
Gou and Li Boundary Value Problems         (2021) 2021:25 
https://doi.org/10.1186/s13661-021-01499-5

R E S E A R C H Open Access

A study on controllability of impulsive
fractional evolution equations via resolvent
operators
Haide Gou1* and Yongxiang Li1

*Correspondence:
842204214@qq.com
1Department of Mathematics,
Northwest Normal University,
Lanzhou, 730070, People’s Republic
of China

Abstract
In this article, we study the controllability for impulsive fractional integro-differential
evolution equation in a Banach space. The discussions are based on the Mönch fixed
point theorem as well as the theory of fractional calculus and the (α,β)-resolvent
operator, we concern with the term u′(·) and finding a control v such that the mild
solution satisfies u(b) = ub and u′(b) = u′

b. Finally, we present an application to support
the validity study.
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1 Introduction
Fractional differential equations have been applied to various fields successfully, for ex-
ample, physics, engineering, and finance. Consequently, more and more researchers paid
much attention to this subject and have obtained substantial achievements, we refer the
reader to [3, 9, 16, 25] and the references therein.

Controllability plays a significant role in the evolution of modern mathematical control
theory. This is a qualitative property of dynamical control systems and is of appropriate
significance in control theory. Many fundamental problems of control theory such as pole-
assignment, stabilizability and optimal control may be solved under the presumption that
the system is controllable. The concept of controllability, when it was first introduced by
Kalman [15] in 1963, has become an active area of investigation due to its great appli-
cations in the field of physics. Controllability problems for different kinds of dynamical
systems have been considered in many papers [1, 2, 4–6, 8, 22, 23].

Controllability is possible to steer a dynamical control system from an arbitrary initial
state to an arbitrary final state using the set of admissible controls. It has many signifi-
cant applications, not only in control theory and systems theory, but also in such fields
as industrial and chemical process control, reactor control, control of electric bulk power
systems, aerospace engineering and recently in quantum system theory.
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Controllability is also strongly related to the theory of realization and so-called mini-
mal realization and canonical forms for linear time-invariant control systems such as the
Kalman canonical form, the Jordan canonical form and the Luenberger canonical form.
Moreover, it is strongly connected with the minimum energy control problem for many
classes of linear finite dimensional, infinite dimensional dynamical systems, and delayed
systems both deterministic and stochastic.

In recent years, the controllability problems for various linear and nonlinear determinis-
tic and stochastic dynamic systems have been studied in many publications using different
method, we refer the reader to [2, 6, 24]. In addition, Kailasavalli et al. [14] acknowledged
the existence and controllability of fractional neutral integro-differential systems with
SDD with Banach contraction and resolvent operator technique as the main reference.
Dabas et al. [10] studied the existence, uniqueness and continuous dependence of a mild
solution for an impulsive neutral fractional order differential equation with infinite delay.
Recently, Heping Ma and Biu Liu [20] interpreted the exact controllability and continu-
ous dependence of fractional neutral integro-differential equations with state-dependent
delay in Banach spaces. Also Yan [27] discussed the approximate controllability of neu-
tral integro-differential delay systems with inclusion type in Hilbert space by using the
fixed point theorem of discontinuous multi-valued operators supported by the Dhage
fixed point technique with the resolvent operator. Additionally, Yan and Jia [28] explained
the approximate controllability of partial fractional neutral stochastic functional integro-
differential inclusions with state-delay.

Especially, the controllability of fractional evolution equations is also studied. In 2015,
Liang and Yang [19] investigated the exact controllability for the fractional integro-
differential evolution equations in Banach spaces E involving noncompact semigroups and
nonlocal functions without Lipschitz continuity,

⎧
⎨

⎩

Dαu(t) + Au(t) = f (t, u(t), Gu(t)) + Bv(t), t ∈ J ,

u(0) =
∑m

i=1 ciu(ti),

where Dα denotes the Caputo fractional derivative of order α ∈ (0, 1), –A : D(A) ⊂ E → E
is the infinitesimal generator of a C0-semigroup T(t) (t ≥ 0) of uniformly bounded linear
operator, the control function v is given in L2(J , U); U is a Banach space, B is a linear
bounded operator from U to E; f is a given function and

Gu(t) =
∫ t

0
K(t, s)u(s) ds

is a Volterra integral operator.
In 2011, Debbouche and Baleanu [11] studied the controllability for the fractional non-

local impulsive integro-differential control system of the form

⎧
⎪⎪⎨

⎪⎪⎩

dαu(t)
dtα + A(t, u(t))u(t) = (Bv)(t) + �(t, f (t, u(β(t)),

∫ t
0 g(t, s, u(γ (s))) ds),

�u(ti) = Ii(u(ti)), i = 1, 2, . . . , m,

u(0) + h(u) = u0,

the discussions are based on the theory of fractional calculus as well as on the fixed point
technique and the (α, u)-resolvent family.
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In 2017, Lian, Fan and Li [18] investigated the approximate controllability for a class of
semilinear fractional differential systems of order 1 < α < 2 of the form

⎧
⎨

⎩

CDαx(t) = Ax(t) + f (t, x(t)) + Bu(t); t ∈ J = [0, b];

x(0) + g(x) = x0 ∈ E, x′(0) + h(x) = y0 ∈ E,

via the resolvent operator.
In 2019, Singh and Pandey [26] studied some controllability results for the abstract sec-

ond order Sobolev type impulsive delay differential system of the form

⎧
⎪⎪⎨

⎪⎪⎩

d2

dt2 (Qu(t)) = Au(t) + Bv(t) + F(t, ut ,
∫ t

0 K(t, s)(us) ds), t ∈ J ′,

u(t) = ϕ(t), t ∈ [–σ , 0], u′(0) = χ0,

�u|t=tk = G1
k(utk ), �u′|t=tk = G2

k(u′
tk

), k = 1, 2, . . . , m.

On the other hand, in recent years, much attention has been paid to establishing suf-
ficient conditions for the controllability of linear fractional dynamical systems of order
0 < α < 1 by several authors; see a recent monograph [1, 2, 4, 5, 8, 22, 23] and various pa-
pers [2, 6]. However, there is no work that reported on the problem of controllability of
nonlinear fractional dynamical system of order 1 < α < 2, to the best of our knowledge, up
until now the controllability for a class of impulsive fractional integro-differential evolu-
tion equation with fractional derivative of order α ∈ (1, 2] has not been investigated in the
literature. Motivated by the above mentioned aspects, in this paper, we discuss the con-
trollability for a class of impulsive fractional integro-differential evolution equation of the
form

⎧
⎪⎪⎨

⎪⎪⎩

cDα
0+ u(t) = Au(t) + f (t, u(t), Gu(t), Fu(t)) + Bv(t), t ∈ J ′,

�u(tk) = Ik(u(tk)), �u′(tk) = Jk(u′(tk)), k = 1, 2, . . . , m,

u(0) + g(u) = u0, u′(0) + h(u) = u1,

(1.1)

where cDα
0+ is the Caputo fractional derivative of order α ∈ (1, 2] with the lower limit zero,

A : D(A) ⊂ E → E a closed linear operator and A generates a strongly continuous (α,β)-
resolvent family Sα,β (t) (t ≥ 0) of uniformly bounded linear operator on a Banach space E.
The state u(·) takes values in E, J = [0, b] (b > 0), J ′ = J \ {t1, t2, . . . , tm}, J0 = [0, t1], Jk =
(tk , tk+1], the {tk} satisfy 0 = t0 < t1 < t2 < · · · < tm < tm+1 = b, m ∈ N ; the functions f : J ×
E × E × E → E and Ik , Jk : PC(J , E) → E, k = 1, 2, . . . , m, g, h : PC(J , E) → E are appropriate
functions satisfying certain assumptions that will be specified later. �u(tk) = u(t+

k ) – u(t–
k ),

�u′(tk) = u′(t+
k ) – u′(t–

k ), u(t+
k ) and u(t–

k ) represent the right and left limits of u(t) at t = tk ,
respectively, the control function v is given in L2(J , U), U is a Banach space, B is a linear
bounded operator from U to E, and the operators G and F are given by

Gu(t) =
∫ t

0
K(t, s)u(s) ds, Fu(t) =

∫ b

0
H(t, s)u(s) ds
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where K ∈ C(�,R+), � = {(t, s) : 0 ≤ s ≤ t ≤ b}, H ∈ C(�0,R+), �0 = {(t, s) : 0 ≤ s, t ≤ b}.
Throughout this work, we always assume that

K∗ = sup
t∈J

∫ t

0
K(t, s) ds, H∗ = sup

t∈J

∫ b

0
H(t, s) ds.

In this paper, we introduce a suitable concept of a mild solution of the system (1.1).
Moreover, we investigate the controllability for the system (1.1), by using the Mönch fixed
point theorem combined with (α,β)-resolvent operators.

