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Abstract
In this paper, we establish the regularity criterion for the weak solution of nematic
liquid crystal flows in three dimensions when the L∞(0, T ; Ḃ–1∞,∞)-norm of a suitable
low frequency part of (u,∇d) is bounded by a scaling invariant constant and the initial
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Anal. Appl. 407:557-566, 2013) and that in (Ri in Nonlinear Anal. TMA 190:111619,
2020).
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1 Introduction
This note focuses on the regularity criteria for the following 3D nematic liquid crystal fluid
flow:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tu – ν�u + (u · ∇)u + ∇π = –λ∇ · (∇d � ∇d), (x, t) ∈ R3 × (0, +∞),

∂td + (u · ∇)d = γ (�d + |∇d|2d), (x, t) ∈ R3 × (0, +∞),

div u = 0, (x, t) ∈ R3 × (0, +∞),

(u, d)|t=0 = (u0, d0), x ∈ R3,

(1.1)

where u(x, t) is the unknown velocity field, d(x, t) : R3 × (0, +∞) → S
2, the unit sphere

in R3, is the unknown (averaged) macroscopic/continuum molecule orientation of the
nematic liquid crystal flow and π is the scalar pressure. ν , λ, γ are positive constants
that represent viscosity, the competition between kinetic energy and potential energy, and
the microscopic elastic relaxation time for the molecular orientation field. The notation
∇d � ∇d denotes the 3 × 3 matrix whose (i, j) entry is given by ∂id · ∂jd (1 ≤ i, j ≤ 3).

It is well-known that Ericksen and Leslie ([3–5, 8] established the hydrodynamic theory
of liquid crystals in 1960s. Lin [9] first introduced the above liquid crystal flow (1.1). Later
Lin and Liu [11] obtained the global existence theorem for a weak solution and the local
existence for the strong solution to the system (1.1).
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We first introduce the definition of Morrey spaces.

Definition 1.1 For 1 ≤ p ≤ q ≤ ∞, we call Ṁp,q(R3) a Morrey space, if and only if

‖f ‖Ṁp,q(R3) = sup
x∈R3,0<R<∞

R
3
q – 3

p

(∫

B(x,R)

∣
∣f (y)

∣
∣p dy

) 1
p

< +∞,

here B(x, R) denotes the ball in R3 with center x and radius R.

In 2008, Fan and Guo [4] showed that, if u satisfies one of the following conditions:

u ∈ Ls(0, T ; Ṁp,q
(
R3)) with

2
s

+
3
p

= 1, p ≥ 3, p ≥ q ≥ 1,

∇u ∈ Ls(0, T ; Ṁp,q
(
R3)) with

2
s

+
3
p

= 2, p ≥ 3
2

, p ≥ q ≥ 1,

then (u, d) is extended beyond t = T . Later Liu, Zhao and Cui [12] obtained the regularity
criterion to the system (1.1) under the assumption that ∂3u ∈ Lβ (0, T ; Lα) with 2

β
+ 3

α
≤

1,α > 3. Recently, Wei, Li and Yao [16] proved that, if the weak solution (u, d) satisfies

u3,∇d ∈ Lβ
(
0, T ; Lα

(
R3)), with

2
β

+
3
α

≤ 3
4

+
1
α

,α >
10
3

,

then (u, b) can be extended beyond t = T . Liu and Zhao [13] proved that the solution (u, d)
to (1.1) is smooth up to time T provided that

∥
∥(u,∇d)

∥
∥

L∞(0,T ;B–1∞,∞(R3)) ≤ ε0.

When d = 0, the system (1.1) becomes an incompressible Navier–Stokes equation. There
is a large literature on the regularity criteria on the Navier–Stokes equation; see [1, 6, 7, 15].

By traditional turbulence theory, viscous incompressible flows develop in such a way that
energy is transferred from large scales to neighboring smaller scales. Hence, it is important
to study regularity for the Navier–Stokes equation based on various wave-number band
parts of weak solutions is important since it reveals in a way the relationship between
regularity of weak solutions and turbulent flows. Cheskidov and Shvydkoy [2] proved that
a Leray–Hopf weak solution u to the Navier–Stokes equation is regular in (0, T] if

∥
∥uk∥∥

B–1∞,∞(R3) < Cν,

where uk is high frequency part of u with Fourier models |ξ | ≥ k. Kim, Kwak and Yoo [5]
proved that, if sufficiently high frequency parts of a weak solution to the Navier–Stokes
equation on a torus belong to Serrin’s class, then the weak solution is regular. Very recently,
Ri [14] proved that a Leray–Hopf weak solution u to 3D Navier–Stokes equations is reg-
ular if the L∞(0, T ; B–1∞,∞(R3))-norm of a suitable low frequency part of u is bounded by a
scaling invariant constant depending on the kinematic viscosity ν and initial value u0. Mo-
tivated by [2, 5, 13] and [14], we will investigate the regularity criteria for the weak solution
(u, d) to the liquid crystal fluid flows (1.1) in the critical function space L∞(0, T ; Ḃ–1∞,∞(R3))
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based on low and medium frequency parts, respectively. Before stating our result, we shall
present some symbols and notations.

Let

uk :=
∫ k

0
u[s] ds, uk :=

∫ ∞

k
u[s] ds, uh,k := uk – uh, 0 < h < k < ∞. (1.2)

Here

u[k](t, x) =
1

(2π ) 3
2

∫

|ξ |=k
û(t, ξ )eix·ξ dσξ ,

and û denotes Fourier transform of u. Our result is stated as follows.

