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Abstract
A priori bounds were derived for the flow in a bounded domain for the
viscous-porous interfacing fluids. We assumed that the viscous fluid was slow in�1,
which was governed by the Boussinesq equations. For a porous medium in �2, we
supposed that the flow satisfied the Darcy equations. With the aid of these a priori
bounds we were able to demonstrate the result of the continuous dependence type
for the Boussinesq coefficient λ. Following the method of a first-order differential
inequality, we can further obtain the result that the solution depends continuously on
the interface boundary coefficient α. These results showed that the structural stability
is valid for the interfacing problem.

MSC: 35B40; 35Q30; 76D05

Keywords: Boussinesq equations; Continuous dependence; Boussinesq coefficient;
Interfacing problem; A priori bounds

1 Introduction
Recently, people have become interested in obtaining stability results of solutions for phys-
ical problems of partial differential equations with changes in coefficients. Sometimes the
equations themselves are changed. This stability was called the structural stability in or-
der to distinguish it from the traditional stability on initial data and boundary data. These
problems were widely studied in many papers by many authors. For the problems of con-
tinuum mechanics, it is important for the authors to establish the structural stability of the
model. This importance is discussed by Hirsch and Smale [1] in the form of a differential
equation. This stability estimation is basic. We want to know whether a slight change in
the coefficients in the equations or boundary data, or even the equation itself, will lead to
drastic changes in the solution. For a review of the nature of the structural stability, refer
to the books written by Ames and Straughan [2] and Straughan [3].

There are many papers studying the structural stability on the coefficients in fluids
equations in porous media. Representative is the work of Ames et al. [4, 5], Franchi and
Straughan [6], Hoang and Ibragimov [7], Lin and Payne [8–10], Liu [11, 12], Liu et al.
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[13–15], Scott [16], Scott and Straughan [17], Payne et al. [18–21] and some related pa-
pers [22–24]. The previous publications of structural stability usually study one fluid in
a bounded domain. Usually, there exists more than one fluid in a domain. These fluids
have some interactions. It is desirable to see what effect they can have on each other. So
the study of two interfacing fluids may be interesting and meaningful. In [19], the authors
studied the structural stability for a flow interfacing with a porous solid. They proved that
the solution depends continuously on the coefficient of the interface boundary condition.

In this paper, we want to study the continuous dependence type results on the interface
boundary coefficient and the Boussinesq coefficient for the solution of the Boussinesq–
Darcy problem in R3. The Boussinesq equations interface with the Darcy equations
through the mutual boundary. Thus, we suggest an appropriate part of the plane z = x1 = 0
is the mutual boundary for a porous fluid in a bounded region �2 in and a nonlinear vis-
cous fluid in �1 in R3. We denote the interface by L. The remaining part of ∂�1 is denoted
by �1, and the remaining part of ∂�2 is denoted by �2. We also denote ∂�1 = �1 ∪ L and
∂�2 = �2 ∪ L.

Let (ui, T , p) and (vi, θ , q) denote the velocity, temperature and pressure in �1 and �2,
respectively. Then the Boussinesq flow equations are (see [25–27])

∂ui

∂t
– μ�ui + λujui,j – giT + p,i = 0, in �1 × [0, τ ],

∂T
∂t

+ uiT,i = k1�T , in �1 × [0, τ ], (1)

ui,i = 0, in �1 × [0, τ ],

where gi is the gravity force function; λ is the Boussinesq coefficient. The coefficients μ

and k1 are kinematic viscosity and thermal conductivity, respectively. From [28, 29]), we
can see that the Boussinesq equations are useful in studying fluid and geophysical fluid
dynamics.

The Darcy equations can be written as (see Nield and Bejan [30])

vi – giθ +
∂q
∂xi

= 0, in �2 × [0, τ ],

∂θ

∂t
+ vi

∂θ

∂xi
= k2�θ , in �2 × [0, τ ], (2)

∂vi

∂xi
= 0, in �2 × [0, τ ],

where �1 and �2 are all bounded domains. They are all simply connected and star-shaped.
The boundaries ∂�1 and ∂�2 are their boundaries, respectively. τ is a positive constant
which satisfies 0 < τ < ∞. The following boundary conditions are satisfied:

ui = 0; T = G(x, t), on �1 × [0, τ ],

vini = 0, θ = ˜G(x, t), on �2 × [0, τ ], (3)
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for prescribed functions G(x, t) and ˜G(x, t) and n(1)
i , n(2)

i denote the unit outward normals
of �1, �2, respectively. Obviously, n(1)

3 = –n(2)
3 = –1. The initial conditions are written as

ui(x, 0) = fi(x), T(x, 0) = T0(x), in �1,

θ (x, 0) = θ0(x), in �2, (4)

for prescribed functions fi, T0 and θ0. The interface L conditions are

u3 = v3 ≤ 0, T = θ , k1T,3 = k2θ,3,

q = p – 2μu3,3, uβ ,3 + u3,β =
α√
k1

uβ , (5)

where α is a positive coefficient and the value of α can be defined by experiment. It is
determined by the given fluid and porous solid. The boundary conditions (5) were given
by Nield and Bejan in [30]. In [31], Jones deduced the last condition in (5).

