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Abstract
We consider the inertial Qian–Sheng’s Q-tensor dynamical model for the nematic
liquid crystal flow, which can be viewed as a system coupling the hyperbolic-type
equations for the Q-tensor parameter with the incompressible Navier–Stokes
equations for the fluid velocity. We prove the existence and uniqueness of local in
time strong solutions to the system with the initial data near uniaxial equilibrium. The
proof is mainly based on the classical Friedrich method to construct approximate
solutions and the closed energy estimate.
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1 Introduction
Liquid crystals present a state of matter with properties between liquid and solid. The sim-
plest form of liquid crystals is the nematic phase, which exhibits long-range orientational
order but no positional order. Generally speaking, there are two primary continuum the-
ories to describe nematic liquid crystal flow: the Ericksen–Lesile theory and the Landau–
de Gennes theory. In the former one, the local alignment of molecules is described by
a unit vector, which completely neglects molecular details. In contrast, the latter gives a
more complex description of the local behavior of molecular alignments, such as line de-
fects and biaxial configurations. This theory uses a symmetric and traceless tensor Q(x)
to characterize the alignment behavior of molecular orientations. Physically, Q(x) can be
defined as the second-order traceless moment of f :

Q(x) =
∫
S2

(
mm –

1
3

I
)

f (x, m) dm,

where f (x, m) is the density distribution function with the orientation parallel to m at ma-
terial point x. The tensor Q(x) is said to be isotropic if all its eigenvalues are zero, uniaxial
if it has only two different eigenvalues, and biaxial if its three eigenvalues are different
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from each other. When Q(x) is uniaxial, it can be written as

Q(x) = S
(

nn –
1
3

I
)

, n ∈ S
2,

where S ∈ R is the scalar order parameter. When Q(x) is biaxial, it can be written as

Q(x) = S
(

nn –
1
3

I
)

+ R
(

n′n′ –
1
3

I
)

, n, n′ ∈ S
2, n · n′ = 0, S, R ∈R.

The Landau–de Gennes free energy functional is given as follows:

F (Q,∇Q) =
∫
R3

{
–

a
2

Tr
(
Q2) –

b
3

Tr
(
Q3) +

c
4
(
Tr

(
Q2))2

+
1
2
(
L1|∇Q|2 + L2Qij,jQik,k + L3Qij,kQik,j

)}
dx

def=
∫
R3

(
fb(Q) + fe(∇Q)

)
dx, (1.1)

where a, b, c are nonnegative coefficients depending on the material and temperature,
and Li (i = 1, 2, 3) are material-dependent elastic coefficients. fb is the bulk energy den-
sity describing the isotropic-nematic phase transition, while the elastic energy density fe

penalizes spatial non-homogeneities. For detailed introductions one is referred to [5, 13].
In the Landau–de Gennes framework, there exist two representative Q-tensor models,

directly derived by a variational method, describing the hydrodynamics of nematic liquid
crystals: the Beris–Edwards model [3] and the Qian–Sheng model [16]. The two models
are, respectively, a system coupling the equation of Q-tensor order parameters with the
time evolution equation of the fluid velocity. In this paper, we are concerned with the
following Qian–Sheng model [16] with the inertial density:

JQ̈ + μ1Q̇ = H –
μ2

2
D + μ1[�, Q], (1.2)

∂v
∂t

+ v · ∇v = –∇p + ∇ · (σ + σ d), (1.3)

∇ · v = 0, (1.4)

where J stands for the small inertial coefficient, and the inertial term Q̈ = (∂t + v · ∇)Q̇ is
the material derivative of Q̇ = (∂t + v · ∇)Q. In addition, the viscous stress σ , the distortion
stress σ d and the molecular field H are, respectively, defined by

σ = β1Q(Q : D) + β4D + β5D · Q + β6Q · D + β7
(
D · Q2 + Q2 · D

)

+
μ2

2
(
Q̇ – [�, Q]

)
+ μ1

[
Q,

(
Q̇ – [�, Q]

)]
, (1.5)

σ d
ij = –

∂F
∂Qkl,j

∂iQkl, (1.6)

Hij = –
(

δF (Q,∇Q)
δQ

)
ij

= –
∂F
∂Qij

+ ∂k

(
∂F

∂Qij,k

)
def= –T (Q) – L(Q), (1.7)
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where the two operators T and L are, respectively, given by

T (Q) = –aQ – bQ2 + c|Q|2Q +
1
3

b|Q|2I,

(
L(Q)

)
kl = –

(
L1�Qkl +

1
2

(L2 + L3)
(

Qkm,ml + Qlm,mk –
2
3
δklQij,ij

))
.

The constants β1, β4, β5, β6, β7, μ1, and μ2 in (1.5) are viscosity coefficients. The coeffi-
cients satisfy the following relation:

β6 – β5 = μ2. (1.8)

It is worth emphasizing that, to be compared with the original Qian–Sheng model
in [16], a new viscosity term β7(DikQklQlj + QikQklDlj) in (1.5) is added to ensure that
the energy of the system will always dissipate without assuming any relation between
β5 and β6. The detailed discussion of the dissipative relation can be found in recent
work [9].