Theorem 1.2 Let (u, d) be a weak solution to (1.1) with (u0, d0) ∈ H3(R3)×H4(R3), divu0 =
0. Assume that, for 0 < T < ∞, there exists δ ∈ (0, T) such that if (u, d) is regular in (0, T)
the inequalities

∥
∥(uk̃ ,∇dk̃)

∥
∥

L∞(T–δ,T ;Ḃ–1∞,∞) < C1 (1.3)

and

∥
∥(uk̃/2,k̃ ,∇dk̃/2,k̃)

∥
∥

L∞(T–δ,T ;Ḃ–1∞,∞)

< C2
(‖u0‖L2 + ‖∇d0‖L2

)–1(∥∥∇uk̃
0
∥
∥

L2 +
∥
∥�dk̃

0
∥
∥

L2
)–1 (1.4)

hold. Then (u, d) is regular on (0, T], where k̃ > 0 is defined by

k̃ = C3
(∥
∥∇uk̃

0
∥
∥

L2 +
∥
∥�dk̃

0
∥
∥

L2
)2,

and the Ci, i = 1, 2, 3, are absolute constants.

Remark 1.1 Theorem 1.2 can be regarded as the generalization of Theorem 1.1 in [13] and
Theorem 1.1 in [14].

The rest of this paper is organized as follows. Some useful facts are presented in Sect. 2.
The proof of Theorem 1.2 is given in Sect. 3.

2 Preliminaries and some basic facts
In order to define Besov spaces, we first introduce the Littlewood–Paley decomposition
theory. Let S(Rn) be the Schwartz class of rapidly decreasing functions.

For given f ∈ S(Rn), its Fourier transform F (f ) = f̂ and its inverse Fourier transform
F–1(f ) = f̆ are given by

f̂ (ξ ) =
∫

Rn
e–ix·ξ f (x) dx

and

f̌ (x) =
1

(2π )n

∫

Rn
eix·ξ f (x) dξ ,
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respectively. Let us choose two nonnegative radial functions χ ,ϕ ∈ S(Rn) satisfying
suppχ ⊂ B = {ξ ∈ Rn : |ξ | ≤ 4

3 } and suppϕ ⊂ C = {ξ ∈ Rn : 3
4 ≤ |ξ | ≤ 8

3 } such that

∑

j∈Z

ϕ
(
2–jξ

)
= 1, for any ξ ∈ Rn\{0}

and

χ (ξ ) +
∑

j≥0

ϕ
(
2–jξ

)
= 1, for any ξ ∈ Rn.

For j ∈ Z, the homogeneous Littlewood–Paley projection operators Sj and �̇j are defined
by

Ṡjf = χ
(
2–jD

)
f = 2nj

∫

Rn
h̃
(
2jy

)
f (x – y) dy, where h̃ = F–1χ ,

and

�̇jf = ϕ
(
2–jD

)
f = 2nj

∫

Rn
h
(
2jy

)
f (x – y) dy, where h = F–1ϕ.

�̇j is a frequency projection to the annulus {|ξ | ∼ 2j}, and Ṡj is a frequency projection
to the ball {|ξ | ≤ 2j}. Let s ∈ R, p, q ∈ [1,∞]. The homogeneous Besov space Ḃs

p,q(Rn) is
presented by the distributions f ∈ S ′

h such that

(∑

j∈Z

2jsq‖�̇jf ‖q
Lp

) 1
q

< ∞,

with the norm

‖f ‖Ḃs
p,q(Rn) =

⎧
⎨

⎩

(
∑

j∈Z 2jsq‖�̇jf ‖q
Lp )

1
q , 1 ≤ q < ∞,

supj∈Z{2js‖�̇jf ‖Lp}, q = ∞.
(2.1)

On the other hand, we recall some facts that can be found in [14]. If u ∈ L2(R3), then it
follows from the definition of uk and uk that

(
uk , uk) = 0, ∀k > 0. (2.2)

Moreover, for 0 ≤ r < s, by Plancherel’s theorem,

‖uk‖Ḣs =
∥
∥|ξ |sûk

∥
∥

L2 ≤ ks–r∥∥|ξ |rûk
∥
∥

L2 = ks–r‖uk‖Ḣr ,
∥
∥uk∥∥

Ḣs =
∥
∥|ξ |sûk

∥
∥

L2 ≥ ks–r∥∥|ξ |rûk
∥
∥

L2 = ks–r‖uk‖Ḣr .
(2.3)

Since ‖�u‖L2 ∼ ‖∇2u‖L2 ,∀u ∈ Ḣ2(R3), we have

k
∥
∥∇uk∥∥

L2 ≤ ∥
∥∇2uk∥∥

L2 ≤ c
∥
∥�uk∥∥

L2 , ∀u ∈ H2(
R

3), (2.4)
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with some c > 0. Moreover, it can be easily seen that

(ukvl)m = 0, ∀u, v ∈ L2(
R

3),∀k, l > 0,∀m > k + l, (2.5)

because the Fourier transform of ukvl is supported in {ξ ∈R
3 : |ξ | ≤ k + l}.

3 Proof of Theorem 1.2
For convenience, we assume μ = λ = 1 throughout the proof of Theorem 1.2.

Proof Assume that a weak solution (u, d) of (1.1) is regular in (0, T), but not in (0, T]. Then
limt→T–0 ‖∇u(t)‖L2 + ‖�d(t)‖L2 = ∞. Notice that, for all smooth solutions to system (1.1),
one has the following basic energy law (see [10]):

∥
∥u(·, t)

∥
∥2

L2 +
∥
∥∇d(·, t)

∥
∥2

L2 +
∫ t

0

(∥
∥∇u(·, τ )

∥
∥2

L2 +
∥
∥
(
�d + |∇d|2)(·, τ )

∥
∥2

L2
)

dτ

≤ ‖u0‖2
L2 + ‖∇d0‖2

L2 ,
(3.1)

for all 0 < t < ∞. By (1.2), one has

∥
∥∇u(t)

∥
∥2

L2 +
∥
∥�d(t)

∥
∥2

L2 ≤ k2‖u0‖2
L2 + k2‖∇d0‖2

L2 +
∥
∥∇uk(t)

∥
∥2

L2 +
∥
∥�dk(t)

∥
∥2

L2 .

