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Abstract
This paper is dedicated to studying the following Kirchhoff-type problem:

{
–m(‖∇u‖2

L2(RN)
)�u + V(x)u = f (u), x ∈ R

N ;

u ∈ H1(RN),

where N = 1, 2,m : [0,∞) → (0,∞) is a continuous function, V :RN → R is
differentiable, and f ∈ C(R,R). We obtain the existence of a ground state solution of
Nehari–Pohozaev type and the least energy solution under some assumptions on V ,
m, and f . Especially, the existence of nonlocal termm(‖∇u‖2

L2(RN)
) and the lack of

Hardy’s inequality and Sobolev’s inequality in low dimension make the problem more
complicated. To overcome the above-mentioned difficulties, some new energy
inequalities and subtle analyses are introduced.
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1 Introduction
In this paper, we consider the following Kirchhoff-type equation:

⎧⎨
⎩–m(‖∇u‖2

L2(RN ))�u + V (x)u = f (u), x ∈R
N ;

u ∈ H1(RN ),
(1.1)

where N = 1, 2, m : [0,∞) → (0,∞), V : RN →R and f : R →R are continuous functions.
Problem (1.1) has a profound physical meaning for it is related to the stationary analogue

of the Kirchhoff equation, which arises in nonlinear vibrations, see Alves, Corréa, and
Figueiredo [1] for more details. The following equation is a special case of (1.1) when R

N

is replaced by a bounded domain � and f (s) – V (x)s by f (x, s):

–m
(‖∇u‖2

L2(�)
)
�u = f (x, u) in �. (1.2)
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Equation (1.2) appears when we search for a stationary solution to

utt – m
(∫

�

|∇u|2 dx
)

�u = f (x, t) in � × (0, T). (1.3)

Problem (1.3) was proposed by Kirchhoff [20] when m(t) = a + bt and N = 1. We refer the
readers to [2–4, 9, 10] for more mathematical and physical background on Kirchhoff-type
problems.

Lions [25] proposed an abstract functional analysis framework to the Kirchhoff equation

utt –
(

a + b
∫

�

|∇u|2 dx
)

�u = f (x, u) in � × (0, T), (1.4)

after which extensive attention to (1.4) was aroused. In recent years, the following
Kirchhoff-type problem

⎧⎨
⎩–(a + b

∫
RN |∇u|2 dx)�u + V (x)u = f (x, u), x ∈R

N ;

u ∈ H1(RN )
(1.5)

has been studied intensively by many researchers, where V ∈ C(RN ,R) and f ∈ C(RN ×
R,R), a, b > 0 are constants. By variational methods, a number of important results of
the existence and multiplicity of solutions for problem (1.5) have been established with
f satisfying various conditions. In the meantime, V is usually assumed as a constant, or
periodic, or radial, or coercive, see for example [1, 5, 7, 8, 11, 14–16, 19, 21, 23, 24, 26–
28, 30, 31, 34, 36–38] and the references therein.

Recently, Ikoma [17] investigated the following Kirchhoff-type equations with power
type nonlinearity:

⎧⎨
⎩–m(‖∇u‖2

L2(RN ))�u + V (x)u = |u|q–1u, x ∈R
N ;

u ∈ H1(RN ).
(1.6)

Here, q ∈ (1,∞) if N = 1, 2 and q ∈ (1, N+2
N–2 ) if N ≥ 3. Problem (1.6) in the general dimen-

sions was considered, and the author proved that problem (1.6) has a ground state solution.
Precisely, they assumed the following conditions on m and V when N = 1, 2:

(M1) m ∈ C([0,∞)) and there exists m0 > 0 such that 0 < m0 ≤ m(s) for all s ∈ [0,∞);
(M̃2) There exist q0 > 0 and ε0 > 0 such that M(s) – 1

q0+1 m(s)s ≥ ε0s in (0,∞);
(M̃3) The function s–1M(s) is nondecreasing in (0,∞);
(V1) V ∈ C1(RN ,R) such that lim|x|→∞ V (x) = supx∈RN V (x) =: V∞ < +∞;
(V2) 0 < infx∈RN V (x) =: V0;
(Ṽ3) Let q0 be the constant that appeared in (M̃2). When 1 < q < 2q0 + 1, there exist

α,β > 0 such that

∣∣x · ∇V (x)
∣∣ ≤ C

(
1 + |x|)α for all x ∈R

N ,

x · ∇V (x) ≤ βV (x), β ∈
(

0,
(q – 1)2 – (N – 2)q0

2q0 + 1 – q

]
for all x ∈R

N .
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Through refined topological analysis on energy functional of “limit problem”, Ikoma
compared the mountain pass level cv,λ with the one of the limit equation c∞,λ. Specially,
in Ikoma’s analysis, the situation of N = 1 is different from the one when N ≥ 2. To get
a ground state solution of (1.6), the author used the standard arguments which com-
bined the monotonicity trick to get a bounded (PS)cv,λ sequence and the concentration–
compactness lemma to prove that the sequence has a convergent subsequence. It is
worth noting that, in Ikoma’s argument, he had to face the difficulties about obtaining
the boundedness of the (PS) sequence and the strongly convergent subsequences when
1 < q < 2q0 + 1.