In this paper, we want to obtain the continuous dependence on the Boussinesq coef-
ficient λ and the interface boundary coefficient α for the Boussinesq–Darcy interfacing
problems in a bounded domain. However, there are only a few papers studying this inter-
facing problem in a bounded domain (see Payne and Straughan [19] and Liu et al. [13]). For
the unbounded domain, refer to Liu et al. [32]. However, compared with the above litera-
ture, in this paper, there is a nonlinear term uiui,j. In particular, the bound of

∫

�
ui,jui,j dx

is needed in this paper. But the methods proposed in [13, 19, 32] cannot be used directly.
Second, some well-known Sobolev inequalities cannot be held for the interfacing prob-
lem. Our biggest innovation is to overcome these difficulties. We are sure that we can
obtain some new and interesting results. We will derive some useful a priori bounds by
using different inequalities. With the aid of these a priori bounds, we derive the continuous
dependence on the Boussinesq coefficient and the interface boundary coefficient.

In the following discussions, we use the comma to denote partial differentiation. We
also use ui,k to denote the partial differentiation with respect to the direction xk . This is to
say ui,k = ∂ui

∂xk
. We also use the usual summation convection with repeated Latin subscripts

summed from 1 to 3, and the Greek subscripts summed from 1 to 2. Therefore, ui,i =
∑3

i=1( ∂ui
∂xi

)2, uβ ,β =
∑2

β=1( ∂uβ

∂xβ
)2.

2 A priori bounds
In this section, we want to drive bounds for various norms of ui in terms of known data
which will be used in the next sections.

Lemma 2.1 If T0, θ0, G,˜G ∈ L∞. Then the temperatures satisfy

sup
[0,τ ]

‖T‖∞, sup
[0,τ ]

‖θ‖∞ ≤ NM, (6)

where NM = max{‖T0‖∞, sup[0,τ ] ‖G‖∞,‖θ0‖∞, sup[0,τ ] ‖˜G‖∞}.

Proof First, we let TLM denotes the maximum of the temperature on the interface L. Payne,
Rodrigues and Straughan [33] have derived

sup
[0,τ ]

‖T‖∞ ≤ max
{

‖T0‖∞, sup
[0,τ ]

G∞, TLM

}
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and

sup
[0,τ ]

‖θ‖∞ ≤ max
{

‖θ0‖∞, sup
[0,τ ]

˜G∞, TLM

}

.

However, in the area �1 ∪�2 × [0, τ ], the maximum of the temperature cannot be reached
on the interface L. Therefore, we have the result (6). �

Lemma 2.2 If T0, θ0, G,˜G ∈ L∞ and �1, �2 are bounded regions. Then

∫

�1

|u|2 dx ≤ eτ

∫

�1

|f |2 dx + g2N2
M

(|�1| + |�2|
)(

eτ – 1
) .= A1. (7)

Proof Multiplying (1)1 by ui, integrating over �1 and using (6), we obtain

1
2

d
dt

∫

�1

|u|2 dx

= μ

∫

�1

(ui,j + uj,i),jui dx – λ

∫

�1

ujui,jui dx +
∫

�1

giTui dx –
∫

�1

p,iui dx

= –μ

∫

�1

(ui,j + uj,i)ui,j dx + μ

∫

L
(uβ ,3 + u3,β )uβn(1)

3 dA –
1
2
λ

∮

∂�1

u3uiuin(1)
3 dA

+
1
2

∫

�1

|u|2 dx +
1
2

g2N2
M|�1| –

∫

L
(p – 2μu3,3)uin(1)

i dA

≤ 1
2

∫

�1

|u|2 dx +
1
2

g2N2
M|�1| +

∫

L
qvin(2)

i dA.

By the divergence theorem and (2) and the conditions in the interface, we have

1
2

d
dt

∫

�1

|u|2 dx ≤ –μ

∫

�1

(ui,j + uj,i)ui,j dx

+
1
2

∫

�1

|u|2 dx +
1
2

g2N2
M|�1| +

∫

�2

vi(giθ – vi) dx

≤ 1
2

∫

�1

|u|2 dx +
1
2

g2N2
M|�1| +

1
2

g2N2
M|�2|,

or

d
dt

∫

�1

|u|2 dx ≤
∫

�1

|u|2 dx + g2N2
M|�1| + g2N2

M|�2|. (8)

From (8) it follows that

d
dt

(

e–t
∫

�1

|u|2 dx
)

≤ (

g2N2
M|�1| + g2N2

M|�2|
)

e–t .

Upon integration, we can arrive at Lemma 2.2. �

Now we define

F1(t) =
∫

�1

|ut|2 dx, F2(t) =
∫ t

0

∫

�2

|vt|2 dx dη,
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F3(t) =
∫

�1

ui,j(ui,j + uj,i) dx. (9)

Lemma 2.3 If T0, θ0, G,˜G ∈ L∞ and �1, �2 are bounded regions, then

F3(t) ≤ 1
2μ

F1(t) + a1, (10)

where a1 = 1
μ

A1 + 1
2μ

g2N2
M|�1| + 1

4μ
g2N2

M|�2|.