The paper is organized as follows: The second part of the paper some notations and
recall some basic known results. The third part we present a controllability result for the
problem (1.1) of our concern. And the last section is provided an example to illustrate
applications of the obtained results. Concluding part close this article.

2 Preliminaries
Let E and E1 be two Banach space. For any Banach space E, the norm of E is defined by
‖ · ‖E . The space of all bounded linear operator from E to E1 is denoted by L(E, E1) and
L(E, E) is written as L(E). We denote by C(J , E) the Banach space of all continuous E-value
function on interval J the norm ‖u‖C = maxt∈J ‖u(t)‖. We use ‖f ‖Lp to denote the Lp(J , E)
norm of f whenever f ∈ Lp(J , E) for some p with 1 ≤ p < ∞. We consider the following
spaces:

Let PC(J , E) = {u : J → E, u(t) is continuous at t �= tk , and left continuous at t = tk , and
u(t+

k ) exists, k = 1, 2, . . . , m}. Evidently, PC(J , E) is a Banach space with the norm ‖u‖PC =
supt∈J{‖u(t)‖ : u ∈ PC(J , E)}.

Let PC1(J , E) be the spaces of all functions u ∈ PC(J , E), which are continuously differ-
entiable on J ′, and the lateral derivatives

u′
R(t) = lim

s→0+

u(t + s) – u(t+)
s

and u′
L(t) = lim

s→0–

u(t + s) – u(t–)
s

are continuous on [0, b) and (0, b], respectively. Furthermore, for u ∈ PC1(J , E), we denote
by u′(t) the left derivative at t ∈ (0, b], and by u′(0), the right derivative at zero. It is easy to
see that the space PC1(J , E) is a Banach space with the norm

‖u‖PC1 = max
{

sup
t∈J

∥
∥u(t)

∥
∥, sup

t∈J

∥
∥u′(t)

∥
∥
}

.

In the following, let us recall some well-known definitions. For more details, see [16].

Definition 2.1 The fractional integral of order γ with the lower limit zero for a function
f : [0,∞) →R is defined as

Iγ
t f (t) =

1

(γ )

∫ t

0
(t – s)γ –1f (s) ds, t > 0,γ > 0,

provided the right side is point-wise defined on [0,∞), where 
(·) is the gamma function.
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Definition 2.2 The Riemann–Liouville derivative of order γ with the lower limit zero for
a function f : [0,∞) →R can be written as

LDγ
t f (t) =

1

(n – γ )

dn

dtn

∫ t

0

f (s)
(t – s)γ +1–n ds, t > 0, n – 1 < γ < n.

Definition 2.3 The Caputo fractional derivative of order γ for a function f : [0,∞) → R

can be written as

cDγ
t f (t) = LDγ

t

[

f (t) –
n–1∑

k=0

tk

k!
f (k)(0)

]

, t > 0, n – 1 < γ < n,

where n = [γ ] + 1 and [γ ] denotes the integer part of γ .

Lemma 2.1 ([3]) For q > 0, the general solution of the fractional differential equation
cDq

t u(t) = 0 is given by

u(t) = c0 + c1t + c2t2 + · · · + cn–1tn–1,

where ci ∈ R, i = 0, 1, . . . , n – 1, n = [q] + 1 and [q] denotes the integer part of the real num-
ber q.

Now, we review some definitions and lemmas on fractional calculus. For β ≥ 0, let

gβ (t) =

⎧
⎨

⎩

tβ–1


(β) , t > 0,

0, t ≤ 0,

where 
(·) is the Gamma function . The finite convolution of f and g is denoted by (f ∗
g)(t) =

∫ t
0 f (t – s)g(s) ds.

A strongly continuous family {T(t)}t≥0 ⊆ B(E) is said to be exponentially bounded if
there are constants M ≥ 0 and ω ∈R, such that

∥
∥Tα(t)

∥
∥≤ Meωt , t ≥ 0.

Definition 2.4 ([9]) Let A : D(A) ⊆ E → E be closed linear operators defined on a Banach
space E and α,β > 0. Let ρ(A) be the resolvent set of A, we say that the A is the generator
of an (α,β)-resolvent family, if there exist ω ≥ 0 and a strongly continuous function Sα,β :
[0,∞) → L(E) such that Sα,β (t) is exponentially bounded, {λα : Reλ > ω} ⊂ ρ(A), and for
all u ∈ E,

λα–β
(
λαI – A

)–1u =
∫ ∞

0
e–λtSα,β(t)u dt, Reλ > ω. (2.1)

In this case, {Sα,β (t)}t≥0 is called the (α,β)-resolvent family (also called the (α,β)-
resolvent operator function) generated by A.

Lemma 2.2 (i) The operator Sα,2(t) : R+ →L(E) associated with Sα,1 is defined by

Sα,2(t) =
∫ t

0
Sα,1(s) ds, t ≥ 0. (2.2)
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(ii) The resolvent family Sα,α(t) : R+ → L(E) associated with the solution operator Sα,1 is
defined by

Sα,α(t) = Iα–1
t Sα,1(t), (2.3)

Sα,α–1(t) = Iα–2
t Sα,1(t). (2.4)

Proof (i). By (2.1), we have

λα–1(λαI – A
)–1u =

∫ ∞

0
e–λtSα,1(t)u dt, Reλ > ω, u ∈ E, (2.5)

λα–2(λαI – A
)–1u =

∫ ∞

0
e–λtSα,2(t)u dt, Reλ > ω, u ∈ E. (2.6)

Thus, by (2.5), (2.6), we obtain

∫ ∞

0
e–λtSα,2(t)u dt = λα–2(λαI – A

)–1u =
1
λ

λα–1(λαI – A
)–1u

=
1
λ

∫ ∞

0
e–λtSα,1(t)u dt

=
∫ ∞

0
e–λt(g1 ∗ Sα,1)(t)u dt =

∫ ∞

0
e–λt

(∫ t

0
Sα,1(s) ds

)

u dt.

(ii). By (2.1), we have

(
λαI – A

)–1u =
∫ ∞

0
e–λtSα,α(t)u dt, Reλ > ω, u ∈ E. (2.7)

Thus, by (2.7), we obtain

∫ ∞

0
e–λtSα,α(t)u dt =

(
λαI – A

)–1u =
1

λα–1 λα–1(λαI – A
)–1u

=
1

λα–1

∫ ∞

0
e–λtSα,1(t)u dt

=
∫ ∞

0
e–λt(gα–1 ∗ Sα,1)(t)u dt

=
∫ ∞

0
e–λt(Iα–1

t Sα,1(t)
)
u dt.