Tang and Chen [32] dealt with the Schrödinger–Kirchhoff type equation

⎧⎨
⎩–(a + b

∫
R3 |∇u|2 dx)�u + V (x)u = f (u), x ∈R

3;

u ∈ H1(R3),
(1.7)

when the nonlinearity f is more general. They proved that (1.7) possesses a ground state
solution of Nehari–Pohozaev type and the least energy solution with the following as-
sumptions about f , here N = 3:

(F1) f ∈ C(R,R) and there exist constants C0 > 0 and p0 ∈ (2, 2∗) such that

∣∣f (t)
∣∣ ≤ C0

(
1 + |t|p0–1), ∀t ∈R;

(F2) f (t) = o(t) as t → 0;
(F3) lim|t|→∞ F(t)

t2 = +∞, where F(t) :=
∫ t

0 f (s) ds;
(F4) The function f (t)t+NF(t)

|t|p–N+1t is nondecreasing on t ∈ (–∞, 0) ∪ (0,∞), where p > 2.
Precisely, they proved that there exists the least energy solution following the standard

approach as Ikoma’s result. The difference is that they developed a new trick and com-
pared the level cλ with the energy I∞

λ of the minimizer u∞
λ more directly. Here, cλ is the

limited energy of a bounded (PS) sequence {un(λ)} for almost every λ ∈ [1/2, 1). By using
their original highlight inequalities to obtain the comparison, they got a minimizer u∞

λ on
the Nehari–Pohozaev manifold which is also used in Li [22] and Ruiz [29] for λ ∈ [1/2, 1].
Then, by using the global compactness lemma obtained in [22], they got a nontrivial crit-
ical point uλ which possesses energy cλ. Their approach is applicable to the problems of
other types, such as Schrödinger–Poisson problems [32], Choquard equations [33], and
so on.

Let us point out that some arguments and tricks used in [32] fail to adapt directly to one-
and two-dimensional cases for Hardy’s and Sobolev’s inequalities and do not work at this
point. In this sense, it is more complicated than a three-dimensional case. To the best of
our knowledge, there are few results concerning (1.1) in one- and two-dimensional case.
Based on [17, 32], the main purpose of this paper is to extend and complement the cor-
responding existence results on (1.7) in a three-dimensional case and above to the lower
dimensional situation. However, the general term m(t) is more difficult to deal with than
the special form a + bt, and the appearance of m(‖∇u‖2

L2(RN )) makes problem (1.1) more
intricate. In addition, it is noticed that there is no need to distinguish N = 1 and N = 2 in
our approach.

Now we state our hypotheses. Let N = 1, 2. For V , we suppose (V1), (V2) as above, and
we use a mild hypothesis (V3) in place of (Ṽ3). Furthermore, (V4) makes some subtle
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inequalities hold, which helps us to prove the existence of ground states. For f , we suppose
(F1)–(F4). For m, we assume (M1) above, (M2) instead of (M̃2), (M3), and (M4).

(V3) (p – N)V (x) – ∇V (x) · x ≥ 0, where p > 2;
(V4) The map t �→ (N+2)V (tx)+∇V (tx)·(tx)

tp–N is nonincreasing on (0, +∞) for all x ∈ R
N\{0},

where · denotes the inner product in R
N , p > 2 holds here and after;

(M2) There exists ε0 > 0 such that M(s) – N
2+N m(s)s ≥ ε0s for s ∈ (0,∞), where

M(s) :=
∫ s

0 m(t) dt;
(M3) The map t �→ m(ts)·(ts)

t2+p is nonincreasing in (0,∞) for all s ∈ (0,∞);
(M4) The function m(s) is nondecreasing in [0,∞).
A simple example of m satisfying all conditions (M1)–(M4) is the following:

m(t) = a + bt
1
p ,

where a > 0, b > 0, p > 2. We can easily verify that m(t) fits all the above hypotheses.
To state our results, we define the norm in H1(RN )

‖u‖ =
(∫

RN

(|∇u|2 + |u|2)dx
)1/2

, (1.8)

‖u‖s =
(∫

RN
|u|s dx

)1/s

, 1 ≤ s < +∞, (1.9)

and the energy functional

E(u) =
1
2

M
(‖∇u‖2

2
)

+
1
2

∫
RN

V (x)u2 dx –
∫
RN

F(u) dx. (1.10)

Under assumptions (V1), (F1), and (F2), weak solutions to (1.1) correspond to critical
points of E and E ∈ C1(RN ,R). For any ε > 0, it follows from (F1) and (F2) that there exists
Cε > 0 such that

∣∣f (t)
∣∣ ≤ ε|t| + Cε|t|p0–1, ∀t ∈ R. (1.11)

Let us define the Pohozaev functional for (1.1) by

P(u) :=
N – 2

2
m

(‖∇u‖2
2
)‖∇u‖2

2 +
1
2

∫
RN

[
NV (x) +

(∇V (x), x
)]

u2 dx

– N
∫
RN

F(u) dx, (1.12)

that is, P(u) = 0 if u is a critical point of E, and define the following constraint set:

M :=
{

u ∈ H1(
R

N) \ {0} : J(u) :=
〈
E′(u), u

〉
+ P(u) = 0

}
, (1.13)

clearly, u ∈M if u is a critical point of E.
Our main results are as follows.

Theorem 1.1 Suppose that m, V , and f satisfy (M1)–(M3), (V1)–(V4), and (F1)–(F4).
Then Problem (1.1) has a solution ū ∈ H1(RN ) such that E(ū) = infM E > 0.
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Theorem 1.2 Suppose that m, V , and f satisfy (M1)–(M4), (V1)–(V3), and (F1)–(F4).
Then Problem (1.1) has a least energy solution ū ∈ H1(RN ) \ {0}.

The paper is organized as follows. In Sect. 2, we give some preliminaries and the proof of
Theorem 1.1. Section 3 is devoted to proving Theorem 1.2. In this paper, C1, C2, . . . denote
positive constants possibly different in different places.

2 Preliminaries
To obtain the ground state solution of (1.1), we establish the key energy inequality related
with E and J . To this end, we first prove the following two inequalities.

Lemma 2.1 Suppose that (F1) and (F4) hold. Then

tN F(tu) – F(u) +
1 – t2+p

2 + p
[
f (u)u + NF(u)

] ≥ 0, ∀t ≥ 0, u ∈R. (2.1)

Proof It is evident that (2.1) holds for u = 0. For u �= 0, let

g(t) = tN F(tu) – F(u) +
1 – t2+p

2 + p
[
f (u)u + NF(u)

]
, t ≥ 0. (2.2)

Then, from (F4), one has

g ′(t) = NtN–1F(tu) + tN f (tu)u – t1+p[NF(u) + f (u)u
]

= t1+p|u|p
[

f (tu)tN–1u + NtN–2F(tu)
|tu|p –

f (u)u + NF(u)
|u|p

]

= t1+p|u|2+p–N
[

f (tu)tu + NF(tu)
|tu|2+p–N –

f (u)u + NF(u)
|u|2+p–N

]
⎧⎨
⎩≥ 0, t ≥ 1,

≤ 0, 0 < t < 1.