Proof Using the divergence theorem, we have

μ

∫

�1

ui,j(ui,j + uj,i) dx

= μ

∫

L
uβ (uβ ,3 + u3,β )n(1)

3 dA + 2μ

∫

�1

u3u3,3n(1)
3 dA

–
∫

�1

ui[ui,t + λujui,j – giT + p,i] dx

≤ μ

∫

L
uβ (uβ ,3 + u3,β )n(1)

3 dA –
∫

L
(p – 2μu3,3)u3n(1)

3 dA

+
∫

�1

|u|2 dx +
1
2

∫

�1

|ut|2 dx –
1
2
λ

∫

∂�1

u3uiuin(1)
3 dA +

1
2

g2N2
M|�1|

≤ μα√
k1

∫

L
uβuβn(1)

3 dA –
∫

L
qv3n(2)

3 dA

+
∫

�1

|u|2 dx +
1
2

∫

�1

|ut|2 dx +
1
2

g2N2
M|�1|. (11)

In the light of the condition on L, we compute

∫

L
qv3n(2)

3 dA =
∫

�2

q,ivi dA =
∫

�2

(g,iθ – vi)vi dA ≤ 1
4

g2N2
M|�2|. (12)

Combining (11) and (12), we have Lemma 2.3. �

Lemma 2.4 If T0, θ0, G,˜G ∈ L∞ and �1, �2 are bounded regions. Then

∫

�1

|∇u|2 dx ≤ A4(t), (13)

where A4(t) is a positive function which will be defined later.

Proof We firstly compute

1
2

d
dt

F1(t) = μ

∫

�1

ui,t(ui,j + uj,i),jt dx –
∫

�1

ui,tpi,t dx – λ

∫

�1

ui,tui,juj,t dx

– λ

∫

�1

ui,tui,jtuj dx +
∫

�1

ui,tgiT,t dx

= –μ

∫

�1

ui,jt(ui,jt + uj,it) dx –
∫

L
u3,t(p,t – 2μu3,3t)n(1)

3 dA
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+
αμ√

k1

∫

L
uβ ,tuβ ,tn(1)

3 dA

– λ

∫

�1

ui,tui,juj,t dx – λ

∫

�1

ui,tui,jtuj dx +
∫

�1

ui,tgiT,t dx

= –μ

∫

�1

ui,jt(ui,jt + uj,it) dx +
∫

L
u3,tq,tn(2)

3 dA – λ

∫

�1

ui,tui,juj,t dx

– λ

∫

�1

ui,tui,jtuj dx +
∫

�1

ui,tgiT,t dx

= –μ

∫

�1

ui,jt(ui,jt + uj,it) dx +
∫

�2

vi,t(giθ,t – vi,t) dx – λ

∫

�1

ui,tui,juj,t dx

–
1
2
λ

∫

�1

ui,tui,tu3n(1)
3 dx +

∫

�1

ui,tgiT,t dx

≤ –μ

∫

�1

ui,jt(ui,jt + uj,it) dx –
1
2

∫

�2

|vt|2 dx – λ

∫

�1

ui,tui,juj,t dx

+
1
2

∫

�1

|ut|2 dx +
1
2

g2
(∫

�2

θ2
,t dx +

∫

�1

T2
,t dx

)

. (14)

We find that the result given in Appendix B of Lin and Payne [10] for ‖u‖2
4

(∫

�1

|u|4 dx
) 1

2 ≤ k
[(∫

�1

|u|2 dx
)

+
(∫

�1

|u|2 dx
) 1

4
(∫

�1

|∇u|2 dx
) 3

4
]

, k > 0. (15)

So, we have for an arbitrary constant ε1 > 0

–
∫

�1

ui,tui,juj,t dx

≤
(∫

�1

|∇u|2 dx
) 1

2
(∫

�1

|ut|4 dx
) 1

2

≤ k
(∫

�1

|∇u|2 dx
) 1

2
[(∫

�1

|ut|2 dx
)

+
(∫

�1

|ut|2 dx
) 1

4
(∫

�1

|∇ut|2 dx
) 3

4
]

≤ k
(∫

�1

|∇u|2 dx
) 1

2
(∫

�1

|ut|2 dx
)

+ k
(∫

�1

|∇u|2 dx
) 1

2
(∫

�1

|ut|2 dx
) 1

4
(∫

�1

|∇ut|2 dx
) 3

4

≤ k
(∫

�1

|∇u|2 dx
) 1

2
(∫

�1

|ut|2 dx
)

+
1
4

k4ε–3
1

(∫

�1

|∇u|2 dx
)2(∫

�1

|ut|2 dx
)

+
3
4
ε1

(∫

�1

|∇ut|2 dx
)

. (16)

We notice that one has obtained the following results [13]:

γ

∫

�1

|u|2 dx ≤
∫

�1

ui,j(ui,j + uj,i) dx (17)
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and

∫

�1

|∇u|2 dx ≤ C
∫

�1

ui,j(ui,j + uj,i) dx, (18)

where γ and C are positive constants which have been defined in [13]. Following the meth-
ods in [13], we can derive a similar result,

∫

�1

|∇ut|2 dx ≤ C
∫

�1

ui,jt(ui,jt + uj,it) dx. (19)

Combining (14), (16)–(19) and using (7), we obtain

d
dt

[

F1(t) + F2(t)
] ≤ F1(t) + 2k

√
CF

1
2

3 (t)F1(t) +
1
2

k4C2ε–3
1 F2

3 (t)F1(t) (20)

+ g2
(∫

�2

θ2
,t dx +

∫

�1

T2
,t dx

)

, (21)

where we have chosen ε1 = 4μ

3k5
.