(iii). By (2.1), we have

λ
(
λαI – A

)–1u =
∫ ∞

0
e–λtSα,α–1(t)u dt, Reλ > ω, u ∈ E. (2.8)

Thus, by (2.8), we obtain

∫ ∞

0
e–λtSα,α–1(t)u dt = λ

(
λαI – A

)–1u =
1

λα–2 λα–1(λαI – A
)–1u

=
1

λα–2

∫ ∞

0
e–λtSα,1(t)u dt
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=
∫ ∞

0
e–λt(gα–2 ∗ Sα,1)(t)u dt

=
∫ ∞

0
e–λt(Iα–2

t Sα,1(t)
)
u dt. �

Lemma 2.3 Let A be the infinitesimal generator of the strongly continuous (α,β)-resolvent
family {Sα,β(t)}t≥0 in E. Then

(i):
d
dt

Sα,1(t)u = ASα,α(t)u, for t ∈ J and u ∈ E;

(ii):
d
dt

Sα,2(t)u = Sα,1(t)u, for t ∈ J and u ∈ E;

(iii):
d
dt

Sα,α(t)u = Sα,α–1(t)u, for t ∈ J and u ∈ E.

Proof Since A is the infinitesimal generator of the strongly continuous (α,β)-resolvent
family {Sα,β (t)}t≥0. So, for all b > 0, the series tα–1 ∑∞

k=0
(Atα )k


(α+αk) ,
∑∞

k=0
(Atα )k


(1+αk) , t
∑∞

k=0
(Atα )k


(2+αk)
are uniformly convergent on [0, b]. Thus, for t ∈ [0, b], we have

d
dt

Sα,1(t)u =

[ ∞∑

k=0

(Atα)k


(1 + αk)
u

]′
= Atα–1

∞∑

k=1

Ak–1tα(k – 1)

(α + α(k – 1))

u

= Atα–1
∞∑

k=0

(Atα)k


(α + αk)
u = ASα,α(t)u,

d
dt

Sα,2(t)u =

[

t
∞∑

k=0

(Atα)k


(2 + αk)
u

]′
=

[ ∞∑

k=0

Aktkα+1


(2 + αk)
u

]′

=
∞∑

k=0

Ak(1 + αk)tαk

(1 + αk)
(1 + αk)
u =

∞∑

k=0

(Atα)k


(1 + αk)
u = Sα,1(t)u,

and

d
dt

Sα,α(t)u =

[

tα–1
∞∑

k=0

(Atα)k


(α + αk)
u

]′
=

[ ∞∑

k=0

Aktαk+α–1


(α + αk)
u

]′

=
∞∑

k=1

Ak(αk + α – 1)tαk+α–2


(α + αk)
u =

∞∑

k=0

Ak(αk + α – 1)tαk+α–2

(αk + α – 1)
(α – 1 + αk)
u

= tα–2
∞∑

k=0

(Atα)k


(α – 1 + αk)
u = tα–2Eα,α–1

(
Atα

)
u = Sα,α–1(t)u. �

Lemma 2.4 ([9]) The operators Sα,1(t), Sα,2(t), Sα,α(t) and Sα,α–1(t) have the following prop-
erties.

(i)The operators Sα,1(t), Sα,2(t), Sα,α(t) and Sα,α–1(t) are strongly continuous for all t ≥ 0.
(ii) If Sα,β (t) (t ≥ 0) is an equicontinuous (α,β)-resolvent family, then Sα,1(t), Sα,2(t),

Sα,α(t) and Sα,α–1(t) are also equicontinuous in E for t > 0.

Now, we can formulate some basic properties of operators Sα,1(t), Sα,2(t), Sα,α–1(t), and
Sα,α(t).
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Lemma 2.5 For fixed t ≥ 0, Sα,2(t), Sα,α(t) and Sα,α–1(t) are linear and bounded operators
on E.

Proof For any fixed t ≥ 0, it is easy to check that Sα,2(t), Sα,α(t), Sα,α–1(t) are also linear
operators since Sα,1(t) is a linear operator. For any u ∈ E, by Lemma 2.2, we have

∥
∥Sα,2(t)u

∥
∥ =

∥
∥
∥
∥

∫ t

0
Sα,1(s)u ds

∥
∥
∥
∥≤ Mt‖u‖

and

∥
∥Sα,α(t)u

∥
∥ =

∥
∥
∥
∥

1

(α – 1)

∫ t

0
(t – s)α–2Sα,1(t)u ds

∥
∥
∥
∥ =

Mtα–1


(α)
‖u‖,

∥
∥Sα,α–1(t)u

∥
∥ =

∥
∥
∥
∥

1

(α – 2)

∫ t

0
(t – s)α–3Sα,1(t)u ds

∥
∥
∥
∥ =

Mtα–2


(α – 1)
‖u‖. �

Now, we recall some properties of Hausdorff measure of noncompactness that will be
used later.

Definition 2.5 ([7]) The Hausdorff measure of noncompactness α on a bounded subset
D of the Banach space E is defined as

α(D) := inf{ε > 0 : D can be covered by finite number of

balls of radius smaller then ε}.

Let α(·), α(·)PC and α(·)PC1 denote the Hausdorff measure of noncompactness on C(J , E),
PC(J , E) and PC1(J , E), respectively. For any B ⊂ C(J , E) and t ∈ J , set B(t) = {u(t) : u ∈ B} ⊂
E. If B is bounded in C(J , E), then B(t) is bounded in E, and α(B(t)) ≤ α(B).

Lemma 2.6 ([17]) Let E be a Banach space, and let B ⊂ E be bounded. Then there exists a
countable set B0 ⊂ B, such that α(B) ≤ 2α(B0).

Lemma 2.7 ([13]) Let E be a Banach space, and let B ⊂ C(J , E) be equicontinuous and
bounded, then α(B(t)) is continuous on J , and α(B) = maxt∈J α(B(t)).

Lemma 2.8 ([7]) Let D ⊂ PC([a, b], E) be bounded and piecewise equicontinuous, then
αPC(D(t)) is piecewise continuous for t ∈ [a, b], and αPC(D) = sup{α(D) : t ∈ [a, b]}, where
D(t) = {u(t) : u ∈ D}.

Lemma 2.9 ([7]) Let {wn}∞n=1 be a sequence of Bochner integrable functions from [a, b] into
E such that ‖wn(t)‖ ≤ g(t) for every n ≥ 1 and almost all t ∈ [a, b], where g ∈ L1([a, b],R+),
then the function h(t) = α{wn(t) : n ≥ 1} contained in L1(J ,R+) satisfies

α

({∫ t

a
wn(s) ds : n ≥ 1

})

≤ 2
∫ t

a
h(s) ds.
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Lemma 2.10 ([7]) Let D ⊂ PC1([a, b], E) be bounded and let the elements of D′ be piecewise
equicontinuous, then

αPC1 (D) = max
{

sup
t∈[a,b]

α
(
D(t)

)
, sup

t∈[a,b]
α
(
D′(t)

)}
, where D′(t) =

{
u′(t) : u ∈ D

}
.

Next, we are ready to construct a mild solution for the impulsive system (1.1).

Lemma 2.11 Assume A : D(A) ⊂ E → E is a closed linear operator, A is known as the
infinitesimal generator of the (α,β)-resolvent family {Sα,β(t)}t≥0 on a Banach space E. Then
the problem (1.1) has a unique solution u ∈ PC1(J , E) and satisfies the following integral
equation:

u(t) = Sα,1(t)
(
u0 – g(u)

)
+ Sα,2(t)

(
u1 – h(u)

)

+
∑

0<tk <t

Sα,1(t – tk)Ik
(
u(tk)

)
+
∑

0<tk<t

Sα,2(t – tk)Jk
(
u′(tk)

)

+
∫ t

0
Sα,α(t – s)

[
Bv(s) + f

(
s, u(s), Gu(s), Fu(s)

)]
ds, t ∈ J . (2.9)

Proof The proof is similar to the proof in paper [12], here we omit it. �

Based on Lemma 2.11, we will give the definition of mild solutions for the problem (1.1).

Definition 2.6 A function u : J → E is called a mild solution of the problem (1.1) if u(0) =
(u0 – g(u)), u′(0) = (u1 – h(u)), �u(tk) = Ik(u(tk)), �u′(tk) = Jk(u′(tk)), u(·)|J ∈ PC1(J , E) and
the following equation is satisfied:

u(t) = Sα,1(t)
(
u0 – g(u)

)
+ Sα,2(t)

(
u1 – h(u)

)

+
∑

0<tk <t

Sα,1(t – tk)Ik
(
u(tk)

)
+
∑

0<tk<t

Sα,2(t – tk)Jk
(
u′(tk)

)

+
∫ t

0
Sα,α(t – s)

[
Bv(s) + f

(
s, u(s), Gu(s), Fu(s)

)]
ds.