Thus,

lim
t→T–0

∥
∥∇uk(t)

∥
∥2

L2 +
∥
∥�dk(t)

∥
∥2

L2 = ∞. (3.2)

We can see from [13] that, if there exists a positive constant ε0 > 0 such that

∥
∥(u,∇d)

∥
∥

L∞(0,T ;Ḃ–1∞,∞) ≤ ε0,

then the solution (u, d) is smooth up to time T .
Now we multiply the first equation of (1.1) with –�uk and integrate over R3 to get by

(2.2)

1
2

d
dt

∥
∥∇uk∥∥2

L2 +
∥
∥�uk∥∥2

L2 =
(
u · ∇u,�uk) +

(

�d · ∇d +
1
2
∇|∇d|2,�uk

)

. (3.3)

Applying ∇ to the second equation of (1.1) and making an L2 inner product with respect
to ∇�dk , we can verify

1
2

d
dt

∥
∥�dk∥∥2

L2 +
∥
∥∇�dk∥∥2

L2 =
(∇(u · ∇d),∇�dk) +

(∇(|∇d|2d
)
,∇�dk). (3.4)

Adding (3.3) and (3.4) gives rise to

1
2

d
dt

(∥
∥∇uk∥∥2

L2 +
∥
∥�dk∥∥2

L2
)

+
(∥
∥�uk∥∥2

L2 +
∥
∥∇�dk∥∥2

L2
)

=
(
u · ∇u,�uk) +

(
�d · ∇d,�uk) +

1
2
(∇|∇d|2,�uk)

+
(∇(u · ∇d),∇�dk) +

(∇(|∇d|2d
)
,∇�dk)

:= I1 + I2 + I3 + I4 + I5.

(3.5)
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Next we estimate I1–I5, respectively. From [14], we have

|I1| =
∣
∣
(
u · ∇u,�uk)∣∣

≤ Ck2‖u0‖2
L2‖u k

2 ,k‖2
L∞ + C‖uk‖Ḃ–1∞,∞

∥
∥�uk∥∥2

L2

+ Ck– 1
2
∥
∥∇uk∥∥

L2

∥
∥�uk∥∥2

L2 +
1
4
‖�uk,2k‖2

L2 .

(3.6)

Since d = dk + dk , we write

(�d · ∇)d = (�dk · ∇)dk +
(
�dk · ∇)

dk + (�dk · ∇)dk +
(
�dk · ∇)

dk .

Then

I2 =
(
�d · ∇d,�uk)

=
(
(�dk · ∇)dk ,�uk) +

((
�dk · ∇)

dk ,�uk) +
(
(�dk · ∇)dk ,�uk)

+
((

�dk · ∇)
dk ,�uk)

:= I21 + I22 + I23 + I24.

(3.7)

Note that dk = d k
2

+d k
2 ,k and the Fourier transform of (�dk ·∇)dk is supported in {|ξ | ≤ 2k},

thus we deduce

I21 =
(
(�dk · ∇)dk ,�uk)

=
([

(�dk · ∇)dk
]

k,2k ,�uk,2k
)

=
([

(�dk · ∇)d k
2

+ (�dk · ∇)d k
2 ,k

]

k,2k ,�uk,2k
)

=
([

(�d k
2

· ∇)d k
2

+ (�d k
2 ,k · ∇)d k

2
+ (�dk · ∇)d k

2 ,k
]

k,2k ,�uk,2k
)

=
(
(�dk · ∇)d k

2 ,k ,�uk,2k
)

+
(
(�d k

2 ,k · ∇)d k
2

,�uk,2k
)

:= I211 + I212,

(3.8)

where we used the fact [(�d k
2

· ∇)d k
2

]k,2k = 0. Thanks to the Hölder inequality, the Young
inequality and (3.1), we get

|I211| ≤ ‖�dk‖L2‖∇d k
2 ,k‖L∞‖�uk,2k‖L2

≤ Ck‖∇dk‖L2‖∇dk/2,k‖L∞‖�uk,2k‖L2

≤ Ck2‖∇dk‖2
L2‖∇d k

2 ,k‖2
L∞ +

1
8
‖�uk,2k‖2

L2

≤ Ck2‖∇d k
2 ,k‖2

L∞
(‖u0‖2

L2 + ‖∇d0‖2
L2

)
+

1
8
‖�uk,2k‖2

L2 .

(3.9)
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Similarly,

|I212| ≤ ‖�d k
2 ,k‖L∞‖∇d k

2
‖L2‖�uk,2k‖L2

≤ Ck‖∇d k
2 ,k‖L∞‖∇d k

2
‖L2‖�uk,2k‖L2

≤ Ck2‖∇d k
2 ,k‖2

L∞‖∇d k
2
‖2

L2 +
1
8
‖�uk,2k‖2

L2

≤ Ck2‖∇d k
2 ,k‖2

L∞
(‖u0‖2

L2 + ‖∇d0‖2
L2

)
+

1
8
‖�uk,2k‖2

L2 ,

(3.10)

which along with (3.9) implies

|I21| ≤ Ck2‖∇d k
2 ,k‖2

L∞
(‖u0‖2

L2 + ‖∇d0‖2
L2

)
+

1
4
‖�uk,2k‖2

L2 . (3.11)

With the help of Hölder’s inequality, (2.4), Gagaliardo–Nirenberg’s inequality, Sobolev’s
embedding and Young’s inequality, one has

|I22| ≤
∥
∥�dk∥∥

L3

∥
∥∇dk∥∥

L6

∥
∥�uk∥∥

L2

≤ C
∥
∥�dk∥∥

1
2
L2

∥
∥∇�dk∥∥

1
2
L2

∥
∥∇2dk∥∥

L2

∥
∥�uk∥∥

L2

≤ Ck– 1
2
∥
∥∇�dk∥∥

L2

∥
∥�dk∥∥

L2

∥
∥�uk∥∥

L2

≤ Ck– 1
2
∥
∥�dk∥∥

L2
(∥
∥�uk∥∥2

L2 +
∥
∥∇�dk∥∥2

L2
)
.