It follows that g(t) ≥ g(1) = 0 for t ≥ 0. This implies that (2.1) holds. �

Lemma 2.2 Suppose that (V1) and (V4) hold. Then

V (x) – tN+2V (tx) –
1 – t2+p

2 + p
[
(N + 2)V (x) + ∇V (x) · x

] ≥ 0. (2.3)

Proof Let

h(t) := V (x) – tN+2V (tx) –
1 – t2+p

2 + p
[
(N + 2)V (x) + ∇V (x) · x

]
.

By (V4), one has

h′(t) = –(N + 2)tN+1V (tx) – tN+1∇V (tx) · (tx) + t1+p[(N + 2)V (x) + ∇V (x) · x
]

= t1+p
[

(N + 2)V (x) + ∇V (x) · x –
(N + 2)V (tx) + ∇V (tx) · (tx)

tp–N

]
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⎧⎨
⎩≥ 0, t ≥ 1,

< 0, 0 < t < 1.
(2.4)

It follows that h(t) ≥ h(1) = 0 holds for t ≥ 0. �

Lemma 2.3 Suppose that (F1), (F2), (F4), (V1), (V4), and (M3) hold. Then, for all u ∈
H1(RN ) and t > 0, the following key inequality holds:

E(u) ≥ E(tut) +
1 – t2+p

2 + p
J(u), (2.5)

where ut(x) := u(t–1x) are fixed.

Proof Note that

E(tut) =
1
2

M
(
tN‖∇u‖2

2
)

+
tN+2

2

∫
RN

V (tx)u2 dx – tN
∫
RN

F(tu) dx (2.6)

and

J(u) =
〈
E′(u), u

〉
+ P(u)

=
N
2

m
(‖∇u‖2

2
)‖∇u‖2

2 +
1
2

∫
RN

[
(2 + N)V (x) + ∇V (x) · x

]
u2 dx

–
∫
RN

[
f (u)u + NF(u)

]
dx. (2.7)

Thus, by (1.10), (2.1), (2.3), and (2.6), one has

E(u) – E(tut)

=
1
2

M
(‖∇u‖2

2
)

–
1
2

M
(
tN‖∇u‖2

2
)

+
1
2

∫
RN

[
V (x) – tN+2V (tx)

]
u2 dx

+
∫
RN

[
tN F(tu) – F(u)

]
dx

=
1 – t2+p

2 + p
J(u) +

1
2

M
(‖∇u‖2

2
)

–
1
2

M
(
tN‖∇u‖2

2
)

–
1 – t2+p

2 + p
· N

2
m

(‖∇u‖2
2
)‖∇u‖2

2

+
1
2

∫
RN

{
V (x) – tN+2V (tx) –

1 – t2+p

2 + p
[
(N + 2)V (x) + ∇V (x) · x

]}
u2 dx

+
∫
RN

{
tN F(tu) – F(u) +

1 – t2+p

2 + p
[
f (u)u + NF(u)

]}
dx

≥ 1 – t2+p

2 + p
J(u) +

1
2

M
(‖∇u‖2

2
)

–
1
2

M
(
tN‖∇u‖2

2
)

–
1 – t2+p

2 + p
· N

2
m

(‖∇u‖2
2
)‖∇u‖2

2.

In fact, the following assertion holds:

L(t) :=
1
2

M
(‖∇u‖2

2
)

–
1
2

M
(
tN‖∇u‖2

2
)

–
1 – t2+p

2 + p
· N

2
m

(‖∇u‖2
2
)‖∇u‖2

2 ≥ 0. (2.8)
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From (M3), we have

L′(t) =
N
2

t1+pm
(‖∇u‖2

2
)‖∇u‖2

2 –
N
2

tN–1m
(
tN‖∇u‖2

2
)‖∇u‖2

2

=
N
2

t1+p
[

m
(‖∇u‖2

2
)‖∇u‖2

2 –
m(tN‖∇u‖2

2)tN‖∇u‖2
2

tp+2

]
{

≥ 0, t ≥ 1,
< 0, 0 < t < 1.

(2.9)

Then L(t) ≥ L(1) = 0. That implies (2.5) holds. �

From Lemma 2.3, we have the following corollary.

Corollary 2.4 Suppose that (F1), (F2), (F4), (V1), and (V4) hold. Then, for u ∈M,

E(u) = max
t>0

E(tut). (2.10)

Lemma 2.5 Suppose that (F1)–(F3) and (M2) hold. Then, for any u ∈ H1(RN ) \ {0}, there
exists unique tu > 0 such that tuutu ∈M.

Proof Let u ∈ H1(RN ) \ {0} be fixed. Clearly, for E(tut) defined as (2.6) on (0,∞), we have

dE(tut)
dt

= 0 ⇔ N
2

m
(
tN‖∇u‖2

2
)
tN–1‖∇u‖2

2 +
1
2

∫
RN

[
(N + 2)tN+1V (tx)

+ tN+1∇V (tx) · (tx)
]
u2 dx – tN–1

∫
RN

[
NF(tu) + f (tu)tu

]
dx = 0

⇔ J(tut) = 0 ⇔ tut ∈M. (2.11)

By (F1) and (F2), it is easy to verify that E(0) = 0 when t = 0, E(tut) > 0 for t > 0 small. By
(M2), there exists C1 > 0 such that M(s) ≤ M(1)s

2+N
N + C1s for any s ≥ 0, which yields

E(tut) ≤ 1
2
{

M(1)
(
tN‖∇u‖2

2
) 2+N

N + C1tN‖∇u‖2
2
}

+
tN+2

2

∫
RN

V (tx)u2 dx

– tN
∫
RN

F(tu) dx, ∀tut ∈M, (2.12)

then E(tut) < 0 for t large follows from (F3). Therefore maxt∈(0,∞) E(tut) is achieved at tu > 0
so that dE(tut )

dt |t=tu = 0 and tuutu ∈M.
Next we claim that tu is unique for any u ∈ H1(RN ) \ {0}. In fact, for any given u ∈