For the Q-tensor dynamical model of liquid crystals, there has been published much an-
alytical work. We only recall some relevant results here. Concerning the Beris–Edwards
system, the well-posedness results on whole space and bounded domain can be found in
[8, 14, 15] and [1, 2, 11], respectively. For the inertial Qian–Sheng model, De Anna and
Zarnescu [4] investigated the local well-posdedness for bounded initial data and global
well-posedness under the assumptions of the small initial data. For the non-viscous ver-
sion of the Qian–Sheng model, Feireisl et al. [6] proved global existence of the dissipative
solution which is inspired by that of the incompressible Euler equations. There is some
interesting work, devoted to exploring the relation between different dynamical theories
for liquid crystals. For example, by the Hilbert expansion method, Wang–Zhang–Zhang
[19] rigorously justified that the strong solution to the non-inertial Beris–Edwards model
converges to the solution to the Ericksen–Leslie model. In the same spirit, Li–Wang [9] ex-
tended this work, and rigorously proved the connection between the inertial Qian–Sheng
model and the full inertial Ericksen–Leslie model. A unified formulation for liquid crystal
modeling was put forward by Han et al. in [7] to establish relations between microscopic
theories and macroscopic theories.

In [4], the well-posedness results rely on the assumption that the solution decays fast
enough at infinity. However, during the physical modeling process, the liquid crystal sys-
tem is not generally isotropic but certain nonzero uniaxial or biaxial equilibrium at infinity.
Therefore, the main goal of this paper is to study the local well-posedness of the strong
solution for the inertial Qian–Sheng system with the initial data near uniaxial equilib-
rium.

The rest of this paper is organized as follows. In Sect. 2, we state the notational con-
ventions and some technical lemmas, and then present the main result of this paper. In
Sect. 3, based on the classical Friedrich method and the closed energy estimate, we prove
the local well-posedness of the inertial Qian–Sheng’s Q-tensor dynamical model, when
the solution to the system tends to the uniaxial equilibrium state at infinity.
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2 Preliminaries and the main result
2.1 Notations and convections
The Einstein summation convention is used in this paper. The configuration space of the
Q-tensor is the set of symmetric, traceless 3 × 3-matrices, that is,

S
3
0

def=
{

Q ∈R
3×3 : Qij = Qji, Qii = 0

}
,

which is endowed with the inner product Q1 : Q2 = Q1ijQ2ij. The Frobenius norm on S
3
0 is

defined as |Q| def=
√

Tr Q2 =
√

QijQij. For two tensors A, B ∈ S
3
0 we denote (A · B)ij = AikBkj

and A : B = AijBij, and [A, B] = A · B – B · A. For any Q1, Q2 ∈ L2(R3)3×3, the corresponding
inner product is defined as

〈Q1, Q2〉 def=
∫
R3

Q1ij(x) : Q2ij(x) dx.

We denote by n1 ⊗ n2 the tensor product of two vectors n1 and n2, and omit the symbol
⊗ for simplicity. We use f,i to denote ∂if and I to denote the 3 × 3 identity tensor. In
addition, the superscripted dot denotes the material derivative, i.e., ḟ = (∂t + v · ∇)f , where
the fluid velocity v can be understood from the context. We also define the commutator
�∇s, f �g = ∇s(fg) – f ∇sg .

2.2 Useful lemmas
The following product estimates and commutator estimates are well-known, see [10, 17]
for example, and they are frequently used in this paper.

Lemma 2.1 Let s ≥ 0. Then, for any multi-index α, β ,

∥∥∂α f ∂βg
∥∥

Hs ≤ C
(‖f ‖L∞‖g‖Hs+|α|+|β| + ‖g‖L∞‖f ‖Hs+|α|+|β|

)
;

∥∥∂α f ∂βg
∥∥

Hs ≤ C‖f ‖Hs+|α|+|β| ‖g‖Hs+|α|+|β| , if s + |α| + |β| ≥ 2.

In particular, we have

‖fg‖Hs ≤ C
(‖f ‖L∞‖g‖Hs + ‖g‖L∞‖f ‖Hs

)
;

‖fg‖Hs ≤ C‖f ‖Hs‖g‖Hs , if s ≥ 2;

‖fg‖Hk ≤ C min
{‖f ‖Hk ‖g‖H2 ,‖f ‖H2‖g‖Hk

}
, if 0 ≤ k ≤ 2.

Lemma 2.2 Let a be a multiple index. We have

∥∥�
∂a, g

�
f
∥∥

L2 ≤ C
(‖∇g‖L∞‖f ‖H|a|–1 + ‖∇g‖H|a|–1‖f ‖L∞

)
.

In particular, if |a| ≥ 2, we have

∥∥�
∂a, g

�
f
∥∥

L2 ≤ C‖g‖H|a|+1‖f ‖H|a|–1 ,
∥∥�

∂a+1, g
�

f
∥∥

L2 ≤ C‖g‖H|a|+1‖f ‖H|a|–1 .
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The following energy dissipation relation can be found in [9].

Lemma 2.3 Assume that β1,β4,μ1 > 0, β7 ≥ 0, and β4 – μ2
2

4μ1
> 0. Then, for any smooth

solution (v, Q) of the inertial Qian–Sheng system (1.2)–(1.4),

d
dt

(∫
R3

1
2
(|v|2 + J|Q̇|2)dx + F (Q,∇Q)

)

= –β1‖Q : D‖2
L2 –

(
β4 –

μ2
2

4μ1

)
‖D‖2

L2 – (β5 + β6)〈D · Q, D〉

– 2β7‖D · Q‖2
L2 – μ1

∥∥∥∥Q̇ – [�, Q] +
μ2

2μ1
D

∥∥∥∥
2

L2
. (2.1)

Moreover, if one of the following assumptions holds: (i) β5 + β6 = 0 if β7 = 0, (ii) (β5 + β6)2 <
8β7(β4 – μ2

2
4μ1

) if β7 �= 0, then the right hand side in (2.1) is non-positive.