(3.12)

By the definition of the Ḃ–1∞,∞-norm, we have

‖uk‖L∞ ≤ Ck‖uk‖Ḃ–1∞,∞ , ∀k > 0. (3.13)

From the Hölder inequality, (3.13) and the Young inequality, we can conclude that

|I23| ≤ ‖�dk‖L∞
∥
∥∇dk∥∥

L2

∥
∥�uk∥∥

L2

≤ Ck‖∇dk‖L∞
∥
∥∇dk∥∥

L2

∥
∥�uk∥∥

L2

≤ Ck2‖∇dk‖Ḃ–1∞,∞
∥
∥∇dk∥∥

L2

∥
∥�uk∥∥

L2

≤ C‖∇dk‖Ḃ–1∞,∞
∥
∥∇�dk∥∥

L2

∥
∥�uk∥∥

L2

≤ C‖∇dk‖Ḃ–1∞,∞
(∥
∥�uk∥∥2

L2 +
∥
∥∇�dk∥∥2

L2
)
.

(3.14)

Similarly,

|I24| ≤
∥
∥�dk∥∥

L2‖∇dk‖L∞
∥
∥�uk∥∥

L2

≤ Ck‖∇dk‖Ḃ–1∞,∞
∥
∥�dk∥∥

L2

∥
∥�uk∥∥

L2

≤ C‖∇dk‖Ḃ–1∞,∞
∥
∥∇�dk∥∥

L2

∥
∥�uk∥∥

L2

≤ C‖∇dk‖Ḃ–1∞,∞
(∥
∥�uk∥∥2

L2 +
∥
∥∇�dk∥∥2

L2
)
.

(3.15)
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Combining (3.7), (3.11), (3.12), (3.14) and (3.15), one arrives at

|I2| ≤ Ck– 1
2
∥
∥�dk∥∥

L2
(∥
∥�uk∥∥2

L2 +
∥
∥∇�dk∥∥2

L2
)

+ C‖∇dk‖Ḃ–1∞,∞
(∥
∥�uk∥∥2

L2 +
∥
∥∇�dk∥∥2

L2
)

+ Ck2‖∇d k
2 ,k‖2

L∞
(‖u0‖2

L2 + ‖∇d0‖2
L2

)
+

1
4
‖�uk,2k‖2

L2 .

(3.16)

To estimate I3, we make the following decomposition:

1
2
∇|∇d|2 =

1
2
∇∣

∣∇dk + ∇dk
∣
∣2 ≤ ∇∣

∣∇dk∣∣2 + ∇|∇dk|2

= 2∇dk · ∇2dk + 2∇dk · ∇2dk .

Then

|I3| ≤ 2
∣
∣
(∇dk · ∇2dk ,�uk)∣∣ + 2

∣
∣
(∇dk · ∇2dk ,�uk)∣∣ := I31 + I32. (3.17)

Applying the same method to the bound (3.12) gives rise to

I31 ≤ ∥
∥∇dk∥∥

L3

∥
∥∇2dk∥∥

L6

∥
∥�uk∥∥

L2

≤ C
∥
∥∇dk∥∥

Ḣ
1
2

∥
∥�dk∥∥

Ḣ1

∥
∥�uk∥∥

L2

≤ C
∥
∥∇dk∥∥

1
2
L2

∥
∥∇dk∥∥

1
2
Ḣ1

∥
∥�dk∥∥

Ḣ1

∥
∥�uk∥∥

L2

≤ C
∥
∥∇dk∥∥

1
2
L2

∥
∥�dk∥∥

1
2
L2

∥
∥∇�dk∥∥

L2

∥
∥�uk∥∥

L2

≤ Ck– 1
2
∥
∥�dk∥∥

L2

∥
∥∇�dk∥∥

L2

∥
∥�uk∥∥

L2

≤ Ck– 1
2
∥
∥�dk∥∥

L2
(∥
∥∇�dk∥∥2

L2 +
∥
∥�uk∥∥2

L2
)
.

(3.18)

Similarly to (3.8), we have

I32 = 2
∣
∣
(∇dk · ∇2dk ,�uk)∣∣

= 2
∣
∣
(∇dk · ∇2d k

2 ,k ,�uk,2k
)

+
(∇d k

2 ,k · ∇2d k
2

,�uk,2k
)∣
∣

≤ 2
∣
∣
(∇dk · ∇2d k

2 ,k ,�uk,2k
)∣
∣ + 2

∣
∣
(∇d k

2 ,k · ∇2d k
2

,�uk,2k
)∣
∣

:= I321 + I322.

(3.19)

Using Hölder’s inequality, (2.4), Young’s inequality and (3.1), one can verify

I321 ≤ 2‖∇dk‖L2‖�d k
2 ,k‖L∞‖�uk,2k‖L2

≤ Ck‖∇d k
2 ,k‖L∞‖∇dk‖L2‖�uk,2k‖L2

≤ Ck2‖∇d k
2 ,k‖2

L∞
(‖u0‖2

L2 + ‖∇d0‖2
L2

)
+

1
8
‖�uk,2k‖2

L2 .

(3.20)
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Similarly,

I322 ≤ 2‖�d k
2
‖L2‖∇d k

2 ,k‖L∞‖�uk,2k‖L2

≤ Ck‖∇d k
2
‖L2‖∇d k

2 ,k‖L∞‖�uk,2k‖L2

≤ Ck2‖∇d k
2 ,k‖2

L∞
(‖u0‖2

L2 + ‖∇d0‖2
L2

)
+

1
8
‖�uk,2k‖2

L2 ,

(3.21)

which along with (3.20) implies

I32 ≤ Ck2‖∇d k
2 ,k‖2

L∞
(‖u0‖2

L2 + ‖∇d0‖2
L2

)
+

1
4
‖�uk,2k‖2

L2 . (3.22)

From (3.17), (3.18) and (3.22), we can deduce

|I3| ≤ Ck– 1
2
∥
∥�dk∥∥

L2
(∥
∥�uk∥∥2

L2 +
∥
∥∇�dk∥∥2

L2
)

+ Ck2‖∇d k
2 ,k‖2

L∞
(‖u0‖2

L2 + ‖∇d0‖2
L2

)
+

1
4
‖�uk,2k‖2

L2 .
(3.23)

We now address the term I4. We decompose I4 into the following form:

I4 =
(
(∇u · ∇)d,∇�dk) +

(
(u · ∇)∇d,∇�dk) := I41 + I42. (3.24)

Since

(∇u · ∇)d =
(∇uk · ∇)

dk +
(∇uk · ∇)

dk + (∇uk · ∇)dk + (∇uk · ∇)dk ,

we can get

I41 =
((∇uk · ∇)

dk ,∇�dk) +
((∇uk · ∇)

dk ,∇�dk) +
(
(∇uk · ∇)dk ,∇�dk)

+
(
(∇uk · ∇)dk ,∇�dk) := I411 + I412 + I413 + I414.