We now use (1)2 and (2)2 with the boundary conditions (3) and (5) and the divergence
theorem to obtain

d
dt

(∫

�1

T2
t dx +

∫

�2

θ2
t dx

)

= 2
∫

�1

Tt[–ui,tT,i – uiT,it + k1�T] dx + 2
∫

�2

θt[–vi,tθ,i – viθ,it + k2�θ ] dx

= –2k1

∫

�1

|∇Tt|2 dx – 2k2

∫

�2

|∇θt|2 dx + 2
∫

�1

TT,itui,t dx + 2
∫

�2

θθ,itvi,t dx

≤ N2
M

2

(

1
k1

F1(t) +
1
k2

∫

�2

|vt|2 dx
)

. (22)

By integration of (24) we thus obtain

∫

�1

T2
t dx +

∫

�2

θ2
t dx

≤ N2
M

2

(

1
k1

∫ t

0
F1(η) dη +

1
k2

F2(t)
)

+
∫

�1

(T0,t)2 dx +
∫

�2

(θ0,t)2 dx. (23)

Inserting (25) into (20) and setting

a1 =
A1k2

ε2
+ 1 +

1
32ε4

2
A4

1k8ε–3
3 , a2 = 2k

√
C, a3 =

1
2

k4C2ε–3
1 ,

a4 =
k2

ε2

4
√

A1C3, a5 =
1

32ε4
2

k8A1ε
–3
4 C3, a6 =

N2
Mg2

2k1
, a7 =

N2
Mg2

2k2
,

a8 =
∫

�1

(T0,t)2 dx +
∫

�2

(θ0,t)2 dx, (24)
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we have

d
dt

[

F1(t) + F2(t)
] ≤ a1F1(t) + a2F

1
2

3 (t)F1(t) + a3F2
3 (t)F1(t) + a4F1(t)F

3
4

3 (t)

+ a5F1(t)F3
3 (t) + a6

∫ t

0
F1(η) dη + a7F2(t) + a8. (25)

Then, using Lemma 2.3 and the Hölder inequality in (27), we get

d
dt

[

F1(t) + F2(t)
] ≤ b1F4

1 (t) + b2F3
1 (t) + b3F2

1 (t) + b4F1(t)

+ b5 + a6

∫ t

0
F1(η) dη + a7F2(t), (26)

for some computable positive constants bi (i = 1, 2, 3, 4, 5). Now, we define

F(t) = F1(t) + F2(t) + M0

∫ t

0
F1(η) dη, M0 > 0. (27)

We have from (32)

d
dt

F(t) ≤ b1F4(t) + b2F3(t) + b3F2(t) + b6F(t) + b5, (28)

where b6 = 1
b4+M0

max{1, a7
b4+M0

, a6
(b4+M0)M0

}. Obviously, we have from (34)

d
dt

F(t) ≤ b1
(

F(t) + b7
)4, (29)

where

b7 = max

{

b2

4b1
,

√

b3

6b1
, 3

√

b6

4b1
, 4

√

b5

b1

}

. (30)

Therefore, we can get the result

∫

�1

|ut|2 dx +
∫ t

0

∫

�2

|vt|2 dx dη + M0

∫ t

0

∫

�1

|ut|2 dx dη ≤ A2(t), (31)

where

A2(t) = 3

√

1
(F(0) + b7)–3 – 3b1t

, F(0) =
∫

�1

|f t|2 dx. (32)

In view of (9), Lemma 3 and (18), we also have
∫

�1

ui,j(ui,j + uj,i) dx ≤ A3(t) (33)

and
∫

�1

|∇u|2 dx ≤ A4(t), (34)



Li et al. Boundary Value Problems         (2021) 2021:27 Page 9 of 19

where

A3(t) =
1

2μ
A2(t) + a9, A4(t) = CA3(t). (35)

Combining (13), (15) and (34), we may get the following lemma. �

Lemma 2.5 If T0, θ0, G,˜G ∈ L∞ and �1, �2 are bounded regions. Then

(∫

�1

|u|4 dx
) 1

2 ≤ k
[

A1 + A
1
4
1 A

3
4
4 (t)

] .= A5(t). (36)

3 Continuous dependence on λ

In this section, we want to establish the continuous dependence on gi. Let (ui, T , p) and
(vi, θ , q) be solutions of (1)–(5) with λ = λ(1), and (u∗

i , T∗, p∗) and (v∗
i , θ∗, q∗) be solutions of

(1)–(5) with λ = λ(2), respectively.
We define

wi = ui – u∗
i , S = T – T∗, π = p – p∗, ˜λ = λ(1) – λ(2), (37)

and

wm
i = vi – v∗

i , Sm = θ – θ∗, πm = q – q∗. (38)

Then (wi, T ,π ) satisfy the following equations:

∂wi

∂t
– μ�wi +˜λui,juj + λ(2)ujwi,j + λ(2)u∗

i,jwj – giS + π,i = 0, in �1 × [0, τ ],

∂S
∂t

+ wiT,i + u∗
i S,i = k1�S, in �1 × [0, τ ], (39)

wi,i = 0, in �1 × [0, τ ],

and (wm
i , Sm,πm) satisfy the equations

wm
i – giSm + πm

,i = 0, in �2 × [0, τ ],

∂Sm

∂t
+ wm

i θ,i + v∗
i Sm

,i = k2�Sm, in �2 × [0, τ ], (40)

wm
i,i = 0, in �2 × [0, τ ].