We give some results about critical points. A tensor Q0 is called a critical point of fb(Q)
if T (Q0) := ∂fb

∂Q |Q=Q0 = 0. The following characterization of critical points can be obtained
from [12, 19].

Lemma 2.4 T (Q) = 0 if and only if Q = S(nn– 1
3 I) for some n ∈ S

2, where S = 0 or a solution
of 2cS2 – bS + 3a = 0, that is,

S1 =
b +

√
b2 + 24ac
4c

or S2 =
b –

√
b2 + 24ac
4c

.

Moreover, the critical point Q0 = S(nn – 1
3 I) is stable if S = S1.

Given a critical point Q0 = S(nn – 1
3 I), the linearized operator HQ0 of T (Q) around Q0

is given by

HQ0 (Q) = aQ – b(Q0 · Q + Q · Q0) + c|Q0|2Q + 2(Q0 : Q)
(

cQ0 +
b
3

I
)

.

2.3 Main results
Throughout this paper, we assume that the viscosity coefficients satisfy β1,β4,μ1 > 0, β7 ≥
0, and β4 – μ2

2
4μ1

> 0, and the elastic coefficients Li (i = 1, 2, 3) satisfy L1 > 0, L1 + L2 + L3 > 0,
and the inertial coefficient J is positive, and J � μ1.

The main assertion of this paper is stated as follows.

Theorem 2.1 Let s ≥ 2 be an integer, n∗ ∈ S
2 is a constant vector and Q∗ = S(n∗n∗ – 1

3 I).
If the initial data fulfills

vI(x) ∈ Hs(
R

3), QI(x) – Q∗ ∈ Hs+1(
R

3), Q̇I(x) ∈ Hs(
R

3),

for all x ∈R
3, then there exist T > 0 and a unique solution (v, Q) of the inertial Qian–Sheng

Q-tensor system (1.2)–(1.4) on [0, T], such that v(0, x) = vI(x), Q(0, x) = QI(x), and

v ∈ L∞(
[0, T]; Hs(

R
3)) ∩ L2([0, T]; Hs+1(

R
3)), (2.2)

Q – Q∗ ∈ L∞(
[0, T]; Hs+1(

R
3)), Q̇ ∈ L∞(

[0, T]; Hs(
R

3)). (2.3)
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3 Local well-posedness for the inertial Qian–Sheng model
This section is devoted to the proof of the local well-posedness result for the inertial Qian–
Sheng model with the initial data near uniaxial equilibrium. The main framework of our
proof follows the strategy in [18]. We divide the proof of Theorem 2.1 into four steps.

Step 1. Construction of approximate solutions. Based on the classical Friedrich method,
we construct the approximate system of the inertial Qian–Sheng model (1.2)–(1.4). We
define the mollification operator

Jεf (ξ ) def= F–1(1|ξ |≤ 1
ε

Ff ),

where F is the Fourier transform. Assume that P is the Leray projection operator from a
vector field into the corresponding divergence-free field.

Then the approximate system associated with (1.2)–(1.4) is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

JJεQ̈ε + μ1JεQ̇ε = –Jε(T (JεQε) + L(JεQε)) – μ2
2 JεDε + μ1Jε[Jε�ε ,JεQε],

Jε∂tvε + JεP(Jεvε · ∇Jεvε)

= ∇ ·JεP(β1JεQε(JεQε : JεDε) + β4JεDε

+ β5JεDε ·JεQε + β6JεQε ·JεDε + β7(JεDε · (JεQε)2 + (JεQε)2 ·JεDε)

+ μ2
2 (Q̇ε – [Jε�ε ,JεQε]) + μ1[JεQε , (JεQ̇ε – [Jε�ε ,JεQε])]

+ σ d(JεQε ,JεQε)),

(vε , Qε)|t=0 = (Jεv0,JεQ0),

where the material derivative Q̇ε
def= ∂tQε + Jε(Jεvε · ∇JεQε), and T (JεQε) and L(JεQε)

are, respectively, defined as

T (JεQε) = –aJεQε – b(JεQε)2 + c|JεQε|2JεQε +
1
3

b|JεQε|2I,

L(JεQε)kl = –
(

L1�Jε(Qε)kl +
1
2

(L2 + L3)
(
Jε(Qε)km,ml + Jε(Qε)lm,mk

–
2
3
δklJε(Qε)ij,ij

))
.