H1(RN ) \ {0}, let t1, t2 > 0 such that t1ut1 , t2ut2 ∈ M. Then J(t1ut1 ) = J(t2ut2 ) = 0. Jointly
with (2.5), we have

E(t1ut1 ) ≥ E(t2ut2 ) +
t2+p
1 – t2+p

2

(2 + p)t2+p
1

J(t1ut1 ) = E(t2ut2 ). (2.13)

Also,

E(t2ut2 ) ≥ E(t1ut1 ) –
t2+p
2 – t2+p

1

(2 + p)t2+p
2

J(t2ut2 ) = E(t1ut1 ). (2.14)

(2.13) and (2.14) imply t1 = t2. Therefore, tu > 0 is unique for any u ∈ H1(RN ) \ {0}. �
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Lemma 2.6 Suppose that (F1)–(F4) hold. Then

inf
u∈M

E(u) = I = inf
u∈H1(RN )\{0}

max
t>0

E(tut).

Proof Both Corollary 2.4 and Lemma 2.5 imply the above lemma. �

Lemma 2.7 Suppose that (V1), (V4), and (M1) hold. Then there exists ω1 > 0 such that

ω1‖u‖2 ≤ Nm
(‖∇u‖2

2
)‖∇u‖2

2

+
∫
RN

[
(N + 2)V (x) + ∇V (x) · x

]
u2 dx, ∀u ∈ H1(

R
N)

. (2.15)

Proof From (2.3), one has

(N + 2)V (x) + ∇V (x) · x

≥ (2 + p)tN–pV (tx) – (2 + p)t–(2+p)V (x), ∀t > 0, x ∈R
N . (2.16)

Taking t → ∞ in (2.16), we deduce that

(N + 2)V (x) + ∇V (x) · x ≥ 0, ∀x ∈R
N . (2.17)

Arguing by contradiction, suppose that there exists a sequence {un} ⊂ H1(RN ) such that
‖un‖ = 1 and

Nm
(‖∇un‖2

2
)‖∇un‖2

2 +
∫
RN

[
(N + 2)V (x) + ∇V (x) · x

]
u2

n dx = o(1). (2.18)

Thus there exists ū ∈ H1(RN ) such that un ⇀ ū. Then un → ū in Ls
loc(RN ) for 2 ≤ s < ∞

and un → ū a.e. in R
N . By (2.17), (2.18), the weak semicontinuity of norm, and Fatou’s

lemma, we have

0 = lim
n→∞

{
Nm

(‖∇un‖2
2
)‖∇un‖2

2 +
∫
RN

[
(N + 2)V (x) + ∇V (x) · x

]
u2

n dx
}

≥ Nm0‖∇ū‖2
2 +

∫
RN

[
(N + 2)V (x) + ∇V (x) · x

]
ū2 dx, (2.19)

which implies ū = 0. Thus, from (V1) and (V4), one has∫
RN

{
(N + 2)

[
V (x) – V∞

]
+ ∇V (x) · x

}
u2

n dx = o(1), n → ∞. (2.20)

Both (2.18) and (2.20) imply

o(1) = Nm
(‖∇un‖2

2
)‖∇un‖2

2 +
∫
RN

[
(N + 2)V (x) + ∇V (x) · x

]
u2

n dx

= Nm
(‖∇un‖2

2
)‖∇un‖2

2 + (N + 2)V∞‖un‖2
2 + o(1)

≥ min
{

Nm0, (N + 2)V∞
}‖un‖2 + o(1)

= min
{

Nm0, (N + 2)V∞
}

+ o(1), (2.21)

which is a contradiction, and it shows that there exists ω1 > 0 such that (2.15) holds. �
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Lemma 2.8 Suppose that (F1)–(F3), (M2), and (V2) hold. Then
(i). there exists ρ0 > 0 such that ‖u‖ ≥ ρ0, ∀u ∈M;

(ii). I = infu∈M E(u) > 0.

Proof (i). For all u ∈M, by (F1), (1.11), (2.7), (2.15), and the Sobolev embedding theorem,
one has

ω1

2
‖u‖2 ≤ N

2
m

(‖∇u‖2
2
)‖∇u‖2

2 +
1
2

∫
RN

[
(2 + N)V (x) + ∇V (x) · x

]
u2 dx

=
∫
RN

[
f (u)u + NF(u)

]
dx

≤ ω1

4
‖u‖2 + C2‖u‖p0 . (2.22)

This implies

‖u‖ ≥ ρ0 :=
(

ω1

4C2

)1/(p0–2)

, ∀u ∈M. (2.23)

(ii). Together a direct calculation with (V2), it follows from (2.3) that

(p – N)V (x) – ∇V (x) · x

≥ (2 + p)tN+2V (tx) – t2+p[(N + 2)V (x) + ∇V (x) · x
]

≥ (2 + p)tN+2V0 – t2+p[(N + 2)‖V‖∞ +
∥∥∇V (x) · x

∥∥∞
]

(2.24)

for all t ∈ R, x ∈R
N . There exists t0 > 0 small enough such that

(2 + p)tN+2
0 V0 – t2+p

0
[
(N + 2)‖V‖∞ +

∥∥∇V (x) · x
∥∥∞

] ≥ V0

4
, (2.25)

then

(p – N)V (x) – ∇V (x) · x ≥ (2 + p)tN+2
0 V0 – t2+p

0
[
(N + 2)‖V‖∞ +

∥∥∇V (x) · x
∥∥∞

]
≥ V0

4
> 0. (2.26)

Let t → 0 in (2.1), then

f (u)u – (2 + p – N)F(u) ≥ 0, ∀u ∈R. (2.27)

From (M2), (2.26), and (2.27), for all u ∈M, one has

E(u) = E(u) –
1

2 + p
J(u)

=
1
2

M
(‖∇u‖2

2
)

+
1

2(2 + p)

∫
RN

[
(p – N)V (x) – ∇V (x) · x

]
u2 dx

–
1

2 + p
· N

2
m

(‖∇u‖2
2
)‖∇u‖2

2 +
1

2 + p

∫
RN

[
f (u)u – (2 + p – N)F(u)

]
dx
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≥ 1
2

M
(‖∇u‖2

2
)

–
N

2(2 + N)
m

(‖∇u‖2
2
)‖∇u‖2

2 +
V0

8(2 + p)
‖u‖2

2

≥ ε0

2
‖∇u‖2

2 +
V0

8(2 + p)
‖u‖2

2

≥ min

{
ε0

2
,

V0

8(2 + p)

}
‖u‖2 := C3‖u‖2 ≥ C3ρ

2
0 > 0. (2.28)

This shows that I = infu∈M E(u) > 0. �

The following lemma has been proved in [12] and [32].