Theorem 2.1 ([21]) Let � be a closed convex subset of a Banach space E and 0 ∈ �. As-
sume that Q : � → � is a continuous map, which satisfies Mönch’s condition, i.e., D ⊂ � is
countable and D ⊂ conv({0} ∪ Q(D)) ⇒ D is compact. Then Q has at least one fixed point
in �.

3 Main results
In this section, we will establish the sufficient conditions for the controllability of the sys-
tem (1.1). For arbitrary u ∈ PC1(J , E), we denote the final stages of u by ub = u(b) and
u′

b = u′(b) at time b in the space E.

Definition 3.1 The system (1.1) is said to be controllable on J if for initial conditions
u0 ∈ E, u1 ∈ E and final stages ub and u′

b in E, there exists a control v ∈ L2(J , U) such that the
mild solution u(t) of the system (1.1) corresponding to v satisfies u(0) = (u0 – g(u)), u′(0) =
(u1 – h(u)), �u(tk) = Ik(u(tk)), �u′(tk) = Jk(u′(tk)), k = 1, 2, . . . , m, and u(b) = ub, u′(b) = u′

b.
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Let Br0 := {u ∈ PC1(J , E) : ‖u‖PC1 ≤ r0, where r0 = max{r1, r2} such that ‖u‖PC ≤ r1,
‖u′‖PC ≤ r2}. However, to achieve such a result, we assume certain conditions:

(H0) A generates a strongly continuous (α,β)-resolvent family Sα,β (t) (t ≥ 0) of the
uniformly bounded linear operator on a Banach space E. That is, there exists a
constants M ≥ 1 such that ‖Sα,β (t)‖ ≤ M for all t ≥ 0 and there exists a positive
constant M0 such that ‖ASα,α(t)‖L ≤ M0 for all t ≥ 0.

(H1) The function f : J × E × E × E → E satisfies:
(i) for a.e. t ∈ J , the function f (t, ·, ·, ·) : E × E × E → E is continuous, and for

each (x, y) ∈ E × E, the function f (·, x, y, z) : J → E is strongly measurable;
(ii) for any r0 > 0, there exist a constant q2 ∈ (0,α) and functions

mr0 ∈ L
1

q2 (J ,R+) such that

sup
{∥
∥f (t, x, y, z)

∥
∥ : ‖x‖ ≤ r,‖y‖ ≤ K∗r,‖z‖ ≤ H∗r

}≤ mr0 (t), t ∈ J ,

where mr0 satisfies limr0→+∞ inf 1
r0

‖mr0‖L
1

q2
� γ < ∞;

(iii) there exist a constant q3 ∈ (0,α) and functions Jf ∈ L
1

q3 (J ,R+) such that

α
(
f (t, D1, D2, D3)

)≤ Jf (t)
(
α(D1) + α(D2 + α(D3)

)
, t ∈ J ,

for any countable subsets D1, D2, D3 ∈ PC(J , E).
(H2) The function Ik , Jk : PC(J , E) → E, for k = 1, 2, . . . , m, satisfies:

(i) There exists a nondecreasing function Lj
k : R+ →R

+ (j = 1, 2) such that

∥
∥Ik(u)

∥
∥≤ L1

k
(‖u‖PC1

)
,

∥
∥Jk(u)

∥
∥≤ L2

k
(‖u‖PC1

)
and

lim
r0→∞

Lj
k(r0)
r0

= δ
j
k < ∞

for all u ∈ E and k = 1, 2, . . . , m.
(ii) There exist constants Mj > 0 such that, for any countable subsets Dj ⊂ E, and

α
({

Ik(D1)
})≤ M1

kα(D1), α
({

Jk(D2)
})≤ M2

kα(D2)

for all j = 1, 2 and i = 1, 2, . . . , m.
(H3) (i) The function g, h : PC → E is Lipschitz continuous and bounded in E, that is,

there exists aconstants c1, c2 ≥ 0 and c3, c4 ≥ 0 such that

∥
∥g(u)

∥
∥≤ c1,

∥
∥g(u) – g(v)

∥
∥≤ c2 max

t∈J
‖u – v‖PC,

∥
∥h(u)

∥
∥≤ c3,

∥
∥h(u) – h(v)

∥
∥≤ c4 max

t∈J
‖u – v‖PC,

for all u, v ∈ PC(J , E) .
(ii) There exist constants l1, l2 > 0 such that, for any countable subsets

D1, D2 ⊂ E, and

α
(
g(D1)

)≤ l1α(D1), α
(
h(D2)

)≤ l2α(D2).
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(H4) Linear operator W : L2(J , U) → E defined by

Wu =

⎧
⎨

⎩

∫ t
0 Sα,α(t – s)Bv(s) ds, v = vu

1 ;
∫ t

0 Sα,α–1(t – s)Bv(s) ds, v = vu′
2 ,

(3.1)

where vu
1 and vu′

2 are defined in (3.6).
(i) W has an inverse operator W –1 which takes values in L2(J , U)\ker W , and

there exist two constants M1 > 0, M2 > 0 such that ‖B‖ ≤ M1, ‖W –1‖ ≤ M2.
(ii) There exist a constant q1 ∈ (0,α) and a function Kw ∈ L

1
q1 (J ,R+) such that

α
(
W –1(D4)(t)

)≤ Kw(t)α(D4), t ∈ J ,

for any bounded subset D4 ⊂ E.
For the sake of brevity, we introduce the notations

ki =
bq–qi

(ai + 1)1–qi
, ai =

q – 1
1 – qi

, i = 1, 2, 3;

hi =
bq–qi–1

(bi + 1)1–qi
, bi =

q – 2
1 – qi

, i = 1, 2, 3;

M3 = k1‖Kw‖
L

1
q1

; M4 = k3‖Jf ‖
L

1
q3

;

M5 = k2‖mr0‖L
1

q2
; M6 = h2‖mr0‖L

1
q2

, M7 = h3‖Jf ‖
L

1
q3

.

Theorem 3.1 Assume that the assumptions (H0)–(H4) are satisfied, then the system (1.1)
is controllable on J provided that max(λ1,λ2) < 1, where

λ1 = max

{[

1 +
MM1M2bα– 1

2


(α)

][
MM5


(α)
+

m∑

k=1

M
(
δ1

k + δ2
k
)
]

,

[

1 +
MM1M2bα– 3

2


(α – 1)

][
MM6


(α – 1)
+

m∑

k=1

(
M0δ

1
k + Mδ2

k
)
]}

, (3.2)

λ2 = max

{[

M +
2M2M1M3


(α)
∥
∥Kw(s)

∥
∥

L
1

q1

]

×
[ m∑

k=1

M1
k + b

m∑

k=1

M2
k +

2M4


(α)
‖Jf ‖

L
1

q3

(
1 + K∗)

]

,

[

1 +
2MM1M3


(α)
∥
∥Kw(s)

∥
∥

L
1

q1

]

×
[

M0

m∑

k=1

M1
k + M

m∑

k=1

M2
k +

2MM7


(α – 1)
‖Jf ‖

L
1

q3

(
1 + K∗)

]}

. (3.3)

Proof Consider the operator Q : PC1(J , E) → PC1(J , E) defined by

(Qu)(t) = Sα,1(t)
(
u0 – g(u)

)
+ Sα,2(t)

(
u1 – h(u)

)

+
∑

0<tk <t

Sα,1(t – tk)Ik
(
u(tk)

)
+
∑

0<tk<t

Sα,2(t – tk)Jk
(
u′(tk)

)
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+
∫ t

0
Sα,α(t – s)

[
Bv(s) + f

(
s, u(s), Gu(s), Fu(s)