The above system can be regarded as an ODE system in L2(R3). Then, applying the
Cauchy–Lipshitz theorem, there exist a strictly maximal time Tε and a unique solution
(vε , Qε), which is continuous in time with a value in Hk(R3) for any k ≥ 0. Since J 2

ε = Jε

and P is a self-adjoint operator in L2(R3), the pair (Jεvε ,JεQε) is also a solution of the
previous system. Therefore, the uniqueness of the solution leads to (Jεvε ,JεQε) = (vε , Qε),
and thus (vε , Qε) satisfies the following system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

JQ̈ε + μ1Q̇ε = –Jε(T (Qε) + L(Qε)) – μ2
2 Dε + μ1Jε[�ε , Qε],

∂tvε + JεP(vε · ∇vε)

= ∇ ·JεP(β1Qε(Qε : Dε) + β4Dε

+ β5Dε · Qε + β6Qε · Dε + β7(Dε · Q2
ε + Q2

ε · Dε)

+ μ2
2 (Q̇ε – [�ε , Qε]) + μ1[Qε , (Q̇ε – [�ε , Qε])] + σ d(Qε , Qε)),

(vε , Qε)|t=0 = (Jεv0,JεQ0).

(3.1)
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Step 2. Uniform energy estimates. We define the energy functional E(t) by

E(t) def=
∫
R3

(
|v|2 +

J
2
(∣∣Q̇ + Q – Q∗∣∣2 + |Q̇|2) +

1
2

(μ1 – J)
∣∣Q – Q∗∣∣2

+ L(Q) :
(
Q – Q∗) +

1
2
∣∣∇sv

∣∣2 +
J
2
∣∣∇sQ̇

∣∣2 + L
(∇sQ

)
: ∇sQ

)
dx.

Recalling the fact that there exists a constant L0 = min{L1, L1 + L2 + L3} > 0 such that (see
[19, Lemma 2.5])

〈
L(Q), Q

〉
=

∫
R3

fe(∇Q) dx ≥ L0‖∇Q‖2
L2 .

By a Sobolev interpolation, we have

E(t) ∼∥∥Q – Q∗∥∥2
L2 + ‖∇Q‖2

Hs + ‖v‖2
Hs + ‖Q̇‖2

Hs .

Let Q̃ε = Qε – Q∗, then from the expression of T (Q) we have

T
(
Q̃ε + Q∗) = T

(
Q∗) + HQ∗ (Q̃ε) + P3(Q̃ε), (3.2)

where HQ∗ and P3 are, respectively, defined as

HQ∗ (Q) def= –aQ – b
(

Q∗ · Q + Q · Q∗ –
2
3
(
Q∗ : Q

)
I
)

+ c
(∣∣Q∗∣∣2Q + 2

(
Q∗ : Q

)
Q∗),

P3(Q) def= –b
(

Q2 +
b
3
|Q|2I

)
+ c

(|Q|2Q + |Q|2Q∗ + 2
(
Q : Q∗)Q

)
.

Since for some constant vector n∗ ∈ S
2, Q∗ = S(n∗n∗ – 1

3 I) is a critical point of T (Q), from
Lemma 2.4 we get T (Q∗) = 0.

Multiplying the first equation in (3.1) by Qε – Q∗ and taking the L2-inner product, we
obtain

〈
JQ̈ε + μ1Q̇ε , Qε – Q∗〉 +

〈
L(Qε),Jε

(
Qε – Q∗)〉

=
〈
–

μ2

2
Dε + μ1[�ε , Qε],Jε

(
Qε – Q∗)〉

︸ ︷︷ ︸
I1

–
〈
T (Qε),Jε

(
Qε – Q∗)〉

︸ ︷︷ ︸
I2

. (3.3)

Using the fact that 〈[�, Q], Q〉 = 0, the estimate of I1 can be calculated as

I1 =
〈
–

μ2

2
Dε + μ1

[
�ε , Q∗],Jε

(
Qε – Q∗)〉

≤ C‖∇vε‖L2
∥∥Qε – Q∗∥∥

L2 ≤ CδE + δ‖∇vε‖2
L2 .
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The term I2 can be handled as

I2 = –
〈
T

(
Q̃ε + Q∗),JεQ̃ε

〉
= –

〈
HQ∗ (Q̃ε),JεQ̃ε

〉
–

〈
P3(Q̃ε),JεQ̃ε

〉

≤ –
〈
HQ∗ (Q̃ε),JεQ̃ε

〉
+ C

(‖∇Q‖L2 + ‖∇Q‖3
L2

)‖Q̃ε‖L2

≤ C
(
E + E2).

Noticing that, for Q ∈ S
3
0 and a constant tensor Q∗, we have

〈
Q̈, Q – Q∗〉 =

∫
R3

(∂t + vk∂k)Q̇ij
(
Qij – Q∗

ij
)

dx

=
∫
R3

(
∂t

(
Q̇ij

(
Qij – Q∗

ij
))

+ vk∂k
(
Q̇ij

(
Qij – Q∗

ij
))

– Q̇ijQ̇ij
)

dx

=
1
2

d
dt

(∥∥Q̇ + Q – Q∗∥∥2
L2 – ‖Q̇‖2

L2 –
∥∥Q – Q∗∥∥2

L2
)

– ‖Q̇‖2
L2 . (3.4)

From (3.3) and (3.4) and the estimates of I1 and I2, we know that

1
2

d
dt

(
J
∥∥Q̇ε + Qε – Q∗∥∥2

L2 – J‖Q̇ε‖2
L2 + (μ1 – J)

∥∥Qε – Q∗∥∥2
L2

)

+ L0‖∇Qε‖2
L2 +

〈
HQ∗

(
Qε – Q∗), Qε – Q∗〉

≤ C
(
E + E2) + δ‖∇vε‖2

L2 . (3.5)