Lemma 2.9 Assume that (F1) and (F2) hold. If un ⇀ u in H1(RN ), then along a subse-
quence of {un},

lim
n→∞ sup

ϕ∈H1(RN ),‖ϕ‖≤1

∣∣∣∣
∫
RN

[
f (un) – f (un – u) – f (u)

]
ϕ dx

∣∣∣∣ = 0. (2.29)

Similar to [31, Lemma 2.10], by using Lemma 2.9, we have the following lemma.

Lemma 2.10 Assume that (F1)–(F4) hold. If un ⇀ u in H1(RN ), then

E(un) = E(u) + E(un – u) + o(1) (2.30)

and

J(un) = J(u) + J(un – u) + o(1). (2.31)

Similar to [31, Lemma 2.13], by using the key inequality (2.5), the deformation lemma,
and the intermediate value theorem of continuous function, the following lemma is given.
We omit the proof here.

Lemma 2.11 Suppose that (M1)–(M3), (V1)–(V4), and (F1)–(F4) hold. If ū ∈ M and
E(ū) = I , then ū is a critical point of E.

To overcome the lack of the compactness of Sobolev embedding, we define its limit
problem related to (1.1) by

⎧⎨
⎩–m(‖∇u‖2

2)�u + V∞u = f (u), x ∈R
N ;

u ∈ H1(RN ).
(2.32)

Under assumptions (F1) and (F2), weak solutions to (2.32) correspond to critical points of
the energy functional defined in H1(RN ) by

E∞(u) =
1
2

M
(‖∇u‖2

2
)

+
1
2

∫
RN

V∞u2 dx –
∫
RN

F(u) dx. (2.33)

Similar to (1.13) and (2.7), we define the functional

J∞(u) :=
N
2

m
(‖∇u‖2

2
)‖∇u‖2

2 +
2 + N

2

∫
RN

V∞|u|2 –
∫
RN

[
f (u)u + NF(u)

]
dx, (2.34)
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the constraint set

M∞ :=
{

u ∈ H1(
R

N) \ {0} : J∞(u) = 0
}

, (2.35)

and the minimizer

I∞ := inf
u∈M∞ E(u). (2.36)

Since V (x) ≡ V∞, which is well covered by (V1), (V2), and (V4), then all the above con-
clusions on E are true for E∞. Through discussing the corresponding limit equation (2.32),
we will get the proof of Theorem 1.1.

Lemma 2.12 Assume that (M1)–(M3) and (F1)–(F4) hold. Then I∞ := infu∈M∞ E∞(u) is
achieved.

Proof For any u ∈ M∞, we have E∞(u) ≥ I∞. Let {un} ⊂ M∞ such that E∞(un) → I∞ as
n → ∞. Since J∞(un) = 0, then it follows from (2.27) that

I∞ + o(1) = E∞(un) –
1

2 + p
J∞(un)

=
1
2

M
(‖∇un‖2

2
)

–
N

2(2 + p)
m

(‖∇un‖2
2
)‖∇un‖2

2

+
p – N

2(2 + p)
V∞‖un‖2

2 +
1

2 + p

∫
RN

[
f (un)un – (p + 2 – N)F(un)

]
dx

≥ 1
2

M
(‖∇un‖2

2
)

–
N

2(2 + p)
m

(‖∇u‖2
2
)‖∇u‖2

2 +
p – N

2(2 + p)
V∞‖un‖2

2. (2.37)

Similar to (2.28), this shows that {un} is bounded in H1(RN ).
With (2.8), the rest of the proof is similar to [31, Lemma 2.12], so we omit it. �

The same as the case of dimension three in [31], we get the following relation between
I and I∞.

Lemma 2.13 Suppose that (M1)–(M3), (V1)–(V4), and (F1)–(F4) hold. Then I < I∞.

Lemma 2.14 Suppose that (M1)–(M3), (V1)–(V4), and (F1)–(F4) hold. Then I is achieved.

Proof Step 1. Choosing a minimizing sequence {un} ⊂ M of I and showing that the se-
quence is bounded in H1(RN ). This part of argument is the same as Lemma 2.12. So we
omit it here.

Step 2. Showing that {un} is convergent in H1(RN ). By Lion’s concentration compactness
principle [35, Lemma 1.21], similar to [31, Lemma 3.2], one can easily obtain that result,
so we also omit it here. �

Proof of Theorem 1.1 Under Lemmas 2.6, 2.11, and 2.14, there exists ū ∈M such that

E(ū) = I = inf
u∈H1(R2)\{0}

max
t>0

E(tut), E′(ū) = 0. (2.38)

This shows that ū is a ground state solution of Nehari–Pohozaev type for (1.1). �
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3 The least energy solutions for (1.1)
In this section, we give the proof of Theorem 1.2.

Proposition 3.1 ([18]) Let X be a Banach space and � ⊂ R
+ be an interval. We consider

a family {λ}λ∈� of C1-functionals on X of the form

λ(u) = A(u) – λB(u), ∀λ ∈ �,

where B(u) ≥ 0, ∀u ∈ X, and such that either A(u) → +∞ or B(u) → +∞, as ‖u‖ → ∞. We
assume that there are two points v1, v2 in X such that

cλ := inf
γ∈�

max
t∈[0,1]

λ

(
γ (t)

)
> max

{
λ(v1),λ(v2)

}
, (3.1)

where

� =
{
γ ∈ C

(
[0, 1], X

)
: γ (0) = v1,γ (1) = v2

}
.