)]
ds, t ∈ J . (3.4)

Furthermore, by Lemma 2.3, we get (Qu)′ : PC(J , E) → PC(J , E) such that

(Qu)′(t) = ASα,α(t)
(
u0 – g(u)

)
+ Sα,1(t)

(
u1 – h(u)

)

+
∑

0<tk<t

ASα,α(t – tk)Ik
(
u(tk)

)
+
∑

0<tk <t

Sα,1(t – tk)Jk
(
u′(tk)

)

+
∫ t

0
Sα,α–1(t – s)

[
Bv(s) + f

(
s, u(s), Gu(s), Fu(s)

)]
ds, t ∈ J , (3.5)

where the control v is defined by

v(t) =

⎧
⎨

⎩

vu
1(t), u ∈ PC1(J , E),

vu′
2 (t), u′ ∈ PC(J , E),

(3.6)

and vu
1(t) and vu′

2 (t) are given by

vu
1(t) = W –1

[

ub – Sα,1(b)
(
u0 – g(u)

)
– Sα,2(b)

(
u1 – h(u)

) ∑

0<tk<b

Sα,1(b – tk)Ik
(
u(tk)

)

–
∑

0<tk<b

Sα,2(b – tk)Jk
(
u′(tk)

)
–
∫ b

0
Sα,α(b – s))f

(
s, u(s), Gu(s), Fu(s)

)
ds
]

(t),

(3.7)

vu′
2 (t)) = W –1

[

u′
b – ASα,α(b)

(
u0 – g(u)

)
– Sα,1(b)

(
u1 – h(u)

)

–
∑

0<tk<b

ASα,α(b – tk)Ik
(
u(tk)

)
–

∑

0<tk <b

Sα,1(b – tk)Jk
(
u′(tk)

)

–
∫ b

0
Sα,α–1(b – s))f

(
s, u(s), Gu(s), Fu(s)

)
ds
]

(t). (3.8)

Taking the control (3.7) and (3.8) in (3.4) and (3.5), respectively, we obtain (Qu)(b) = ub

and (Qu)′(b) = u′
b, which means that the control v(t) steers the system (1.1) from the initial

conditions u0 and u1 to the final states ub and u′
b in the time b, provided we can obtain a

fixed point of the nonlinear operator Q.
Now, the objective is to prove that the operator Q has a fixed point. The proof will be

carried out in three steps.
Step 1: ∃r0 > 0; Q(Br0 ) ⊂ Br0 .
For this step, it will be carried out by contradiction. Suppose this is not true. Then, for

each r0 > 0, there exists ur0 (·) ∈ Br0 and, for some t ∈ J such that ‖(Qur0 )(t)‖ > r0, we have

∥
∥(Qu)(t)

∥
∥ =

∥
∥Sα,1(t)

(
u0 – g(u)

)∥
∥ +

∥
∥Sα,2(t)

(
u1 – h(u)

)∥
∥ +

m∑

k=1

∥
∥Sα,1(t – tk)

∥
∥
L
∥
∥Ik

(
u(tk)

)∥
∥

+
m∑

k=1

∥
∥Sα,2(t – tk)

∥
∥
L
∥
∥Jk

(
u′(tk)

)∥
∥ +

∫ t

0

∥
∥Sα,α(t – s)

∥
∥
L
∥
∥Bvu

1(s)
∥
∥ds
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+
∫ t

0

∥
∥Sα,α(t – s)

∥
∥
L
∥
∥f
(
s, u(s), Gu(s), Fu(s)

)∥
∥ds

≤ M
(‖u0‖ + c1

)
+ Mb

(‖u1‖ + c3
)

+
m∑

k=1

ML1
k
(‖u‖PC1

)
+

m∑

k=1

MbL2
k
(∥
∥u′∥∥

PC1
)

+
Mbα–1


(α)
M1

∫ t

0

∥
∥vu

1(s)
∥
∥ds +

M

(α)

∫ t

0
(t – s)α–1mr0 (s) ds

≤ M
(‖u0‖ + c1

)
+ Mb

(‖u1‖ + c3
)
+

m∑

k=1

M
[
L1

k
(‖u‖PC1

)
+ bL2

k
(∥
∥u′∥∥

PC1
)]

+
MM1bα– 1

2


(α)
∥
∥vu

1
∥
∥

L2 +
M


(α)

∫ t

0
(t – s)α–1mr0 (s) ds, (3.9)

where

∥
∥vu

1
∥
∥

L2 ≤ M2

[

‖ub‖ + M
(‖u0‖ + c1

)
+ Mb

(‖u1‖ + c3
)

+
m∑

k=1

M
[
L1

k
(‖u‖PC1

)

+ bL2
k
(∥
∥u′∥∥

PC1
)]

+
M


(α)

∫ b

0
(b – s)α–1mr0 (s) ds

]

. (3.10)

Now, from (3.9) and (3.10), we have

∥
∥(Qu)(t)

∥
∥

PC ≤
[

1 +
MM1M2bα– 1

2


(α)

][

M
(‖u0‖ + c1

)
+ Mb

(‖u1‖ + c3
)

+
m∑

k=1

M
[
L1

k
(‖u‖PC1

)
+ bL2

k
(∥
∥u′∥∥

PC1
)]

+
M


(α)

∫ b

0
(b – s)α–1mr0 (s) ds

]

+
MM1M2bα– 1

2


(α)
‖ub‖.

Similarly, we get

∥
∥(Qu)′(t)

∥
∥

PC ≤
[

1 +
MM1M2bα– 3

2


(α – 1)

][

M0
(‖u0‖ + c1

)
+ M

(‖u1‖ + c3
)

+
m∑

k=1

[
M0L1

k
(‖u‖PC1

)
+ ML2

k
(∥
∥u′∥∥

PC1
)]

+
M


(α – 1)

∫ b

0
(b – s)α–2mr0 (s) ds

]

+
MM1M2bα– 3

2


(α – 1)
∥
∥u′

b
∥
∥.

Hence, we have

r0 ≤ ∥
∥(Qu)

∥
∥

PC1

= max

{[

1 +
MM1M2bα– 1

2


(α)

][

M
(‖u0‖ + c1

)
+ Mb

(‖u1‖ + c3
)

+
m∑

k=1

M
[
L1

k
(‖u‖PC1

)

+ bL2
k
(∥
∥u′∥∥

PC1
)]

+
M


(α)

∫ b

0
(b – s)α–1mr0 (s) ds

]

+
MM1M2bα– 1

2


(α)
‖ub‖,
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[

1 +
MM1M2bα– 3

2


(α – 1)

]

×
[

M0
(‖u0‖ + c1

)
+ M

(‖u1‖ + c3
)

+
m∑

k=1

[
M0L1

k
(‖u‖PC1

)
+ ML2

k
(∥
∥u′∥∥

PC1
)]

+
M


(α – 1)

∫ b

0
(b – s)α–2mr0 (s) ds

]

+
MM1M2bα– 3

2


(α – 1)
‖ub‖

}

. (3.11)

Dividing both sides of (3.12) by r0, and taking r0 → ∞, we get

1 ≤ max

{[

1 +
MM1M2bα– 1

2


(α)

][
MM5


(α)
+

m∑

k=1

M
(
δ1

k + δ2
k
)
]

,

[

1 +
MM1M2bα– 3

2


(α – 1)

][
MM6


(α – 1)
+

m∑

k=1

(
M0δ

1
k + Mδ2

k
)
]}

. (3.12)

This contradicts (3.2). Therefore for some r0 > 0, Q(Br0 ) ⊂ Br0 , which means that Q(Br0 ) ⊂
Br0 .

Step 2: We show that Q is continuous on Br0 . To show this, let {un}∞n=1, {u′
n}∞n=1 ⊂ Br0 be

a sequence such that un → u, u′
n → u′ in Br0 . Then there exists a number r0 > 0 such that

‖un‖PC ≤ r0, ‖u′n‖PC ≤ r0 and ‖u‖PC ≤ r0 and ‖u′‖PC ≤ r0 for all n ≥ 1, and we define

F̃n(s) = f
(
s, un(s), G

(
un(s)

)
, F
(
un(s)

))
and F̃(s) = f

(
s, u(s), G

(
u(s)

)
, F
(
u(s)

))
.