The boundary conditions are

wi = 0; S = 0, on �1 × [0, τ ],

wm
i ni = 0, Sm = 0, on �2 × [0, τ ]. (41)

The initial conditions can be written as

wi(x, 0) = 0, S(x, 0) = 0, in �1, Sm(x, 0) = 0, in �2. (42)
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The interface L conditions are

w3 = wm
3 , S = Sm, k1S,3 = k2Sm

,3 ,

πm = π – 2μw3,3, wβ ,3 + w3,β =
α√
k1

wβ . (43)

We first give some useful lemmas.

Lemma 3.1 Let (ui, T , p) and (vi, θ , q) be the classical solutions to the initial-boundary
value problem (1)–(5) corresponding to λ(1), and (u∗

i , T∗, p∗) and (v∗
i , θ∗, q∗) also be the clas-

sical solutions to the initial-boundary value problem (1)–(5) but corresponding to λ(2). Then
for any t > 0 the differences of velocities satisfy

d
dt

∫

�1

|w|2 dx +
∫

�2

∣

∣wm∣

∣

2 dx

≤ c1(t)
∫

�1

|w|2 dx + 2g2
[∫

�1

S2 dx +
∫

�2

(

Sm)2 dx
]

+ 2(˜λ)2kA4(t)A5(t),

where c1(t) is a positive function which depends on t.

Proof We begin with the identity

∫

�1

[

∂wi

∂t
– μ�wi +˜λui,juj + λ(2)ujwi,j + λ(2)u∗

i,jwj – giS + π,i

]

wi dx = 0. (44)

From (44) it follows that

1
2

d
dt

∫

�1

|w|2 dx = μ

∫

�1

(wi,j + wj,i),jwi dx –˜λ

∫

�1

ui,jujwi dx – λ(2)
∫

�1

ujwi,jwi dx

– λ(2)
∫

�1

u∗
i,jwjwi dx –

∫

�1

π,iwi dx –
∫

�1

giSwi dx

.= I1 + I2 + I3 + I4 + I5 + I6. (45)

We now deal with I1 and I5. Using the divergence theorem, we have

I1 + I5 = –μ

∫

�1

(wi,j + wj,i)wi,j dx + μ

∫

�1

(wβ ,3 + w3,β)wβn(1)
3 dA

–
∫

�1

(π – 2μu3,3)win(1)
i dx

= –μ

∫

�1

(wi,j + wj,i)wi,j dx +
αμ√

k1

∫

L
wβwβn(1)

3 dA +
∫

L
πmwm

i n(2)
i dA

≤ –μ

∫

�1

(wi,j + wj,i)wi,j dx +
∫

�2

(

–wm
i + g̃iθ + g(2)

i Sm)

wm
i dx

≤ –μ

∫

�1

(wi,j + wj,i)wi,j dx –
1
2

∫

�2

∣

∣wm∣

∣

2 dx + g2
∫

�2

(

Sm)2 dx. (46)
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Using the Hölder inequality, (15), Lemma 2.4, Lemma 2.5 and the Young inequality with
δ1 > 0, we have

I2 ≤ |˜λ|
(∫

�1

|∇u|2 dx
) 1

2
(∫

�1

|u|4 dx
) 1

4
(∫

�1

|w|4 dx
) 1

4

≤ |˜λ|√kA4(t)A5(t)
[(∫

�1

|w|2 dx
)

+
(∫

�1

|w|2 dx
) 1

4
(∫

�1

|∇w|2 dx
) 3

4
] 1

2

≤ (˜λ)2kA4(t)A5(t) +
[

1 +
1
4
δ–3

1

]∫

�1

|w|2 dx +
3
4
δ1

∫

�1

|∇w|2 dx. (47)

Following a similar procedure to deriving I3, we obtain

I3 ≤ λ(2)
(∫

�1

|∇w|2 dx
) 1

2
(∫

�1

|u|4 dx
) 1

4
(∫

�1

|w|4 dx
) 1

4

≤ λ(2)
√

kA5(t)
{(∫

�1

|w|2 dx
)(∫

�1

|∇w|2 dx
)

+
(∫

�1

|w|2 dx
) 1

4
(∫

�1

|∇w|2 dx
) 7

4
} 1

2

≤ λ(2)
√

kA5(t)
{(∫

�1

|w|2 dx
) 1

2
(∫

�1

|∇w|2 dx
) 1

2

+
(∫

�1

|w|2 dx
) 1

8
(∫

�1

|∇w|2 dx
) 7

8
}

≤
[

(λ(2))2

2δ2
kA5(t) +

(λ(2))8

8δ7
3

(

kA5(t)
)4

]∫

�1

|w|2 dx

+
(

1
2
δ2 +

7
8
δ3

)∫

�1

|∇w|2 dx, (48)

where δ2, δ3 are positive constants to be determined later. Similarly, we have

I4 ≤ λ(2)
(∫

�1

∣

∣∇u∗∣
∣

2 dx
) 1

2
(∫

�1

|w|4 dx
) 1

2

≤ λ(2)
√

A4(t)
[(∫

�1

|w|2 dx
)

+
(∫

�1

|w|2 dx
) 1

4
(∫

�1

|∇w|2 dx
) 3

4
]

≤
[

λ(2)
√

A4(t) +
1

4δ4

(

λ(2))4A2
4(t)

](∫

�1

|w|2 dx
)

+
3
4
δ4

∫

�1

|∇w|2 dx. (49)

