

2( 3
2 )

+ λ–1
) 1

3

+ λ

(

v + (1 – λ)
15

2( 3
2 )

+
15λ

2( 3
2 )

+ λ

)–1

= λt2 + λ

(

u +
15

2( 3
2 )

+ λ–1
) 1

3
+ λ

(

v +
15

2( 3
2 )

+ λ

)–1

≥ λ

[

t2 +
(

u +
15

2( 3
2 )

+ 1
) 1

3
+

(

v +
15

2( 3
2 )

+ 1
)–1]

= λg(t, u, v).

Thus, (H3) is satisfied. Furthermore, for u, v ∈ Ph,e, we get

f (t, u, v) = t2 + 1 +
(

u(t) +
15

2( 3
2 )

+ 1
) 1

2
+

(

v(t) +
15

2( 3
2 )

+ 1
)– 1

5

≥ t2 + 1 +
(

u(t) +
15

2( 3
2 )

+ 1
) 1

3
+

(

v(t) +
15

2( 3
2 )

+ 1
)–1

≥ t2 +
(

u(t) +
15

2( 3
2 )

+ 1
) 1

3
+

(
15

2( 3
2 )

+ 1
)–1

= g(t, u, 0),

let δ = 1, we have f (t, u, v) ≥ δg(t, u, 0). Thus (H4) is satisfied.
By Lemmas 2.4 and 2.5, we have

∫ 1

0
G(t, s)

(∫ 1

0
H(s, τ )f

(
τ , h(τ ), Dν

0+ h(τ )
)

dτ

)

ds

≤
∫ 1

0
G(t, s)

(∫ 1

0
H(s, τ )

(

4 + h(τ ) +
15

2( 3
2 )

)

dτ

)

ds

=
∫ 1

0
G(t, s)

(∫ 1

0
H(s, τ )h(τ ) dτ

)

ds +
[

15
2( 3

2 )
+ 4

]
e(t)
10

≤
∫ 1

0

Dt 1
2

( 3
2 )

(∫ 1

0

15Fs 1
2 τ

1
2

3( 3
2 )

dτ

)

ds +
[

15
2( 3

2 )
+ 4

]
e(t)
10

=
4DF

92( 3
2 )

h(t) +
[

15
2( 3

2 )
+ 4

]
e(t)
10

= 1.2325h(t) + 2.3099e(t)
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and
∫ 1

0
G(t, s)

(∫ 1

0
H(s, τ )f

(
τ , h(τ ), Dν

0+ h(τ )
)

dτ

)

ds

≥
∫ 1

0

c(s)t 1
2

( 3
2 )

(∫ 1

s

1
( 3

2 )
s

1
2 (1 – τ )

1
2 τ

1
4 dτ

)

ds +
1

10
e(t)

≥ 4t 1
2

52( 3
2 )

∫ 1

0
c(s)s

1
2
(
1 – s

5
4
)

ds +
1

10
e(t)

≥ 4t 1
2

52( 3
2 )

∫ 1

1
2

1
10

(
1
2

) 1
4

(1 – s)
1
4 s

1
2
(
1 – s

5
4
)

ds +
1

10
e(t)

≥ 0.0001h(t) + 0.1e(t).

Choose t0 = 10–8, we deduce that the condition (H6) is satisfied. Therefore, all the assump-
tions of Theorem 3.2 are satisfied. We can construct the following iteration sequences:

ωn(t) =
∫ 1

0
G(t, s)

(∫ 1

0
H(s, τ )

(

τ 2 +
(

ωn–1(τ ) +
15

2( 3
2 )

+ 1
) 1

3

+
(∫ τ

0

(

σn–1(x) +
15

2( 3
2 )

)

dx +
15

2( 3
2 )

+ 1
)–1)

dτ

)

ds

+
∫ 1

0
G(t, s)

(∫ 1

0
H(s, τ )

(

τ 2 + 1 +
(

ωn–1(τ ) +
15

2( 3
2 )

+ 1
) 1

2

+
(

Dν
0+σn–1(τ ) +

15
2( 3

2 )
+ 1

)– 1
5
)

dτ

)

ds – e(t), n = 1, 2, . . . ,

and

σn(t) =
∫ 1

0
G(t, s)

(∫ 1

0
H(s, τ )

(

τ 2 +
(

σn–1(τ ) +
15

2( 3
2 )

+ 1
) 1

3

+
(∫ τ

0

(

ωn–1(x) +
15

2( 3
2 )

)

dx +
15

2( 3
2 )

+ 1
)–1)

dτ

)

ds

+
∫ 1

0
G(t, s)

(∫ 1

0
H(s, τ )

(

τ 2 + 1 +
(

σn–1(τ ) +
15

2( 3
2 )

+ 1
) 1

2

+
(
Dν

0+ωn–1
)
(τ ) +

15
2( 3

2 )
+ 1

)– 1
5
)

dτ ) ds – e(t), n = 1, 2, . . . ,

for any initial values ω0,σ0 ∈ Ph,e,we have ωn → u∗ and σn → u∗ as n → ∞. �

4 Conclusions
In this paper, we obtain two new mixed monotone fixed point theorems. By using our
abstract results, we establish the existence and uniqueness theorems of the solution for
a fractional m-point boundary value problem, which generalizes the well-known elastic
beam equation. Furthermore, two iterative sequences to approximate the unique solution
are also given.
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