Then, for almost every λ ∈ �, there is a bounded (PS)cλ sequence for λ, that is, there exists
a sequence such that

(i). {un(λ)} is bounded in X ;
(ii). λ(un(λ)) → cλ;

(iii). ′
λ(un(λ)) → 0 in X∗, where X∗ is the dual of X .

To apply Proposition 3.1, we introduce two families of functionals defined by

Eλ(u) =
1
2

M
(|∇u|2) +

1
2

∫
RN

V (x)u2 dx – λ

∫
RN

F(u) dx (3.2)

and

E∞
λ (u) =

1
2

M
(|∇u|2) +

1
2

∫
RN

V∞u2 dx – λ

∫
RN

F(u) dx (3.3)

for λ ∈ [1/2, 1].

Lemma 3.2 ([13]) Suppose that (V1), (V2), (F1), and (F2) hold. Let u be a critical point of
Eλ in H1(RN ), then we have the following Pohozaev-type identity:

Pλ(u) :=
N – 2

2
m

(‖∇u‖2
2
)‖∇u‖2

2 +
1
2

∫
RN

[
NV (x) +

(∇V (x), x
)]

u2 dx

– Nλ

∫
RN

F(u) dx = 0. (3.4)

We set Jλ(u) := 〈E′
λ(u), u〉 + Pλ(u), then

Jλ(u) =
N
2

m
(‖∇u‖2

2
)‖∇u‖2

2 +
1
2

∫
RN

[
(N + 2)V (x) +

(∇V (x), x
)]

u2 dx

– λ

∫
RN

[
f (u)u + NF(u)

]
dx (3.5)
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for λ ∈ [1/2, 1]. Correspondingly, we also let

J∞
λ (u) =

N
2

m
(‖∇u‖2

2
)‖∇u‖2

2 +
N + 2

2
V∞‖u‖2

2 – λ

∫
RN

[
f (u)u + NF(u)

]
dx (3.6)

for λ ∈ [1/2, 1]. Set

M∞
λ :=

{
u ∈ H1(

R
N) \ {0} : J∞

λ (u) = 0
}

, I∞
λ := inf

u∈M∞
λ

E∞
λ (u). (3.7)

By Lemma 2.3, we have the following lemma.

Lemma 3.3 Suppose that (M1)–(M3), (V1), (F1), (F2), and (F4) hold. Then

E∞
λ (u) ≥ E∞

λ (tut) +
1 – t2+p

2 + p
J∞
λ (u), ∀u ∈ H1(

R
N)

, t > 0,λ ≥ 0. (3.8)

In view of Theorem 1.1, E∞
1 has a minimizer u∞

1 on M∞
1 , i.e.,

u∞
1 ∈M∞

1 ,
(
E∞

1
)′(u∞

1
)

= 0, and I∞
1 = E∞

1
(
u∞

1
)
. (3.9)

Lemma 3.4 Suppose that (M1)–(M3), (V1), (V2), and (F1)–(F3) hold. Then
(i). there exists T > 0 independent of λ such that Eλ(T(u∞

1 )T ) < 0 for all λ ∈ [1/2, 1];
(ii). there exists κ0 > 0 independent of λ such that, for all λ ∈ [1/2, 1],

cλ := inf
γ∈�

max
t∈[0,1]

Eλ

(
γ (t)

) ≥ κ0 > max
{

Eλ(0), Eλ

(
T

(
u∞

1
)

T

)}
, (3.10)

where

� =
{
γ ∈ C

(
[0, 1], H1(

R
N))

: γ (0) = 0,γ (1) = T
(
u∞

1
)

T

}
;

(iii). cλ and I∞
λ are nonincreasing on λ ∈ [1/2, 1].

The proof of Lemma 3.4 is standard, the reader can refer to [6, Lemma 4.4].
We use the ingenious assumptions on V borrowed from [31], that is, for V ∈ C(RN ,R)

and V (x) ≤ V∞ but V (x) �≡ V∞, there exist x̄ ∈ R
N and r̄ > 0 such that

V∞ > V (x) and
∣∣(u∞

1
)
(x)

∣∣ > 0, a.e. |x – x̄| ≤ r̄. (3.11)

Lemma 3.5 Suppose that (M1)–(M3), (V1), (V2), and (F1)–(F4) hold. Then there exists
λ̄ ∈ [1/2, 1) such that cλ < I∞

λ for λ ∈ [λ̄, 1].

Proof It is easy to see that Eλ(t(u∞
1 )t) is continuous on t ∈ (0,∞). Hence, for any λ ∈

[1/2, 1), we can choose tλ ∈ (0, T) such that Eλ(tλ(u∞
1 )tλ ) = maxt∈[0,T] Eλ(t(u∞

1 )t). Define

γ0(t) =

⎧⎨
⎩tT(u∞

1 )tT , for t > 0,

0, for t = 0.
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Then γ0 ∈ � defined by Lemma 3.4(ii), i.e., γ0(0) = 0, γ0(1) = T(u∞
1 )T . Moreover,

Eλ

(
tλ

(
u∞

1
)

tλ

)
= max

t∈[0,1]
Eλ

(
γ0(t)

) ≥ cλ. (3.12)

It follows from (2.27) that the function F(t)/|t|2+p–N is nondecreasing on t ∈ (–∞, 0) ∪
(0, +∞). Since tλ ∈ (0, T), then we have

F(tλu∞
1 )

t
2+p–N

2
λ

≤ F(Tu∞
1 )

T
2+p–N

2
.