We note that I6 can be bounded,

I6 ≤ g2
∫

�1

S2 dx +
1
4

∫

�1

|w|2 dx. (50)

Similar to (19), we also have
∫

�1

|∇w|2 dx ≤ k5

∫

�1

wi,j(ui,j + wj,i) dx. (51)
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We define the functions F1(t) and F2(t) by

F1(t) =
∫

�1

|w|2 dx, F2(t) =
∫ t

0

∫

�2

∣

∣wm∣

∣

2 dx dη. (52)

Inserting (45)–(51) into (44) and using (52), we have

d
dt

[

F1(t) + F2(t)
] ≤ –2

[

μ –
3
4

(δ1 + δ4)k5 –
(

1
2
δ2 +

7
8
δ3

)

k5

]∫

�1

(wi,j + wj,i)wi,j dx

+ 2
[

1
4
δ–3

1 +
(λ(2))2

2δ2
kA5(t) +

(λ(2))8

8δ7
3

(

kA5(t)
)4 + λ(2)

√

A4(t)

+
1

4δ4

(

λ(2))4A2
4(t) +

5
4

]∫

�1

|w|2 dx + 2g2
∫

�1

S2 dx

+ 2g2
∫

�2

(

Sm)2 dx + 2(˜λ)2kA4(t)A5(t). (53)

We choose δ1, δ2, δ3 and δ4 small enough such that

3
4

(δ1 + δ4)k5 +
(

1
2
δ2 +

7
8
δ3

)

k5 = μ.

Letting

c1(t) = 2[
1
4
δ–3

1 +
(λ(2))2

2δ2
kA5(t) +

(λ(2))8

8δ7
3

(

kA5(t)
)4 + λ(2)

√

A4(t) +
1

4δ4

(

λ(2))4A2
4(t) +

5
4

,

we can get Lemma 3.1. �

Lemma 3.2 Let (ui, T , p) and (vi, θ , q) be the classical solutions to the initial-boundary
value problem (1)–(5) corresponding to λ(1), and (u∗

i , T∗, p∗) and (v∗
i , θ∗, q∗) also be the clas-

sical solutions to the initial-boundary value problem (1)–(5) but corresponding to λ(2). Then
for any t > 0 we have

∫

�1

S2 dx +
∫

�2

(

Sm)2 dx ≤ 1
2k1

N2
M

∫ t

0
F1(η) dη +

1
2k2

N2
MF2(t).

Proof We multiply (39)2 and (40)2 by S and Sm, respectively, and integrate by parts to find

1
2

d
dt

[∫

�1

S2 dx +
∫

�2

(

Sm)2 dx
]

= –k1

∫

�1

|∇S|2 dx – k2

∫

�2

∣

∣∇Sm∣

∣

2 dx

+
∫

�1

wiTS,i dx +
∫

�2

wm
i θSm

,i dx

≤ 1
4k1

N2
M

∫

�1

|w|2 dx +
1

4k2
N2

M

∫

�2

∣

∣wm∣

∣

2 dx. (54)
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Integrating (54) from 0 to t one may deduce
∫

�1

S2 dx +
∫

�2

(

Sm)2 dx

≤ 1
2k1

N2
M

∫ t

0

∫

�1

|w|2 dx dη +
1

2k2
N2

M

∫ t

0

∫

�2

∣

∣wm∣

∣

2 dx dη. (55)

Combining (52) and (55), we may obtain Lemma 3.2. �

Now, we use Lemmas 3.1 and 3.2 to obtain

d
dt

[

F1(t) + F2(t)
] ≤ c1(t)F1(t) +

g2N2
M

k1

∫ t

0
F1(η) dη

+
g2N2

M
k2

F2(t) + 2(˜λ)2kA4(t)A5(t). (56)

Setting

F3(t) = F1(t) + F2(t) +
k2

k1

∫ t

0
F1(η) dη, (57)

we obtain

d
dt

F3(t) ≤ c2(t)F3(t) + 2(˜λ)2kA4(t)A5(t), (58)

where

c2(t) = max

{

c1(t) +
k2

k1
,

g2N2
M

k2

}

. (59)

Thus after integration we may derive from (58) the estimate

F3(t) ≤ 2(˜λ)2k
∫ t

0
A4(η)A5(η)e

∫ t
s c2(η) dη ds. (60)

Combining (57), Lemma 3.2 and (60), we have the following theorem.

Theorem 3.1 Let (ui, T , p) and (vi, θ , q) be the classical solutions to the initial-boundary
value problem (1)–(5) corresponding to λ(1), and (u∗

i , T∗, p∗) and (v∗
i , θ∗, q∗) also be the clas-

sical solutions to the initial-boundary value problem (1)–(5) but corresponding to λ(2). Then
for any t > 0 we have

(ui, T , p) → (

u∗
i , T∗, p∗), (vi, θ , q) → (

v∗
i , θ∗, q∗), (61)

as λ(1) → λ(2). The differences of velocities satisfy
∫

�1

|w|2 dx +
∫ t

0

∫

�2

∣

∣wm∣

∣

2 dx dη +
k2

k1

∫ t

0

∫

�1

|w|2 dx dη

≤ 2(˜λ)2k
∫ t

0
A4(η)A5(η)e

∫ t
s c2(η) dη ds, (62)

where w, wm, S, Sm, g̃ have been defined in (37) and (38).
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Furthermore, there are two positive c2, c3(t), such that

∫

�1

S2 dx +
∫

�2

(

Sm)2 dx ≤ (˜λ)2k
N2

M
k2

∫ t

0
A4(η)A5(η)e

∫ t
s c2(η) dη ds. (63)

Inequalities (62) and (63) demonstrate the continuous dependence on λ in the indicated
measure.