The basic energy dissipation in Lemma 2.3 tells us that

d
dt

(∫
R3

1
2
(|vε|2 + J|Q̇ε|2

)
+ fb

(
Q̃ε + Q∗) – fb

(
Q∗) + fe(∇Qε)

)
dx

= –β1‖Qε : Dε‖2
L2 –

(
β4 –

μ2
2

4μ1
– 3δ

)
‖Dε‖2

L2 – (β5 + β6)〈Dε · Qε , Dε〉

– 2β7‖Dε · Qε‖2
L2 – μ1

∥∥∥∥Q̇ε – [�ε , Qε] +
μ2

2μ1
Dε

∥∥∥∥
2

L2
– δ‖∇vε‖2

L2

≤ –δ‖∇vε‖2
L2 . (3.6)

Thus, we multiply by 2 on (3.6) and then add it to (3.5), so that we obtain

d
dt

(
‖vε‖2

L2 +
J
2
(∥∥Q̇ε + Qε – Q∗∥∥2

L2 + ‖Q̇ε‖2
L2

)

+
1
2

(μ1 – J)
∥∥Qε – Q∗∥∥2

L2 + 2L(Q) :
(
Qε – Q∗))

≤ –δ‖∇vε‖2
L2 + C

(
E + E2). (3.7)

We now turn to the estimates of the higher order derivative for (Qε , vε). On the one hand,
we take ∇s on the first equation of (3.1) and multiply it by ∇sQ̇ε , integrate over R3 and by
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parts, then we arrive at

d
dt

(
J
2
∥∥∇sQ̇ε

∥∥2
L2 + L

(∇sQε

)
: ∇sQε

)
+ μ1

∥∥∇sQ̇ε

∥∥2
L2

= –J
〈∇s(vε · ∇Q̇ε),∇sQ̇ε

〉
–

〈∇sT (Qε),∇sQ̇ε

〉
–

〈∇sL(Qε),∇s(vε · ∇Qε)
〉

–
μ2

2
〈∇sDε ,∇sQ̇ε

〉
+ μ1

〈∇s[�ε , Qε],∇sQ̇ε

〉

def= I1 + I2 + I3 + I4 + I5. (3.8)

Using Lemma 2.2 and ∇ · vε = 0, we obtain

I1 = –J
〈∇s(vε · ∇Q̇ε),∇sQ̇ε

〉
+ J

〈
vε · ∇∇sQ̇ε ,∇sQ̇ε

〉

= –J
〈�∇s, vε

� · ∇Q̇ε ,∇sQ̇ε

〉

≤ J
∥∥�∇s, vε

� · ∇Q̇ε

∥∥
L2

∥∥∇sQ̇ε

∥∥
L2

≤ C‖vε‖Hs+1‖Q̇ε‖2
Hs ≤ Cδ

(
E 3

2 + E2) + δ‖∇vε‖2
Hs .

From T (Q∗) = 0 and Lemma 2.1, the term I2 can be derived,

I2 = –
〈∇s(T (Qε) – T

(
Q∗)),∇sQ̇ε

〉

= –
〈
HQ∗

(∇sQ̃ε

)
,∇sQ̇ε

〉
–

〈∇sP3(Q̃ε),∇sQ̇ε

〉

≤ C
(∥∥∇sQ̃ε

∥∥
L2 +

∥∥∇sQ̃ε

∥∥2
L2 +

∥∥∇sQ̃ε

∥∥3
L2

)∥∥∇sQ̇ε

∥∥
L2

≤ C
(
E + E 3

2 + E2).

We observe that, for any Q ∈ S
3
0,

–
〈
L(Q), v · ∇Q

〉

=
∫
R3

vjQkl,j

(
L1�Qkl +

1
2

(L2 + L3)
(

Qkm,ml + Qlm,mk –
2
3
δklQij,ij

))
dx

=
∫
R3

(
–L1vjQkl,mjQkl,m –

1
2

(L2 + L3)(vjQkl,ljQkm,m + vjQkl,kjQlm,m)

– L1vj,mQkl,jQkl,m –
1
2

(L2 + L3)(vj,lQkl,jQkm,m + vj,kQkl,jQlm,m)
)

dx

=
∫
R3

(
–L1vj,mQkl,jQkl,m –

1
2

(L2 + L3)(vj,lQkl,jQkm,m + vj,kQkl,jQlm,m)
)

dx

≤ C‖∇v‖L∞‖∇Q‖2
L2 . (3.9)

By (3.9) and Lemma 2.1, the term I3 can be handled as follows:

I3 = –
〈∇sL(Qε), vε · ∇∇sQε

〉
–

〈∇sL(Qε),
�∇s, vε

� · ∇Qε

〉

≤ I ′
3 + Cδ

(
E2 + E3 + E4) + δ‖∇vε‖2

Hs .
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The term I5 can be calculated as

I5 = μ1
〈∇s[�ε , Q̃ε],∇sQ̇ε

〉
+ μ1

〈[∇s�ε , Q∗],∇sQ̇ε

〉

≤ μ1
〈[∇s�ε , Q̃ε + Q∗],∇sQ̇ε

〉
+ C‖Q̃ε‖Hs+1‖vε‖Hs

∥∥∇sQ̇ε

∥∥
L2

≤ μ1
〈[∇s�ε , Qε

]
,∇sQ̇ε

〉
+ CE 3

2 .