(3.25)

Similar to the estimate (3.12), one has

|I411| ≤
∥
∥∇uk∥∥

L6

∥
∥∇dk∥∥

L3

∥
∥∇�dk∥∥

L2

≤ C
∥
∥∇uk∥∥

Ḣ1

∥
∥∇dk∥∥

1
2
L2

∥
∥∇dk∥∥

1
2
Ḣ1

∥
∥∇�dk∥∥

L2

≤ Ck– 1
2
∥
∥�dk∥∥

L2

∥
∥�uk∥∥

L2

∥
∥∇�dk∥∥

L2

≤ Ck– 1
2
∥
∥�dk∥∥

L2
(∥
∥�uk∥∥2

L2 +
∥
∥∇�dk∥∥2

L2
)
.

(3.26)

The Hölder inequality, the Young inequality and (3.13) imply

I412 ≤ ∥
∥∇uk∥∥

L2‖∇dk‖L∞
∥
∥∇�dk∥∥

L2

≤ Ck‖∇dk‖Ḃ–1∞,∞
∥
∥∇uk∥∥

L2

∥
∥∇�dk∥∥

L2

≤ C‖∇dk‖Ḃ–1∞,∞
∥
∥�uk∥∥

L2

∥
∥∇�dk∥∥

L2

≤ C‖∇dk‖Ḃ–1∞,∞
(∥
∥�uk∥∥2

L2 +
∥
∥∇�dk∥∥2

L2
)
.

(3.27)
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Similarly,

I413 ≤ ‖∇uk‖L∞
∥
∥∇dk∥∥

L2

∥
∥∇�dk∥∥

L2

≤ Ck‖uk‖L∞
∥
∥∇dk∥∥

L2

∥
∥∇�dk∥∥

L2

≤ Ck2‖uk‖Ḃ–1∞,∞
∥
∥∇dk∥∥

L2

∥
∥∇�dk∥∥

L2

≤ C‖uk‖Ḃ–1∞,∞
∥
∥∇�dk∥∥2

L2 .

(3.28)

Arguing as (3.8), we have

I414 =
(
(∇uk · ∇)d k

2 ,k + (∇u k
2 ,k · ∇)d k

2
,∇�dk,2k

)
:= I4141 + I4142.

By Hölder’s inequality, (2.4) and Young’s inequality, we get

|I4141| ≤ ‖∇uk‖L2‖∇d k
2 ,k‖L∞‖∇�dk,2k‖L2

≤ Ck‖uk‖L2‖∇d k
2 ,k‖L∞‖∇�dk,2k‖L2

≤ Ck2‖uk‖2
L2‖∇d k

2 ,k‖2
L∞ +

1
16

‖∇�dk,2k‖2
L2

≤ Ck2‖∇d k
2 ,k‖2

L∞
(‖u0‖2

L2 + ‖∇d0‖2
L2

)
+

1
16

‖∇�dk,2k‖2
L2 .

(3.29)

Similarly,

|I4142| ≤ ‖∇u k
2 ,k‖L∞‖∇d k

2
‖L2‖∇�dk,2k‖L2

≤ Ck‖u k
2 ,k‖L∞‖∇d k

2
‖L2‖∇�dk,2k‖L2

≤ Ck2‖u k
2 ,k‖2

L∞‖∇d k
2
‖2

L2 +
1

16
‖∇�dk,2k‖2

L2

≤ Ck2‖u k
2 ,k‖2

L∞
(‖u0‖2

L2 + ‖∇d0‖2
L2

)
+

1
16

‖∇�dk,2k‖2
L2 ,

(3.30)

which together with (3.29) reads

|I414| ≤ Ck2(‖u k
2 ,k‖2

L∞ + ‖∇d k
2 ,k‖2

L∞
)(‖u0‖2

L2 + ‖∇d0‖2
L2

)
+

1
8
‖∇�dk,2k‖2

L2 . (3.31)

Combining (3.26)–(3.28) and (3.31) yields

|I41| ≤ 1
8
‖∇�dk,2k‖2

L2 + Ck– 1
2
∥
∥�dk∥∥

L2
(∥
∥�uk∥∥2

L2 +
∥
∥∇�dk∥∥2

L2
)

+ C
(‖uk‖Ḃ–1∞,∞ + ‖∇dk‖Ḃ–1∞,∞

)(∥
∥�uk∥∥2

L2 +
∥
∥∇�dk∥∥2

L2
)

+ Ck2(‖u k
2 ,k‖2

L∞ + ‖∇d k
2 ,k‖2

L∞
)(‖u0‖2

L2 + ‖∇d0‖2
L2

)
.

(3.32)
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To handle I42, we split I42 into

I42 =
(
(uk · ∇)∇dk ,∇�dk) +

((
uk · ∇)∇dk ,∇�dk) +

((
uk · ∇)∇dk ,∇�dk)

+
(
(uk · ∇)∇dk ,∇�dk)

:= I421 + I422 + I423 + I424.

(3.33)

By Hölder’s inequality and (2.4), we get

|I421| ≤ ‖uk‖L∞
∥
∥∇2dk∥∥

L2

∥
∥∇�dk∥∥

L2

≤ ‖uk‖L∞
∥
∥�dk∥∥

L2

∥
∥∇�dk∥∥

L2

≤ c‖uk‖Ḃ–1∞,∞
∥
∥∇�dk∥∥2

L2 .