Then we obtain

∥
∥
(
Qun)(t) – (Qu)(t)

∥
∥

≤ ∥
∥Sα,1(t)

∥
∥
L
∥
∥
(
g(un) – g(u)

)∥
∥ +

∥
∥Sα,2(t)

∥
∥
L
∥
∥
(
h(un) – h(u)

)∥
∥

+
m∑

k=1

∥
∥Sα,1(t – tk)

∥
∥
L
∥
∥Ik

(
un(tk)

)
– Ik

(
u(tk)

)∥
∥

+
m∑

k=1

∥
∥Sα,2(t – tk)

∥
∥
L
∥
∥Jk

(
u′n(tk)

)
– Jk

(
u′(tk)

)∥
∥

+
∫ t

0

∥
∥Sα,α(t – s)

∥
∥
L
∥
∥Bvun

1 (s) – Bvu
1(s)

∥
∥ds +

∫ t

0

∥
∥Sα,α(t – s)

∥
∥
L
∥
∥F̃n(s) – F̃(s)

∥
∥ds

≤ Mc2 max
t∈J

∥
∥un – u

∥
∥

PC + Mbc4 max
t∈J

∥
∥un – u

∥
∥

PC

+
m∑

k=1

M
∥
∥Ik

(
un(tk)

)
– Ik

(
u(tk)

)∥
∥ +

m∑

k=1

Mb
∥
∥Jk

(
u′n(tk)

)
– Jk

(
u′(tk)

)∥
∥

+
MM1bα– 1

2


(α)
∥
∥vun

1 (s) – vu
1(s)

∥
∥

L2 +
Mbα–1


(α)

∫ t

0

∥
∥F̃n(s) – F̃(s)

∥
∥ds, (3.13)
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where

∥
∥vun

1 (s) – vu
1(s)

∥
∥

L2

= M2

[

Mc2 max
t∈J

∥
∥un – u

∥
∥

PC + Mbc4 max
t∈J

∥
∥un – u

∥
∥

PC +
Mbα–1


(α)

∫ t

0

∥
∥F̃n(s) – F̃(s)

∥
∥ds

+
m∑

k=1

M
∥
∥Ik

(
un(tk)

)
– Ik

(
u(tk)

)∥
∥ +

m∑

k=1

Mb
∥
∥Jk

(
u′n(tk)

)
– Jk

(
u′(tk)

)∥
∥

]

. (3.14)

By continuity of f , Ik , Jk , and the Lebesgue dominated convergence theorem combined
with (3.13), (3.14), we get ‖Qun – Qu‖PC → 0, as n → ∞.

Then, in a similar manner to above, we get

∥
∥
(
Qun)′(t) – (Qu)′(t)

∥
∥

≤ ∥
∥ASα,α(t)

∥
∥
L · ∥∥(g(un) – g(u))

∥
∥ +

∥
∥ASα,1(t)

∥
∥
L · ∥∥(h(un) – h(u))

∥
∥

+
m∑

k=1

∥
∥ASα,α(t – tk)

∥
∥
L
∥
∥Ik

(
un(tk)

)
– Ik

(
u(tk)

)∥
∥

+
m∑

k=1

∥
∥Sα,1(t – tk)

∥
∥
L
∥
∥Jk

(
u′n(tk)

)
– Jk

(
u′(tk)

)∥
∥

+
∫ t

0

∥
∥Sα,α–1(t – s)

∥
∥
L
∥
∥Bvu′n

1 (s) – Bvu′(s)
1

∥
∥ds

+
∫ t

0

∥
∥Sα,α–1(t – s)

∥
∥
L
∥
∥F̃n(s) – F̃(s)

∥
∥ds

≤ M0c2 max
t∈J

∥
∥un – u

∥
∥

PC + Mc4 max
t∈J

∥
∥un – u

∥
∥

PC

+
m∑

k=1

M0
∥
∥Ik

(
un(tk)

)
– Ik

(
u(tk)

)∥
∥ +

m∑

k=1

M
∥
∥Jk

(
u′n(tk)

)
– Jk

(
u′(tk)

)∥
∥

+
MM1bα– 3

2


(α – 1)
∥
∥vu′n

1 (s) – vu′(s)
1

∥
∥

L2 +
Mbα–2


(α – 1)

∫ t

0

∥
∥F̃n(s) – F̃(s)

∥
∥ds, (3.15)

where

∥
∥vu′n

2 (s) – vu′(s)
2

∥
∥

L2

= M2

[

M0c2 max
t∈J

∥
∥un – u

∥
∥

PC + Mc4 max
t∈J

∥
∥un – u

∥
∥

PC

+
Mbα–2


(α – 1)

∫ t

0

∥
∥F̃n(s) – F̃(s)

∥
∥ds

+
m∑

k=1

M0
∥
∥Ik

(
un(tk)

)
– Ik

(
u(tk)

)∥
∥

+
m∑

k=1

M
∥
∥Jk

(
u′n(tk)

)
– Jk

(
u′(tk)

)∥
∥

]

. (3.16)
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By continuity of f , Ik , Jk , and the Lebesgue dominated convergence theorem combined
with (3.15), (3.16), we get ‖(Qun)′ – (Qu)′‖PC → 0, as n → ∞.

Hence, we have

∥
∥Qun – Qu

∥
∥

PC1 → 0, as n → ∞.

Step 3: We will prove that Q satisfies Mönch’s condition. To this end, let us assume that D
and D′ are countable subsets of Br0 and D ⊂ conv({0}∪Q(D)) and D′ ⊂ conv({0}∪ (Q(D))′).
Then we show that αPC1 (D) = 0.

First, without loss of generality, we consider that D = {un}∞n=1 and D′ = {u′n}∞n=1. If we are
able to show that {(Qzn)′}∞n=1 is equicontinuous on Jk , k = 0, 1, 2, . . . , m, then D ⊂ conv({0}∪
Q(D)) and D′ ⊂ conv({0}∪ (Q(D))′) are also equicontinuous on Jk , k = 0, 1, 2, . . . , m. For this
fact, let l1, l2 ∈ Jp be such that tp ≤ l1 ≤ l2 ≤ tp+1 for some p ∈ {0, 1, 2, . . . , m}, and we get

∥
∥
(
Qun)′(l2) –

(
Qun)′(l1)

∥
∥≤ ∥

∥ASα,α(l2) – ASα,α(l1)
∥
∥
L
∥
∥
(
u0 + g(u)

)∥
∥

+
∥
∥Sα,1(l2) – Sα,1(l1)

∥
∥
L
∥
∥
(
u1 + h(u)

)∥
∥

+
p∑

k=1

∥
∥ASα,α(l2 – tk) – ASα,α(l1 – tk)

∥
∥
L
∥
∥Ik

(
un(tk)

)∥
∥

+
p∑

k=1

∥
∥Sα,1(l2 – tk) – Sα,1(l1 – tk)

∥
∥
L
∥
∥Jk

(
u′n(tk)

)∥
∥

+
∫ l1

0

∥
∥Sα,α–1(l2 – s) – Sα,α–1(l1 – s)

∥
∥
L
[
Bvu′n

2 (s) + F̃n(s)
]

ds

+
∫ l2

l1

∥
∥Sα,α–1(l1 – s)

∥
∥
L
[
Bvu′n

2 (s) + F̃n(s)
]

ds.

By equicontinuity of Sα,β(t) and absolute continuity of the Lebesgue integral, we conclude
that the right side of the above inequality tends to zero as l2 → l1 independently of u. Thus,
Q(D) shows equicontinuity on Jk for all k = 0, 1, 2, . . . , m.