On the other hand, we act the derivative operator ∇s on the second equation of (3.1) and
take L2-inner product by multiplying ∇svε , then by integrating by parts we obtain

1
2

d
dt

∥∥∇svε

∥∥2
L2

=
〈
∂t∇svε ,∇svε

〉

= –
〈∇s(vε · ∇vε),∇svε

〉
–

〈∇s(β1Qε(Qε : Dε) + β4Dε

+ β5Dε · Qε + β6Qε · Dε + β7
(
Dε · Q2

ε + Q2
ε · Dε

))
,∇s+1vε

〉

–
μ2

2
〈∇s(Q̇ε – [�ε , Qε]

)
,∇s+1vε

〉
– μ1

〈∇s[Qε ,
(
Q̇ε – [�ε , Qε]

)]
,∇s+1vε

〉

–
〈∇sσ d(Qε , Qε),∇s+1vε

〉
def= J1 + J2 + J3 + J4 + J5. (3.10)

From Lemma 2.2, we can deduce that

J1 =
〈�∇s, vε

� · ∇vε ,∇svε

〉 ≤ C‖vε‖Hs+1‖vε‖2
Hs

≤ Cδ

(
E 3

2 + E2) + δ‖∇vε‖2
Hs .

The term J2 can be derived from Lemma 2.2,

J2 = –
〈
β1Qε

(
Qε : ∇sDε

)
+ β4∇sDε + β5∇sDε · Qε + β6Qε · ∇sDε

+ β7
(∇sDε · Q2

ε + Q2
ε · ∇sDε

)
,∇sDε

〉
– β1

〈�∇s, Q̃εQ̃ε :
�

Dε ,∇s+1vε

〉

– β1
〈�∇s, Q∗Q̃ε :

�
Dε ,∇s+1vε

〉
– β1

〈�∇s, Q̃εQ∗ :
�

Dε ,∇s+1vε

〉

– β5
〈�∇s, Q̃ε

� · Dε ,∇s+1vε

〉
– β6

〈
Dε · �∇s, Q̃ε

�
,∇s+1vε

〉

– β7
〈�∇s, Q̃2

ε

� · Dε + Dε · �∇s, Q̃2
ε

�
,∇s+1vε

〉

– β7
〈�∇s, Q̃ε · Q∗� · Dε + Dε · �∇s, Q̃ε · Q∗�

,∇s+1vε

〉

– β7
〈�∇s, Q∗ · Q̃ε

� · Dε + Dε · �∇s, Q∗ · Q̃ε

�
,∇s+1vε

〉

≤ –β1
∥∥Qε : ∇sDε

∥∥2
L2 – β4

∥∥∇sDε

∥∥2
L2 – (β5 + β6)

〈∇sDε · Qε ,∇sDε

〉

– 2β7
∥∥∇sDε · Qε

∥∥2
L2 –

μ2

2
〈[∇s�ε , Qε

]
,∇sDε

〉

+ Cδ‖vε‖2
Hs

(‖Q̃ε‖2
Hs+1 + ‖Q̃ε‖4

Hs+1
)

+ δ‖∇vε‖2
H2 .
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For J3, we get

J3 = –
μ2

2
〈∇sQ̇ε – ∇s[�ε , Q̃ε],∇s+1vε

〉
–

μ2

2
〈∇sQ̇ε –

[∇s�ε , Q∗],∇s+1vε

〉

≤ –
μ2

2
〈∇sQ̇ε –

[∇s�ε , Qε

]
,∇sDε

〉
+ Cδ‖vε‖2

Hs‖Q̃ε‖2
Hs+1 + δ‖∇vε‖2

Hs .

In the same way, the term J4 can be estimated,

J4 = –μ1
〈∇s[Q̃ε ,

(
Q̇ε – [�ε , Q̃ε]

)]
,∇s+1vε

〉
– μ1

〈∇s[Q̃ε ,
(
Q̇ε –

[
�ε , Q∗])],∇s+1vε

〉

– μ1
〈[

Q∗,
(∇sQ̇ε – ∇s[�ε , Q̃ε]

)]
,∇s+1vε

〉
– μ1

∥∥[
Q∗,∇s�ε

]∥∥2
L2

≤ –μ1
〈[

Q̃ε ,
(∇sQ̇ε –

[∇s�ε , Q̃ε

])]
,∇s+1vε

〉
– μ1

∥∥[
Q∗,∇s�ε

]∥∥2
L2

+ Cδ

(‖vε‖2
Hs + ‖Q̇ε‖2

Hs + ‖vε‖2
Hs‖Q̃ε‖2

Hs+1
)‖Q̃ε‖2

Hs+1 + δ‖∇vε‖2
Hs

≤ –μ1
〈[

Qε ,∇s�ε

]
,∇sQ̇ε –

[∇s�ε , Qε

]〉
+ Cδ

(
E2 + E3) + δ‖∇vε‖2

Hs .