Let

ζ0 := min
{

3r̄/8
(
1 + |x̄|), 1/4

}
. (3.13)

Then it follows from (3.11) and (3.13) that

|x – x̄| ≤ r̄
2

and τ ∈ [1 – ζ0, 1 + ζ0] ⇒ |τx – x̄| ≤ r̄. (3.14)

Let

λ̄ := max

{
1
2

, 1 –
(1 – ζ0)N+2 minτ∈[1–ζ0,1+ζ0]

∫
RN [V∞ – V (τx)]|u∞

1 |2 dx
2T2

∫
RN F(Tu∞

1 ) dx
,

1 –
L(T)

T2
∫
RN F(Tu∞

1 ) dx

}
,

(3.15)

where L(t) is defined in (2.8). Then it follows from (3.11) and (3.14) that 1/2 ≤ λ̄ < 1. We
have two cases to distinguish:

Case (i). tλ ∈ [1 – ζ0, 1 + ζ0]. From (3.2), (3.3), (3.8)–(3.12), (3.14), (3.15), and Lem-
ma 3.4(iii), we have

I∞
λ ≥ I∞

1 = E∞
1

(
u∞

1
) ≥ E∞

1
(
tλ

(
u∞

1
)

tλ

)
= Eλ

(
tλ

(
u∞

1
)

tλ

)
– (1 – λ)t2

λ

∫
RN

F
(
tλu∞

1
)

dx +
tN+2
λ

2

∫
RN

[
V∞ – V (tλx)

]∣∣u∞
1

∣∣2 dx

> cλ – (1 – λ)T2
∫
RN

F
(
Tu∞

1
)

dx

+
(1 – ζ0)N+2

2
min

τ∈[1–ζ0,1+ζ0]

∫
R2

[
V∞ – V (τx)

]∣∣u∞
1

∣∣2 dx

≥ cλ, ∀λ ∈ [λ̄, 1].

Case (ii). tλ ∈ (0, 1 – ζ0) ∪ (1 + ζ0, T]. From (2.5), (3.2), (3.3), (3.8), (3.11), (3.12), (3.15),
Assertion 1, and Lemma 3.4(iii),

I∞
λ ≥ I∞

1 = E∞
1

(
u∞

1
)

≥ E∞
1

(
tλ

(
u∞

1
)

tλ

)
+

1
2

M
(∥∥∇u∞

1
∥∥2

2

)
–

1
2

M
(
tN
λ

∥∥∇u∞
1

∥∥2
2

)
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–
1 – t2+p

λ

2 + p
· N

2
m

(∥∥∇u∞
1

∥∥2
2

)∥∥∇u∞
1

∥∥2
2

≥ Eλ

(
tλ

(
u∞

1
)

tλ

)
– (1 – λ)t2

λ

∫
RN

F
(
tλu∞

1
)

dx +
tN+2
λ

2

∫
RN

[
V∞ – V (tλx)

]∣∣u∞
1

∣∣2 dx

+
1
2

M
(∥∥∇u∞

1
∥∥2

2

)
–

1
2

M
(
tN
λ

∥∥∇u∞
1

∥∥2
2

)
–

1 – t2+p
λ

2 + p
· N

2
m

(∥∥∇u∞
1

∥∥2
2

)∥∥∇u∞
1

∥∥2
2

> cλ – (1 – λ)T2
∫
RN

F
(
Tu∞

1
)

dx +
1
2

M
(∥∥∇u∞

1
∥∥2

2

)
–

1
2

M
(
TN∥∥∇u∞

1
∥∥2

2

)

–
1 – T2+p

2 + p
· N

2
m

(∥∥∇u∞
1

∥∥2
2

)∥∥∇u∞
1

∥∥2
2

≥ cλ, ∀λ ∈ (λ̄, 1].

Combining both the above cases, we have cλ < I∞
λ for λ ∈ (λ̄, 1]. �

Lemma 3.6 Suppose that (V1), (V2), and (F1)–(F3) hold. Let {un} be a bounded (PS)cλ

sequence for Eλ with λ ∈ [1/2, 1]. Then there exist a subsequence of {un}, still denoted by
{un}, an integer l ∈ N, and u0 ∈ H1(RN ) such that

(i) A2
λ := limn→∞ ‖∇un‖2

2, un ⇀ uλ in H1(RN ) and E ′
λ(uλ) = 0;

(ii) there exist w1, . . . , wl ∈ H1(RN ) \ {0} such that (E∞
λ )′(wk) = 0 for 1 ≤ k ≤ l;

(iii)

c +
1
4

m
(
A2

λ

)
A2

λ = Eλ(uλ) +
l∑

k=1

E∞
λ

(
wk);

A2
λ = ‖∇uλ‖2

2 +
l∑

k=1

∥∥∇wk∥∥2
2,

where

Eλ(u) =
1
2

m
(
A2

λ

)‖∇u‖2
2 +

1
2

∫
RN

V (x)u2 dx – λ

∫
RN

F(u) dx (3.16)

and

E∞
λ (u) =

1
2

m
(
A2

λ

)‖∇u‖2
2 +

V∞
2

∫
RN

u2 dx – λ

∫
RN

F(u) dx. (3.17)

We agree that in the case l = 0 the above holds without wk .

Analogous to the proof of Lemma 2.3 in [22], we can prove Lemma 3.6. We omit it here.

Lemma 3.7 Suppose that (V1), (V2), (V3), (M4), and (F1)–(F3) hold. Then, for almost
every λ ∈ [λ̄, 1], there exists uλ ∈ H1(R2) \ {0} such that

E′
λ(uλ) = 0, Eλ(uλ) = cλ. (3.18)

Proof Under (F1)–(F3), Lemma 3.4 implies that Eλ(u) satisfies the assumptions of Propo-
sition 3.1 with X = H1(RN ) and λ = Eλ. So, for almost every λ ∈ [1/2, 1], there exists a
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bounded sequence {un(λ)} ⊂ H1(RN ) (for simplicity, we denote {un} instead of {un(λ)})
such that

Eλ(un) → cλ > 0,
∥∥E′

λ(un)
∥∥ → 0. (3.19)

By Lemma 3.6, there exist a subsequence of {un}, still denoted by {un}, and uλ ∈ H1(RN )
such that A2

λ := limn→∞ ‖∇un‖2
2 exists, un ⇀ uλ in H1(RN ) and (Eλ)′(uλ) = 0.