4 Continuous dependence on the interface coefficient
In this section, we want to establish the continuous dependence on the interface coeffi-
cient α. Let (ui, T , p) and (vi, θ , q) be solutions of (1)–(5) with α = α1, and (u∗

i , T∗, p∗) and
(v∗

i , θ∗, q∗) be solutions of (1)–(5) with α = α2, respectively.
We define

wi = ui – u∗
i , S = T – T∗, π = p – p∗, σ = α1 – α2, (64)

and

wm
i = vi – v∗

i , Sm = θ – θ∗, πm = q – q∗. (65)

Then (wi, S,π ) satisfy the following equation:

∂wi

∂t
– μ�wi + wjui,j + u∗

j wi,j – giS + π,i = 0, in �1 × [0, τ ],

∂S
∂t

+ wiT,i + u∗
i S,i = k1�S, in �1 × [0, τ ], (66)

wi,i = 0, in �1 × [0, τ ],

and (wm
i , Sm,πm) satisfy equations

wm
i – giSm + πm

,i = 0, in �2 × [0, τ ],

∂Sm

∂t
+ wm

i θ,i + v∗
i Sm

,i = k2�Sm, in �2 × [0, τ ], (67)

wm
i,i = 0, in �2 × [0, τ ].

The boundary conditions are

wi = 0; S = 0, on �1 × [0, τ ],

wm
i ni = 0, Sm = 0, on �2 × [0, τ ]. (68)

The initial conditions can be written as

wi(x, 0) = 0, S(x, 0) = 0, in �1, Sm(x, 0) = 0, in �2. (69)

The interface L conditions are

w3 = wm
3 , S = Sm, k1S,3 = k2Sm

,3 ,
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πm = π – 2μw3,3, wβ ,3 + w3,β =
σ√
k1

uβ +
α2√

k1
wβ . (70)

We give some useful lemmas.

Lemma 4.1 If T0, θ0, G,˜G ∈ L∞ and �1, �2 are bounded regions, then

∫

L
uβuβ dA ≤ A6(t),

where A6(t) is a positive function which depends on t.

Proof We use Eqs. (1), (2) to derive

∫

�1

uiui,t dx = μ

∫

�1

(ui,j + uj,i),jui dx –
∫

�1

ujui,jui dx +
∫

�1

giTui dx –
∫

�1

p,iui dx

= –μ

∫

�1

(ui,j + uj,i)ui,j dx + μ

∫

L
(uβ ,3 + u3,β )uβn(1)

3 dA

–
∫

L
(p – 2μu3,3)uin(1)

i dA –
∫

�1

ujui,jui dx +
∫

�1

giTui dx. (71)

Using the interface conditions, we obtain from (71)

μα1√
k1

∫

L
uβuβ dA = –μ

∫

�1

(ui,j + uj,i)ui,j dx –
∫

�1

uiui,t dx

+
∫

L
qvin(2)

i dA –
∫

�1

ujui,jui dx +
∫

�1

giTui dx

= –
∫

�1

uiui,t dx +
∫

�2

vi(giθ – vi) dx

–
∫

�1

ujui,jui dx +
∫

�1

giTui dx. (72)

By using the Hölder inequality, the AG mean inequality, (31), (34), Lemma 2.2 and
Lemma 2.5, we have from (72)

μα1√
k1

∫

L
uβuβ dA

≤
(∫

�1

|u|2 dx
) 1

2
(∫

�1

|ut|2 dx
) 1

2
+

1
4

g2N2
M|�2|

+
(∫

�1

|u|4 dx
) 1

2
(∫

�1

|∇u|2 dx
) 1

2
+

(∫

�1

gigiT2 dx
) 1

2
(∫

�1

|u|2 dx
) 1

2

≤ √

A1A2(t) +
1
4

g2N2
M|�2| + A5(t)

√

A4(t) +
√

g2N2
M|�1|A1. (73)

Therefore
∫

L
uβuβ dA ≤ A6(t), (74)
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where

A6(t) =
√

k1

μα1

{

√

A1A2(t) +
1
4

g2N2
M|�2| + A5(t)

√

A4(t) +
√

g2N2
M|�1|A1

}

. (75)
�

Lemma 4.2 Let (ui, T , p) and (vi, θ , q) be the classical solutions to the initial-boundary
value problem (1)–(5) corresponding to λ(1), and (u∗

i , T∗, p∗) and (v∗
i , θ∗, q∗) also be the clas-

sical solutions to the initial-boundary value problem (1)–(5) but corresponding to λ(2). Then
for any t > 0 we have

∫

�1

|w|2 dx +
∫ t

0

∫

�2

∣

∣wm∣

∣

2 dx dη +
k2

k1

∫ t

0

∫

�1

|w|2 dx dη

≤ σ 2μ

2
√

k1

∫ t

0
e
∫ t

s c4(η) dη

∫

L
uβuβ dA ds. (76)

Proof We begin with the identity

∫

�1

[

∂wi

∂t
– μ�wi + λwjui,j + λu∗

j wi,j – giS + π,i

]

wi dx = 0. (77)