Now, by Lemma 2.9 and (H1)(iii), (H2)(iii) and (H3)(ii), we have

α
({

vun
1 (ξ )

}∞
n=1

)

≤ Kw(ξ )

[

α

({

Sα,1(b)g(un)

}∞

n=1

)

+ α

({

Sα,2(b)h(un)

}∞

n=1

)

+ α

({ m∑

k=1

Sα,1(b – tk)Ik
(
un(tk)

)
}∞

n=1

)

+ α

({ m∑

k=1

Sα,2(b – tk)Jk
(
u′n(tk)

)
}∞

n=1

)

+ α

({∫ b

0
Sα,α(b – s)f

(
s, un(s),

(
Gun(s)

)
,
(
Fun(s)

))
ds
}∞

n=1

)]

≤ Kw(ξ )

[

Ml1 sup
t∈J

α
({

un(t)
}∞

n=1

)
+ Mbl2 sup

t∈J
α
({

un(t)
}∞

n=1

)
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+
m∑

k=1

MM1
k sup

tk∈J
α
({

un(tk)
}∞

n=1

)
+

m∑

k=1

MbM2
k sup

tk∈J
α
({

u′n(tk)
}∞

n=1

)

+
2M

(α)

∫ b

0
(b – s)α–1Jf (s)

(
sup
s∈J

α
({

un(s)
}∞

n=1

)
+ K∗ sup

s∈J
α
({

un(s)
}∞

n=1

))
ds

+ H∗ sup
s∈J

α
({

un(s)
}∞

n=1

))
ds

]

≤ Kw(ξ )M

[

l1 sup
t∈J

α
({

un(t)
}∞

n=1

)
+ bl2 sup

t∈J
α
({

un(t)
}∞

n=1

)

+
m∑

k=1

M1
k sup

tk∈J
α
({

un(tk)
}∞

n=1

)
+ b

m∑

k=1

M2
k sup

tk∈J
α
({

u′n(tk)
}∞

n=1

)

+
2


(α)

∫ b

0
(b – s)α–1Jf (s)

(
1 + K∗ + H∗) sup

s∈J
α
({

un(s)
}∞

n=1

)
ds

]

. (3.17)

Similarly, we obtain

α
({

vu′n
2 (ξ )

}∞
n=1

)

≤ Kw(ξ )

[

α

({

ASα,α(b)g(un)

}∞

n=1

+ α

({

Sα,1(b)h(un)

}∞

n=1

)

+ α

({ m∑

k=1

ASα,α(b – tk)Ik
(
un(tk)

)
}∞

n=1

)

+ α

({ m∑

k=1

Sα,1(b – tk)Jk
(
u′n(tk)

)
}∞

n=1

)

+ α

({∫ b

0
Sα,α–1(b – s)f

(
s, un(s),

(
Gun(s)

)
,
(
Fun(s)

))
ds
}∞

n=1

)]

≤ Kw(ξ )

[

M0l1 sup
t∈J

α
({

un(t)
}∞

n=1

)
+ Ml2 sup

t∈J
α
({

un(t)
}∞

n=1

)

+
m∑

k=1

M0M1
k sup

tk∈J
α
({

un(tk)
}∞

n=1

)
+

m∑

k=1

MM2
k sup

tk∈J
α
({

u′n(tk)
}∞

n=1

)

+
2M


(α – 1)

∫ b

0
(b – s)α–2Jf (s)

(
sup
s∈J

α
({

un(s)
}∞

n=1

)
+ K∗ sup

s∈J
α
({

un(s)
}∞

n=1

)

+ H∗ sup
s∈J

α
({

un(s)
}∞

n=1

))
ds

]

≤ Kw(ξ )

[

M0l1 sup
t∈J

α
({

un(t)
}∞

n=1

)
+ Ml2 sup

t∈J
α
({

un(t)
}∞

n=1

)

+ M0

m∑

k=1

M1
k sup

tk∈J
α
({

un(tk)
}∞

n=1

)
+ M

m∑

k=1

M2
k sup

tk∈J
α
({

u′n(tk)
}∞

n=1

)

+
2M

(
1 + K∗ + H∗)


(α – 1)

∫ b

0
(b – s)α–2Jf (s) sup

s∈J
α
({

un(s)
}∞

n=1

)
ds

]

. (3.18)
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Furthermore, by Lemma 2.9, we get

α
((

Qun)(t)
)≤ α

({

Sα,1(t)g(un)
}∞

n=1

)

+ α

({

Sα,2(t)h(un)
}∞

n=1

)

+ α

({∑

0<tk <t

Sα,1(t – tk)Ik
(
un(tk)

)
}∞

n=1

)

+ α

({∑

0<tk <t

Sα,2(t – tk)Jk
(
u′(tk)

)
}∞

n=1

)

+ α

({∫ t

0
Sα,α(t – s)Bvun

1 (s) ds
}∞

n=1

)

+ α

({∫ t

0
Sα,α(t – s)f

(
s, un(s),

(
Gun(s)

)
,
(
Fun(s)

))
ds
}∞

n=1

)

≤ Ml1 sup
t∈J

α
({

un(t)
}∞

n=1

)
+ Mbl2 sup

t∈J
α
({

un(t)
}∞

n=1

)

+
m∑

k=1

M1
k sup

tk∈J
α
({

un(tk)
}∞

n=1

)

+ Mb
m∑

k=1

M2
k sup

tk∈J
α
({

u′n(tk)
}∞

n=1

)
+

2MM1bα–1


(α)

∫ b

0
α
({

un(s)
}∞

n=1

)
ds

+
2(1 + K∗ + H∗)


(α)

∫ b

0
(b – s)α–1Jf (s) sup

s∈J
α
({

un(s)
}∞

n=1

)
ds. (3.19)

Similarly, by Lemma 2.9, we have

α
((

Qun)′(t)
)≤ M0l1 sup

t∈J
α
({

un(t)
}∞

n=1

)
+ Ml2 sup

t∈J
α
({

un(t)
}∞

n=1

)

+
2MM1bα–1


(α)

∫ b

0
α
({

un(s)
}∞

n=1

)
ds

+
2(1 + K∗ + H∗)


(α)

∫ b

0
(b – s)α–1Jf (s) sup

s∈J
α
({

un(s)
}∞

n=1

)
ds

+ M0

m∑

k=1

M1
k sup

tk∈J
α
({

un(tk)
}∞

n=1

)

+ M
m∑

k=1

M2
k sup

tk∈J
α
({

u′n(tk)
}∞

n=1

)
. (3.20)

By (3.17) and (3.19), we obtain

α
((

Qun)(t)
)≤ Ml1 sup

t∈J
α
({

un(t)
}∞

n=1

)
+ Mbl2 sup

t∈J
α
({

un(t)
}∞

n=1

)

+ M
m∑

k=1

M1
k sup

tk∈J
α
({

un(tk)
}∞

n=1

)
+ Mb

m∑

k=1

M2
k sup

tk∈J
α
({

u′n(tk)
}∞

n=1

)

+
2MM1


(α)

(∫ b

0
(b – s)α–1Kw(s) ds

)
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× M

[

l1 sup
t∈J

α
({

un(t)
}∞

n=1

)
+ bl2 sup

t∈J
α
({

un(t)
}∞

n=1

)

+
m∑

k=1

M1
k sup

tk∈J
α
({

un(tk)
}∞

n=1

)
+ b

m∑

k=1

M2
k sup

tk∈J
α
({

u′n(tk)
}∞

n=1

)

+
2(1 + K∗ + H∗)


(α)

∫ b

0
(b – s)α–1Jf (s) sup

s∈J
α
({

un(s)
}∞

n=1

)
ds

]

+
2(1 + K∗ + H∗)


(α)

∫ b

0
(b – s)α–1Jf (s) sup

s∈J
α
({

un(s)
}∞

n=1

)
ds

≤
[

M +
2M2M1M3


(α)
∥
∥Kw(s)

∥
∥

L
1

q1

]

×
[

l1 sup
t∈J

α
({

un(t)
}∞

n=1

)
+ bl2 sup

t∈J
α
({

un(t)
}∞

n=1

)

+
m∑

k=1

M1
k sup

tk∈J
α
({

un(tk)
}∞

n=1

)
+ b

m∑

k=1

M2
k sup

tk∈J
α
({

u′n(tk)
}∞

n=1

)

+
2(1 + K∗ + H∗)


(α)

∫ b

0
(b – s)α–1Jf (s) sup

s∈J
α
({

un(s)
}∞

n=1

)
ds

]

≤
[

M +
2M2M1M3


(α)
∥
∥Kw(s)

∥
∥

L
1

q1

]

×
[

l1 + bl2 +
m∑

k=1

M1
k + b

m∑

k=1

M2
k +

2M4(1 + K∗ + H∗)

(α)

‖Jf ‖
L

1
q3

]

αPC1 (D).