(3.34)

Similarly to (3.12), one has

|I422| ≤
∥
∥uk∥∥

L6

∥
∥∇2dk∥∥

L3

∥
∥∇�dk∥∥

L2

≤ C
∥
∥uk∥∥

L6

∥
∥�dk∥∥

L3

∥
∥∇�dk∥∥

L2

≤ C
∥
∥∇uk∥∥

L2

∥
∥�dk∥∥1/2

L2

∥
∥�dk∥∥1/2

Ḣ1

∥
∥∇�dk∥∥

L2

≤ C
∥
∥∇uk∥∥

L2

∥
∥�dk∥∥1/2

L2

∥
∥∇�dk∥∥1/2

L2

∥
∥∇�dk∥∥

L2

≤ Ck–1/2∥∥∇uk∥∥
L2

∥
∥∇�dk∥∥2

L2 .

(3.35)

Hölder’s inequality, (2.4), and Young’s inequality guarantee

|I423| ≤
∥
∥uk∥∥

L2

∥
∥∇2dk

∥
∥

L∞
∥
∥∇�dk∥∥

L2

≤ ∥
∥uk∥∥

L2‖�dk‖L∞
∥
∥∇�dk∥∥

L2

≤ ck
∥
∥uk∥∥

L2‖∇dk‖L∞
∥
∥∇�dk∥∥

L2

≤ c
∥
∥�uk∥∥

L2‖∇dk‖Ḃ–1∞,∞
∥
∥∇�dk∥∥

L2

≤ c‖∇dk‖Ḃ–1∞,∞
(∥
∥�uk∥∥2

L2 +
∥
∥∇�dk∥∥2

L2
)
.

(3.36)

Similarly to (3.8), we write

I424 =
(
(uk · ∇)∇d k

2 ,k ,∇�dk,2k
)

+
(
(u k

2 ,k · ∇)∇d k
2

,∇�dk,2k
)

:= I4241 + I4242.

From the Hölder inequality and the Young inequality, we conclude

|I4241| ≤ ‖uk‖L2
∥
∥∇2d k

2 ,k

∥
∥

L∞‖∇�dk,2k‖L2

≤ C‖uk‖L2‖�d k
2 ,k‖L∞‖∇�dk,2k‖L2

≤ Ck‖uk‖L2‖∇d k
2 ,k‖L∞

∥
∥∇�dk∥∥

L2

≤ Ck2‖∇d k
2 ,k‖2

L∞
(‖u0‖2

L2 + ‖∇d0‖2
L2

)
+

1
16

∥
∥∇�dk∥∥2

L2

(3.37)
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and

|I4242| ≤ ‖u k
2 ,k‖L∞

∥
∥∇2d k

2

∥
∥

L2‖∇�dk,2k‖L2

≤ C‖u k
2 ,k‖L∞‖�d k

2
‖L2‖∇�dk,2k‖L2

≤ ck‖u k
2 ,k‖L∞‖∇d k

2
‖L2‖∇�dk,2k‖L2

≤ Ck2‖u k
2 ,k‖2

L∞
(‖u0‖2

L2 + ‖∇d0‖2
L2

)
+

1
16

∥
∥∇�dk∥∥2

L2 .

(3.38)

Therefore, by (3.24)–(3.38), we have

|I4| ≤ Ck– 1
2
(∥
∥∇uk∥∥

L2 +
∥
∥�dk∥∥

L2
)(∥

∥�uk∥∥2
L2 +

∥
∥∇�dk∥∥2

L2
)

+ C‖∇dk‖Ḃ–1∞,∞
(∥
∥�uk∥∥2

L2 +
∥
∥∇�dk∥∥2

L2
)

+ C‖uk‖Ḃ–1∞,∞
∥
∥∇�dk∥∥2

L2 + Ck2(‖u0‖2
L2 + ‖∇d0‖2

L2
)
)

× (‖u k
2 ,k‖2

L∞ + ‖∇d k
2 ,k‖2

L∞
)

+
1
4
‖∇�dk,2k‖2

L2 .

(3.39)

It is left to deal with the last term, I5. Using the fact that

∇(|∇d|2d
)

= 2∇2d∇dd + |∇d|2∇d,

we can rewrite I5 as follows:

I5 = 2
(∇2d∇dd,∇�dk) +

(|∇d|2∇d,∇�dk) := I51 + I52. (3.40)

Since

2∇2d∇dd =
(
2∇2dk∇dk + 2∇2dk∇dk + 2∇2dk∇dk + 2∇2dk∇dk)d,

we have

I51 = 2
(∇2dk∇dkd,∇�dk) + 2

(∇2dk∇dkd,∇�dk) + 2
(∇2dk∇dkd,∇�dk)

+ 2
(∇2dk∇dkd,∇�dk)

:= I511 + I512 + I513 + I514.

(3.41)

Reasoning as (3.8), one has

I511 =
(∇2dk∇d k

2 ,kd,∇�dk,2k
)

+
(∇2d k

2 ,k∇d k
2

d,∇�dk,2k
)

:= I5111 + I5112.
(3.42)
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Using |d| = 1, Hölder’s inequality, inequality (2.4) and Young’s inequality, we have

|I5111| ≤ 2
∥
∥∇2dk

∥
∥

L2‖∇d k
2 ,k‖L∞‖∇�dk,2k‖L2

≤ C‖�dk‖L2‖∇d k
2 ,k‖L∞‖∇�dk,2k‖L2

≤ Ck‖∇dk‖L2‖∇d k
2 ,k‖L∞‖∇�dk,2k‖L2

≤ Ck2‖∇d k
2 ,k‖2

L∞
(‖u0‖2

L2 + ‖∇d0‖2
L2

)
+

1
8
‖∇�dk,2k‖2

L2 .