From (77) it follows that

d
dt

∫

�1

|w|2 dx = 2μ

∫

�1

(wi,j + wj,i),jwi dx – 2
∫

�1

π,iwi dx – 2λ

∫

�1

wjui,jwi dx

– 2λ

∫

�1

u∗
j wi,jwi dx + 2

∫

�1

giSwi dx. (78)

Integrating by parts as in Sect. 3 now leads to

2μ

∫

�1

(wi,j + wj,i),jwi dx – 2
∫

�1

π,iwi dx

= –2μ

∫

�1

(wi,j + wj,i)wi,j dx + 2μ

∫

�1

(wβ ,3 + w3,β)wβn(1)
3 dA

– 2
∫

�1

(π – 2μu3,3)win(1)
i dx

= –2μ

∫

�1

(wi,j + wj,i)wi,j dx +
2α1μ√

k1

∫

L
wβwβn(1)

3 dA

+
2σμ√

k1

∫

L
uβwβn(1)

3 dA + 2
∫

L
πmwm

i n(2)
i dA

≤ –2μ

∫

�1

(wi,j + wj,i)wi,j dx + 2
∫

�2

(

–wm
i + giSm)

wm
i dx

+
2α1μ√

k1

∫

L
wβwβn(1)

3 dA +
2σμ√

k1

∫

L
uβwβn(1)

3 dA

≤ –2μ

∫

�1

(wi,j + wj,i)wi,j dx –
∫

�2

∣

∣wm∣

∣

2 dx + 2g2
∫

�2

(

Sm)2 dx

+
σ 2μ

2
√

k1

∫

L
uβuβ dA. (79)
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Inserting (79), (48), (49), and (50) into (78) and using (51) and (52), we have

d
dt

[

F1(t) + F2(t)
]

≤ –2
[

μ –
3
4
δ4k5 –

(

1
2
δ2 +

7
8
δ3

)

k5

]∫

�1

(wi,j + wj,i)wi,j dx

+ 2
[

λ2

2δ2
kA5(t) +

λ8

8δ7
3

(

kA5(t)
)4 + λ

√

A4(t) +
1

4δ4
λ4A2

4(t) +
1
4

]∫

�1

|w|2 dx

+ 2g2
∫

�1

S2 dx + 2g2
∫

�2

(

Sm)2 dx +
σ 2μ

2
√

k1

∫

L
uβuβ dA. (80)

Choosing δ2, δ3, δ4 such that

3
4
δ4k5 +

(

1
2
δ2 +

7
8
δ3

)

k5 = μ,

and using Lemma 7 in (80), we have

d
dt

[

F1(t) + F2(t)
] ≤ c3(t)

∫

�1

|w|2 dx +
g2

k1
N2

M

∫ t

0

∫

�1

|w|2 dx dη

+
g2

k2
N2

M

∫ t

0

∫

�2

∣

∣wm∣

∣

2 dx dη +
σ 2μ

2
√

k1

∫

L
uβuβ dA, (81)

where

c3(t) = 2
[

λ2

2δ2
kA5(t) +

λ8

8δ7
3

(

kA5(t)
)4 + λ

√

A4(t) +
1

4δ4
λ4A2

4(t) +
1
4

]

. (82)

In view of (52), we have from (81)

d
dt

[

F1(t) + F2(t)
] ≤ c3(t)F1(t) +

g2

k1
N2

M

∫ t

0
F1(η) dη

+
g2

k2
N2

MF2(t) +
σ 2μ

2
√

k1

∫

L
uβuβ dA. (83)

Defining F3(t) as in (59), we have from (83)

d
dt

F3(t) ≤ c4(t)F3(t) +
σ 2μ

2
√

k1

∫

L
uβuβ dA, (84)

where

c4(t) = max

{

c3(t) +
k2

k1
,

g2N2
M

k2

}

. (85)

Thus after integration we may derive Lemma 4.2. �

Combining Lemma 8 and Lemma 9, we have the following theorem.
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Theorem 4.1 Let (ui, T , p) and (vi, θ , q) be the classical solutions to the initial-boundary
value problem (1)–(5) corresponding to α = α1, and (u∗

i , T∗, p∗) and (v∗
i , θ∗, q∗) also be the

classical solutions to the initial-boundary value problem (1)–(5) but corresponding to α =
α2. Then for any t > 0 we have

(ui, T , p) → (

u∗
i , T∗, p∗), (vi, θ , q) → (

v∗
i , θ∗, q∗), (86)

as α1 → α2. The differences of velocities satisfy

∫

�1

|w|2 dx +
∫ t

0

∫

�2

∣

∣wm∣

∣

2 dx dη +
k2

k1

∫ t

0

∫

�1

|w|2 dx dη

≤ σ 2μ

2
√

k1

∫ t

0
e
∫ t

s c4(η) dηA6(s) ds, (87)

where w, wm, S, Sm, σ have been defined in (64) and (65), and c5, c6 are positive constants
which will be defined later.

Moreover, the differences of the temperatures satisfy

∫

�1

S2 dx +
∫

�2

(

Sm)2 dx ≤ σ 2N2
Mμ

4k2
√

k1

∫ t

0
A6(s)e

∫ t
s c4(η) dη ds. (88)

Inequalities (87) and (88) are a priori bounds demonstrating the continuous dependence
of the solution on the interface coefficient α.
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