Therefore, from (3.8) and (3.10), noting I ′
3 + J5 = 0 and gathering the previous estimates

yields

d
dt

(
1
2
∥∥∇svε

∥∥2
L2 +

J
2
∥∥∇sQ̇ε

∥∥2
L2 + L

(∇sQε

)
: ∇sQε

)

≤ –μ1
〈∇sQ̇ε –

[∇s�ε , Qε

]
,∇sQ̇ε

〉
–

μ2

2
〈∇sDε ,∇sQ̇ε

〉
– β1

∥∥Qε : ∇sDε

∥∥2
L2

– β4
∥∥∇sDε

∥∥2
L2 – (β5 + β6)

〈∇sDε · Qε ,∇sDε

〉
– 2β7

∥∥∇sDε · Qε

∥∥2
L2

–
μ2

2
〈[∇s�ε , Qε

]
,∇sDε

〉
–

μ2

2
〈∇sQ̇ε –

[∇s�ε , Qε

]
,∇sDε

〉

– μ1
〈[

Qε ,∇s�ε

]
,∇sQ̇ε –

[∇s�ε , Qε

]〉
+ C

(
E 3

2 + E2 + E3) + 6δ‖∇vε‖2
Hs

= –β1
∥∥Qε : ∇sDε

∥∥2
L2 –

(
β4 –

μ2
2

4μ1
– 7δ

)∥∥∇sDε

∥∥2
L2 – (β5 + β6)

〈∇sDε · Qε ,∇sDε

〉

– 2β7
∥∥∇sDε · Qε

∥∥2
L2 – μ1

∥∥∥∥∇sQ̇ε –
[∇s�ε , Qε

]
+

μ2

2μ1
∇sDε

∥∥∥∥
2

L2

– δ‖∇vε‖2
Hs + C

(
E + E 3

2 + E2 + E3 + E4)

≤ –δ‖∇vε‖2
Hs + C

(
E + E 3

2 + E2 + E3 + E4). (3.11)

Then, combining (3.7) and (3.11), we obtain

d
dt

E(t) + δ‖∇vε‖2
Hs ≤ F

(
E(t)

)
, (3.12)

where F is an increasing function with F(0) = 0, and is given by

F
(
E(t)

)
= C

(
E(t) + E 3

2 (t) + E2(t) + E3(t) + E4(t)
)
.

Step 3. Existence of the solution. For s ≥ 2, by virtue of (3.12), there exists T > 0 depending
only on E(0) such that, for any t ∈ [0, min(T , Tε)],

E(t) + δ‖∇vε‖2
Hs ≤ 2E(0),
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where E(0) depends only on the initial data (vI , QI). By a continuous argument we deduce
that Tε ≥ T . Therefore, we get a uniform estimate for the approximate solution on [0, T].
Furthermore, the existence of the solution can be obtained by the standard compactness
argument.

Step 4. Uniqueness of the solution. Assume that (v1, Q1) and (v2, Q2) are two strong so-
lutions with the same initial data. We denote

δQ = Q1 – Q2, δQ̇ = Q̇1 – Q̇2, δv = v1 – v2,

δD = D1 – D2, δ� = �1 – �2,

where

δQ̇ = ∂tδQ + v1 · ∇δQ + δv · ∇Q2.

Taking the difference between the equations of the two solutions, we observe that (δQ, δv)
satisfies the following system:

J(∂tδQ̇ + v1 · ∇δQ̇) = –μ1
(
δQ̇ – [δ�, Q2]

)
– L(δQ) –

μ2

2
δD – Jδv · ∇Q̇2 + δF1 , (3.13)

∂tδv + v1 · ∇δv = –∇p + ∇ ·
(

β1Q2(Q2 : δD) + β4δD + β5δD · Q2

+ β6Q2 · δD + β7
(
δD · Q2

2 + Q2
2 · δD

)
+

μ2

2
(
δQ̇ – [δ�, Q2]

)

+ μ1
[
Q2, δQ̇ – [δ�, Q2]

])
+ ∇ · δF2 , (3.14)

where

δF1 = μ1[�1, δQ] + aδQ + b
(

Q1 · δQ + δQ · Q2 –
1
3

(Q1 : δQ + δQ : Q2)I
)

– c
(|Q1|2δQ + (Q1 : δQ + δQ : Q2)Q2

)
,

δF2 = β1
(
δQ(Q1 : D1) + Q2(δQ : D1)

)
+ β5D1 · δQ + β6D1 · δQ +

μ2

2
[�1, δQ]

+ μ1
[
δQ, Q̇1 – [�1, Q1]

]
– μ1

[
Q2, [�1, δQ]

]
+ σ d(δQ, Qi) – δv ⊗ v2.

We denote Q̃i = Qi – Q∗, then a direct calculation leads to the following estimates:

‖δF1‖L2 ≤ C
(
1 + ‖∇v1‖L3 +

∥∥(Q̃1, Q̃2)
∥∥

L∞ +
∥∥(Q̃1, Q̃2)

∥∥2
L∞

)(‖δQ‖H1 + ‖δv‖L2
)
,

‖δF2‖L2 ≤ C
(‖v2‖L∞ + ‖∇v1‖L3 +

∥∥(Q̃1, Q̃2)
∥∥

L∞‖∇v1‖L3 + ‖Q̇1‖H1

+
∥∥(∇Q1,∇Q2)

∥∥
L∞

)(‖δQ‖H1 + ‖δv‖L2
)
.