(3.21)

Similarly, by (3.18) and (3.20), we get

α
((

Qun)′(t)
)≤

[

1 +
2MM1M3


(α)
∥
∥Kw(s)

∥
∥

L
1

q1

][

M0l1 + Ml2 + M0

m∑

k=1

M1
k + M

m∑

k=1

M2
k

+
2MM7


(α – 1)
‖Jf ‖

L
1

q3

(
1 + K∗ + H∗)

]

αPC1 (D). (3.22)

Now, by Lemma 2.10, we have

αPC1 (QD) = max
{

sup
t∈J

α
((

Qun)(t)
)
, sup

t∈J
α
((

Qun)′(t)
)}

≤ max

{[

M +
2M2M1M3


(α)
∥
∥Kw(s)

∥
∥

L
1

q1

][

l1 + bl2 +
m∑

k=1

M1
k + b

m∑

k=1

M2
k

+
2M3


(α)
‖Jf ‖

L
1

q1

(
1 + K∗ + H∗)

]

,

[

1 +
2MM1bα–1


(α)
∥
∥Kw(s)

∥
∥

L1

][

M0l1 + Ml2 + M0

m∑

k=1

M1
k + M

m∑

k=1

M2
k

+
2MM7


(α – 1)
‖Jf ‖

L
1

q3

(
1 + K∗ + H∗)

]}

αPC1 (D).
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This implies that αPC1 (QD) ≤ λ2αPC1 (D). Therefore, we get

αPC1 (D) ≤ αPC1
(
conv

({0} ∪ Q(D)
))

= αPC1 (QD) ≤ λ2αPC1 (D).

Since λ2 < 1, we obtain αPC1 (D) = 0. That is, D is relatively compact. Hence by Lemma 2.11,
Q has at least one fixed point u ∈ Br0 , which is a mild solution of the system (1.1) and it
satisfies u(b) = ub and u′(b) = u′

b. Therefore, the system (1.1) is controllable on J . This
completes the proof. �

4 Application
In this section, we give an example to demonstrate the feasibility of our results.

Example 4.1 We consider the impulsive fractional parabolic partial differential equation

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂
3
2

∂t
3
2

u(x, t) = ∂2

∂x2 u(t, x) + Bv(t, x) + e–2t

1+et [u(t, y)

+
∫ t

0 sin(t – s)u(s, x) ds +
∫ 1

0 cos(t – s)u(s, x) ds], x ∈ [0,π ], t ∈ J ,

u(t, 0) = u(t,π ) = 0, t ∈ J ,

�u(t, x)|t=tk =
∫ tk

0 ak(tk – s)u(s, x) ds, k = 1, 2, . . . , m,

�
∂u(t,x)

∂t |t=tk =
∫ tk

0 ãk(tk – s) ∂u(s,x)
∂s ds, k = 1, 2, . . . , m,

u(0, x) = u0(x), ∂u
∂t (0, x) = u1(x),

(4.1)

where ∂
3
2

∂t
3
2

is the Caputo fractional partial derivative of order 1 < α < 2, J = [0, 1], 0 = t0 <

t1 < t2 < · · · < tm < tm+1 = 1, �u(t, x)|t=tk = u(t+, x) – u(t–, x), �
∂u(t,x)

∂t |t=tk = �
∂u(t,x)

∂t |t=t+
k

–
�

∂u(t,x)
∂t |t=t–

k
. ak , ãk ∈ C(R,R). We choose E = U = L2([0,π ]) to be endowed with the norm

‖ ·‖L2 . The function v : J × [0,π ] → [0,π ] is a control function and B : U → E is a bounded
linear operator.

Define u(t)(x) = u(t, x), v(t)(x) = v(t, x), and cD
3
2
0+u(t)(x) = ∂

3
2

∂t
3
2

u(x, t), and

f
(
t, u(t), Gu(t), Fu(t)

)
(x)

=
e–2t

1 + et

[

u(t, y) +
∫ t

0
sin(t – s)u(s, x) ds +

∫ 1

0
cos(t – s)u(s, x) ds

]

,

Ik(utk ) =
∫ tk

0
ak(tk – s)u(s, x) ds, k = 1, 2, . . . , m,

Jk(utk ) =
∫ tk

0
ãk(tk – s)

∂u(s, x)
∂s

ds, k = 1, 2, . . . , m.

We define A : D(A) ⊂ E → E by Au = ∂2

∂x2 u with each domain D(A) given by

D(A) :=
{

u ∈ E : u, ux are absolute continuous, uxx ∈ E, u(t)(0) = u(t)(π ) = 0
}

.

Then the operator A is given by

Au =
∞∑

n=1

–n2(u, un)un, u ∈ D(A),
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where un(t) =
√

2
π

sin nt, n = 1, 2, . . . , is the orthogonal set of eigenfunctions corresponding
to the eigenvalues λn = –n2 of A. Then A will be a generator of the (α,β)-resolvent family
such that

Sα,β (t)u =
∞∑

n=1

cos
n2t

1 + n2 (u, un)un.

Moreover, we have ‖Sα,β (t)‖L ≤ M = 1. Then the system (4.1) is the abstract form of the
system (1.1). Obviously, f satisfies (H1)(i) and (ii). Thus, for (t, u) ∈ J × PC(J , E), we have

f
(
t, u(t), Gu(t), Fu(t)

)

≤ e–2t

1 + et

[∫ π

0

(

u(t, y) +
∫ t

0
sin(t – s)u(s, x) ds +

∫ 1

0
cos(t – s)u(s, x) ds

)2] 1
2

≤ e–2t

1 + et

√
π
(‖u‖PC + k0‖u‖PC + h0‖u‖PC

)
,

where k0 = supt∈J
∫ t

0 ‖ sin(t – s)‖ds ≤ 1, h0 = supt∈J
∫ 1

0 ‖ cos(t – s)‖ds ≤ 1. Furthermore, for
D1, D2, D3 ⊂ PC(J , E), we have

α
(
f (t, D1, D2, D3)

)≤ Jf (t)
[
sup
t∈J

α
(
D1(t)

)
+ k0 sup

t∈J
α
(
D2(t)

)
+ h0 sup

t∈J
α
(
D2(t)

)]
,

where Jf (t) = e–2t

1+et
√

π . Similarly, we can show that the condition (H2) is satisfied with L1
k =

M1
k = (

∫ tk
0 |ak(tk – s)|2 ds) 1

2 and L2
k = M2

k = (
∫ tk

0 |̃ak(tk – s)|2 ds) 1
2 .

When B = I , and using the above defined linear operator, we conclude that the operator
W : L2(J , U) → E, defined as in [26, (4.6)],

Wu(s) =

⎧
⎨

⎩

∑∞
n=1

∫ 1
0

1
n2 sin[( n2

1+n2 )(1 – s)](u(s), un)un ds, u ∈ PC1;
∑∞

n=1
∫ 1

0
1

1+n2 cos[( n2

1+n2 )(1 – s)](u(s), un)un ds, u′ ∈ PC,
(4.2)

has a bounded inverse operator and satisfies the condition (H3). Thus the conditions
(H0)–(H3) are satisfied, and, by Theorem 3.1, the system (4.1) is controllable on J .
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