(3.43)

Similarly,

|I5112| ≤
∥
∥∇2d k

2 ,k

∥
∥

L∞‖∇d k
2
‖L2‖∇�dk,2k‖L2

≤ Ck‖∇d k
2 ,k‖L∞‖∇d k

2
‖L2‖∇�dk,2k‖L2

≤ Ck2‖∇d k
2 ,k‖2

L∞
(‖u0‖2

L2 + ‖∇d0‖2
L2

)
+

1
8
‖∇�dk,2k‖2

L2 ,

(3.44)

which all taken together implies

|I511| ≤ Ck2‖∇d k
2 ,k‖2

L∞
(‖u0‖2

L2 + ‖∇d0‖2
L2

)
+

1
4
‖∇�dk,2k‖2

L2 . (3.45)

By the fact |d| = 1, the Hölder inequality, (2.4) and (3.13), we can get

|I512| ≤ 2
∥
∥∇2dk

∥
∥

L∞
∥
∥∇dk∥∥

L2

∥
∥∇�dk∥∥

L2

≤ C‖�dk‖L∞
∥
∥∇dk∥∥

L2

∥
∥∇�dk∥∥

L2

≤ Ck‖∇dk‖L∞
∥
∥∇dk∥∥

L2

∥
∥∇�dk∥∥

L2

≤ Ck2‖∇dk‖Ḃ–1∞,∞
∥
∥∇dk∥∥

L2

∥
∥∇�dk∥∥

L2

≤ C‖∇dk‖Ḃ–1∞,∞
∥
∥∇�dk∥∥2

L2 .

(3.46)

Similarly,

|I513| ≤ 2
∥
∥∇2dk∥∥

L2‖∇dk‖L∞
∥
∥∇�dk∥∥

L2

≤ C‖∇dk‖Ḃ–1∞,∞
∥
∥∇�dk∥∥2

L2 .
(3.47)

Reasoning as (3.12) again, one has

|I514| ≤ 2
∥
∥∇2dk∥∥

L3

∥
∥∇dk∥∥

L6

∥
∥∇�dk∥∥

L2

≤ C
∥
∥∇2dk∥∥

1
2
L2

∥
∥∇2dk∥∥

1
2
Ḣ1

∥
∥∇dk∥∥

Ḣ1

∥
∥∇�dk∥∥

L2

≤ C
∥
∥�dk∥∥

1
2
L2

∥
∥∇�dk∥∥

1
2
L2

∥
∥�dk∥∥

L2

∥
∥∇�dk∥∥

L2

≤ Ck– 1
2
∥
∥�dk∥∥

L2

∥
∥∇�dk∥∥2

L2 .

(3.48)
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Therefore, inequalities (3.45)–(3.48) yield

|I51| ≤ Ck2‖∇d k
2 ,k‖2

L∞
(‖u0‖2

L2 + ‖∇d0‖2
L2

)
+ C‖∇dk‖Ḃ–1∞,∞

∥
∥∇�dk∥∥2

L2

+ Ck– 1
2
∥
∥�dk∥∥

L2

∥
∥∇�dk∥∥2

L2 +
1
4
‖∇�dk,2k‖2

L2 .
(3.49)

It is easy to get �d · d = –|∇d|2 due to |d| = 1. Then |∇d|2∇d = –�d · d∇d. Hence we
decompose I52 in the following way:

I52 = –
(
�d · d∇d,∇�dk)

= –
(
�dk · d∇dk ,∇�dk) –

(
�dk · d∇dk ,∇�dk)

–
(
�dk · d∇dk ,∇�dk) –

(
�dk · d∇dk ,∇�dk)

:= I521 + I522 + I523 + I524.

(3.50)

Repeating the methods to prove (3.12), we obtain

|I521| ≤
∥
∥�dk∥∥

L3

∥
∥∇dk∥∥

L6

∥
∥∇�dk∥∥

L2

≤ C
∥
∥�dk∥∥

1
2
L2

∥
∥�dk∥∥

1
2
Ḣ1

∥
∥∇dk∥∥

Ḣ1

∥
∥∇�dk∥∥

L2

≤ C
∥
∥�dk∥∥

1
2
L2

∥
∥∇�dk∥∥

1
2
L2

∥
∥�dk∥∥

L2

∥
∥∇�dk∥∥

L2

≤ Ck– 1
2
∥
∥�dk∥∥

L2

∥
∥∇�dk∥∥2

L2 .

(3.51)

Similarly to (3.46), we have

|I522| + |I523| ≤ C‖∇dk‖Ḃ–1∞,∞
∥
∥∇�dk∥∥2

L2 . (3.52)

Similarly to (3.45), one has

|I524| ≤ Ck2‖∇d k
2 ,k‖2

L∞
(‖u0‖2

L2 + ‖∇d0‖2
L2

)
+

1
4
‖∇�dk,2k‖2

L2 . (3.53)

Thus

|I52| ≤ Ck– 1
2
∥
∥�dk∥∥

L2

∥
∥∇�dk∥∥2

L2 + C‖∇dk‖Ḃ–1∞,∞
∥
∥∇�dk∥∥2

L2

+ Ck2‖∇d k
2 ,k‖2

L∞
(‖u0‖2

L2 + ‖∇d0‖2
L2

)
+

1
4
‖∇�dk,2k‖2

L2 .
(3.54)

From (3.49) and (3.54), we deduce

|I5| ≤ Ck2‖∇d k
2 ,k‖2

L∞
(‖u0‖2

L2 + ‖∇d0‖2
L2

)
+ C‖∇dk‖Ḃ–1∞,∞

∥
∥∇�dk∥∥2

L2

+ Ck– 1
2
∥
∥�dk∥∥

L2

∥
∥∇�dk∥∥2

L2 +
1
2
‖∇�dk,2k‖2

L2 .
(3.55)
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Combining (3.6), (3.16), (3.23), (3.39) and (3.55), we have

1
2

d
dt

(∥
∥∇uk∥∥2

L2 +
∥
∥�dk∥∥2

L2
)

+
(∥
∥�uk∥∥2

L2 +
∥
∥∇�dk∥∥2

L2
)

≤ C1k2(‖u k
2 ,k‖2

L∞ + ‖∇d k
2 ,k‖2

L∞
)(‖u0‖2

L2 + ‖∇d0‖2
L2

)

+ C2
(‖uk‖Ḃ–1∞,∞ + ‖∇dk‖Ḃ–1∞,∞

)(∥
∥�uk∥∥2

L2 +
∥
∥∇�dk∥∥2

L2
)