For the system (3.13)–(3.14), making an L2-energy estimate for (δQ̇, δv), we obtain

1
2

d
dt

(‖δv‖2
L2 + J‖δQ̇‖2

L2 +
〈
L(δQ), δQ

〉)

= –μ1
〈
δQ̇ – [δ�, Q2], δQ̇

〉
–

〈
L(δQ), v1 · ∇δQ + δv · ∇Q2

〉
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–
μ2

2
〈δD, δQ̇〉 – J〈δv · ∇Q̇2, δQ̇〉 + 〈δF1 , δQ̇〉 – β1‖Q2 : δD‖2

L2

– β4‖δD‖2
L2 – 〈β5δD · Q2 + β6Q2 · δD,∇δv〉 – 2β7

∥∥δD · Q2
2
∥∥2

L2

–
μ2

2
〈
δQ̇ – [δ�, Q2],∇δv

〉
– μ1

〈[
Q2, δQ̇ – [δ�, Q2]

]
,∇δv

〉
– 〈δF2 ,∇δv〉

= –β1‖Q2 : δD‖2
L2 –

(
β4 –

μ2
2

4μ1

)
‖δD‖2

L2 – (β5 + β6)〈δD · Q2, δD〉

– 2β7‖δD · Q2‖2
L2 – μ1

∥∥∥∥δQ̇ – [δ�, Q2] +
μ2

2μ1
δD

∥∥∥∥
2

L2
+ 〈δF1 , δQ̇〉

–
〈
L(δQ), v1 · ∇δQ + δv · ∇Q2

〉
– J〈δv · ∇Q̇2, δQ̇〉 – 〈δF2 ,∇δv〉. (3.15)

From (3.9) we get

–
〈
L(δQ), v1 · ∇δQ + δv · ∇Q2

〉

≤ C‖∇v1‖L∞‖∇δQ‖2
L2 + Cδ‖∇Q2‖2

L∞‖∇δQ‖2
L2 + δ‖∇δv‖2

L2 .

Using the Sobolev embeddings H1(R3) ↪→ L6(R3) and H1(R3) ↪→ L3(R3), we find

–J〈δv · ∇Q̇2, δQ̇〉 ≤ C‖δv‖L3‖∇Q̇2‖L6‖δQ̇‖L2 ≤ C‖δv‖H1‖∇Q̇2‖H1‖δQ̇‖L2

≤ C
(
1 + ‖Q̇2‖H2

)(‖δv‖2
L2 + ‖δQ̇‖2

L2
)

+ δ‖∇δv‖2
L2 .

Consequently, from (3.15) and the above estimates and using the dissipation relation, for
i = 1, 2, we have

1
2

d
dt

(‖δv‖2
L2 + J‖δQ̇‖2

L2 +
〈
L(δQ), δQ

〉)
+ δ‖∇δv‖2

L2

≤ C(vi, Q̃i, δ)
(‖δv‖2

L2 + ‖δQ‖2
H1 + ‖δQ̇‖2

L2
)
. (3.16)

In addition, multiplying Eq. (3.13) by δQ and taking the L2-inner product, using integra-
tion by parts, then we have

d
dt

(
J〈δQ̇, δQ〉 +

μ1

2
‖δQ‖2

L2

)
+

〈
L(δQ), δQ

〉

= J‖δQ̇‖2
L2 – J〈δQ̇, δv · ∇Q2〉 – μ1

〈
δv · ∇Q2 – [δ�, Q2], δQ

〉

– J〈δv · ∇Q̇2, δQ〉 –
μ2

2
〈δD, δQ〉 + 〈δF1 , δQ〉

≤ Cδ

(
1 + ‖∇Q2‖2

L∞ + ‖Q̃2‖L∞ + ‖Q̇2‖2
H2

)(‖δv‖2
L2 + ‖δQ̇‖2

L2 + ‖δQ‖2
H1

)

+
δ

2
‖∇δv‖2

L2 + ‖δF1‖L2‖δQ‖L2

≤ C(δ, Q̃i, vi)
(‖δv‖2

L2 + ‖δQ̇‖2
L2 + ‖δQ‖2

H1
)

+
δ

2
‖∇δv‖2

L2 . (3.17)
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Hence, combining (3.16) and (3.17) leads to

1
2

d
dt

(‖δv‖2
L2 + J‖δQ̇ + δQ‖2

L2 + (μ1 – J)‖δQ‖2
L2 +

〈
L(δQ), δQ

〉)

+
〈
L(δQ), δQ

〉
+

δ

2
‖∇δv‖2

L2

≤ C(δ, Q̃i, vi)
(‖δv‖2

L2 + ‖δQ̇‖2
L2 + ‖δQ‖2

H1
)
.

Since J � μ1, we obtain

d
dt

(
‖δv‖2

L2 + ‖δQ̇‖2
L2 +

μ1

2
‖δQ‖2

L2 +
〈
L(δQ), δQ

〉)

≤ C(δ, Q̃i, vi)
(‖δv‖2

L2 + ‖δQ̇‖2
L2 + ‖δQ‖2

H1
)
,

thus, the Gronwall inequality implies that δv(t) = 0 and δQ(t) = 0 on [0, T].
Combining the above four steps, we complete the proof of Theorem 2.1.

4 Conclusions
In this paper, we are mainly concerned with the inertial Qian–Sheng Q-tensor model de-
scribing the nematic liquid crystal flow. The inertial term J is responsible for the hyper-
bolic feature of the equation describing molecular orientation. Under the assumption of
the initial data near uniaxial equilibrium, we investigate the existence and uniqueness of
local in time strong solutions to the system. However, the global in time existence around
the uniaxial equilibrium is rather difficult because the energy of the system is not strong
enough to estimate the L2-norm of the difference Q – Q∗. This will be left for our future
work.
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