+ C3k– 1
2
(∥
∥∇uk∥∥

L2 +
∥
∥�dk∥∥

L2
)(∥

∥�uk∥∥2
L2 +

∥
∥∇�dk∥∥2

L2
)

+
3
4
‖�uk,2k‖2

L2

+
3
4
‖∇�dk,2k‖2

L2

(3.56)

and

d
dt

(∥
∥∇uk∥∥2

L2 +
∥
∥�dk∥∥2

L2
)

≤
[

c1k2(‖u0‖2
L2 + ‖∇d0‖2

L2
)(‖uk/2,k‖2

L∞ + ‖∇dk/2,k‖2
L∞

)

–
1
8
(∥
∥�uk∥∥2

L2 +
∥
∥∇�dk∥∥2

L2
)
]

+
(

c2
(∥
∥uk(t)

∥
∥

Ḃ–1∞,∞ + ‖∇dk‖Ḃ–1∞,∞
)

–
1
4

)

× (∥
∥�uk∥∥2

L2 +
∥
∥∇�dk∥∥2

L2
)

+
(

c3k–1/2(∥∥∇uk∥∥
L2 +

∥
∥�dk∥∥

L2
)

–
1
8

)
(∥
∥�uk∥∥2

L2 +
∥
∥∇�dk∥∥2

L2
)
.

(3.57)

Let

k̃ = 128 × 4c2
3
(∥
∥∇uk̃

0
∥
∥

L2 +
∥
∥�dk̃

0
∥
∥

L2
)2. (3.58)

Then

∥
∥∇uk̃

0
∥
∥

L2 +
∥
∥�dk̃

0
∥
∥

L2 <
k̃ 1

2

16c3
.

Since limt→T–0 ‖∇uk̃(t)‖L2 + ‖�dk̃(t)‖L2 = ∞, there is some δ ∈ (0, T) such that

∥
∥∇uk̃(T – δ)

∥
∥

L2 +
∥
∥�dk̃(T – δ)

∥
∥

L2 =
k̃ 1

2

16c3
, (3.59)

∥
∥∇uk̃(t)

∥
∥

L2 +
∥
∥�dk̃(t)

∥
∥

L2 >
k̃ 1

2

16c3
. (3.60)

From (3.60), we get for any t ∈ (T – δ, T)

c1k̃2(‖u0‖2
L2 + ‖∇d0‖2

L2
)(‖u k̃

2 ,k̃
‖2

L∞ + ‖∇d k̃
2 ,k̃

‖2
L∞

)
–

1
8
(∥
∥�uk̃∥∥2

L2 +
∥
∥∇�dk̃∥∥2

L2
)

≤ k̃2
[

c1
(‖u0‖2

L2 + ‖∇d0‖2
L2

)(‖u k̃
2 ,k̃

‖2
L∞ + ‖∇d k̃

2 ,k̃
‖2

L∞
)

–
1
8
(∥
∥∇uk̃∥∥2

L2 +
∥
∥�dk̃∥∥2

L2
)
]

≤ k̃2
[

c1
(‖u0‖2

L2 + ‖∇d0‖2
L2

)(‖u k̃
2 ,k̃

‖2
L∞ + ‖∇d k̃

2 ,k̃
‖2

L∞
)

–
1

16
k̃

256c2
3

]
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≤ 0,

provided

∥
∥u k̃

2 ,k̃
(t)

∥
∥

L∞ +
∥
∥∇d k̃

2 ,k̃
(t)

∥
∥

L∞ <
k̃ 1

2

32c3
√c1(‖u0‖L2 + ‖∇d0‖L2 )

, ∀t ∈ (T – δ, T). (3.61)

In view of (3.58), the inequality (3.61) is equivalent to

∥
∥u k̃

2 ,k̃
(t)

∥
∥

B–1∞,∞ +
∥
∥∇d k̃

2 ,k̃
(t)

∥
∥

B–1∞,∞

< c
1

k̃ 1
2 32c3

√c1(‖u0‖L2 + ‖∇d0‖L2 )

< c
1

16
√

2c3(‖∇u0‖L2 + ‖�d0‖L2 ) × 32c3
√c1(‖u0‖L2 + ‖∇d0‖L2 )

< c
1

512
√

2c2
3
√c1(‖u0‖L2 + ‖∇d0‖L2 )(‖∇uk̃

0‖L2 + ‖�dk̃
0‖L2 )

.

(3.62)

Thus, if (3.62) and

c2(‖uk̃‖L∞(T–δ,T ;Ḃ–1∞,∞) + ‖∇dk̃‖L∞(T–δ,T ;Ḃ–1∞,∞) ≤ 1
4

(3.63)

hold, we can infer from (3.57) that

d
dt

(∥
∥∇uk̃∥∥2

L2 +
∥
∥�dk̃∥∥2

L2
)

≤
(

c3k̃– 1
2
(∥
∥∇uk̃∥∥

L2 +
∥
∥�dk̃∥∥

L2
)

–
1
8

)
(∥
∥�uk̃∥∥2

L2 +
∥
∥∇�dk̃∥∥2

L2
)
.

(3.64)

Since c3k̃– 1
2 (‖∇uk̃(T – δ)‖L2 + ‖�dk̃(T – δ)‖L2 ) – 1

8 = c3k̃– 1
2 k̃

1
2

16c3
– 1

8 < 0, there is a right
neighborhood I of t = T – δ such that

c3k̃– 1
2
(∥
∥∇uk̃(t)

∥
∥

L2 +
∥
∥�dk̃(t)

∥
∥

L2
)

–
1
8

< 0, ∀t ∈ I.

Hence, it follows by (3.64) that the function t → ‖∇uk̃‖L2 + ‖�dk̃‖L2 decreases in I, which
contradicts (3.59) and (3.60). Thus, when (3.62) and (3.63) are satisfied, u and ∇d cannot
blow up at t = T , and u and ∇d are regular in (0, T]. The proof of the theorem is com-
pleted. �
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