If (ii) occurs, i.e., there exist l ∈ N and w1, . . . , wl ∈ H1(RN ) \ {0} such that (E∞
λ )′(wk) = 0

for 1 ≤ k ≤ l,

cλ +
1
4

m
(
A2

λ

)‖∇uλ‖2
2 = Eλ(uλ) +

l∑
k=1

E∞
λ

(
wk) (3.20)

and

A2
λ = ‖∇uλ‖2

2 +
l∑

k=1

∥∥∇wk∥∥2
2. (3.21)

Since (Eλ)′(uλ) = 0, then we have the Pohozaev identity of the functional Eλ

P̃λ(uλ) :=
N – 2

2
m

(
A2

λ

)‖∇uλ‖2
2 +

1
2

∫
RN

[
NV (x) + ∇V (x) · x

]
u2

λ dx – Nλ

∫
R2

F(uλ) dx

= 0. (3.22)

It follows from (2.27), (3.16), (3.22), and (V3) that

Eλ(uλ) = Eλ(uλ) –
1

2 + p
[〈
E ′

λ(uλ), uλ

〉
+ P̃λ(uλ)

]

=
2 + p – N
2(2 + p)

m
(
A2

λ

)‖∇uλ‖2
2 +

1
2(2 + p)

∫
RN

[
(p – N)V (x) – ∇V (x) · x

]
u2

λ dx

+
λ

2 + p

∫
RN

[
f (uλ)uλ – (2 + p – N)F(uλ)

]
dx

≥ 1
4

m
(
A2

λ

)‖∇uλ‖2
2. (3.23)

Since (E∞
λ )′(wk) = 0, then we have the Pohozaev identity of the functional E∞

λ

P̃∞
λ

(
wk) :=

N – 2
2

m
(
A2

λ

)∥∥∇wk∥∥2
2 +

N
2

V∞
∫
RN

(
wk)2 dx – Nλ

∫
RN

F
(
wk)dx = 0. (3.24)

Thus, from (3.6), (3.17), (3.21), and (3.24), we have

0 =
〈(
E∞

λ

)′(wk), wk 〉 + P̃∞
λ

(
wk)

=
N
2

m
(
A2

λ

)∥∥∇wk∥∥2
2 +

N + 2
2

V∞
∥∥wk∥∥2

2 – λ

∫
RN

[
f
(
wk)wk + NF

(
wk)]dx

≥ J∞
λ

(
wk). (3.25)
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Since wk ∈ H1(RN )\{0}, in view of Lemma 2.5, there exists tk > 0 such that tk(wk)tk ∈M∞
λ .

From (3.3), (3.6), (3.8), (3.17), and (3.21), one has

E∞
λ

(
wk) = E∞

λ

(
wk) –

1
2 + p

[〈(
E∞

λ

)′(wk), wk 〉 + P̃∞
λ

(
wk)]

=
2 + p – N
2(2 + p)

m
(
A2

λ

)∥∥∇wk∥∥2
2 +

N
2(2 + p)

m
(∥∥∇wk∥∥2

2

)∥∥∇wk∥∥2
2 –

1
2

M
(∥∥∇wk∥∥2

2

)

+ E∞
λ

(
wk) –

1
2 + p

J∞
λ

(
wk)

≥ 2 + p – N
2(2 + p)

m
(
A2

λ

)∥∥∇wk∥∥2
2 +

N
2(2 + p)

m
(∥∥∇wk∥∥2

2

)∥∥∇wk∥∥2
2 –

1
2

M
(∥∥∇wk∥∥2

2

)

+ E∞
λ

(
tk

(
wk)

tk

)
–

t2+p
k

2 + p
J∞
λ

(
wk). (3.26)

Let

H(t) =
2 + p – N
2(2 + p)

m
(
A2

λ

)
t +

N
2(2 + p)

m(t)t –
1
2

M(t), (3.27)

then by (M4) one has

H ′(t) =
2 + p – N
2(2 + p)

m
(
A2

λ

)
+

N
2(2 + p)

m′(t)t –
2 + p – N
2(2 + p)

m(t) ≥ 0, (3.28)

H(0) = –
1
2

M(0) = 0. (3.29)

Then, from (3.21), (3.25), and (3.26), one has

E∞
λ

(
wk) ≥ I∞

λ . (3.30)

It follows from (3.20), (3.21), (3.23), and (3.26) that

cλ +
1
4

m
(
A2

λ

)‖∇uλ‖2
2 = Eλ(uλ) +

l∑
k=1

E∞
λ

(
wk)

≥ lI∞
λ +

1
4

m
(
A2

λ

)‖∇uλ‖2
2

≥ I∞
λ +

1
4

m
(
A2

λ

)‖∇uλ‖2
2, ∀λ ∈ [λ̄, 1],

which together with Lemma 3.5 implies that l = 0 and Eλ(uλ) = cλ + 1
4 m(A2

λ)‖∇uλ‖2
2. Thus,

it follows from (3.21) that Aλ = ‖uλ‖2, un → uλ in H1(RN ) and Eλ(uλ) = cλ. �

Proof of Theorem 1.2 In view of Lemma 3.7, there exist two sequences of {λn} ⊂ [λ̄, 1] and
{uλn} ⊂ H1(RN ), denoted by {un}, such that

λn → 1, E′
λn (un) = 0, Eλn (un) = cλn . (3.31)
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From Lemma 3.4(iii), (2.27), (3.2), (3.5), and (3.31), one has

c1/2 ≥ cλn = Eλn (un) –
1

2 + p
Jλn (un)

=
1
2

M
(‖∇un‖2

2
)

+
1

2(2 + p)

∫
RN

[
(p – N)V (x) – ∇V (x) · x

]
u2

n dx

–
N

2(2 + p)
m

(‖∇un‖2
2
)‖∇un‖2

2 +
λn

2 + p

∫
RN

[
f (un)un – (2 + p – N)F(un)

]
dx

≥ ε0

2
‖∇un‖2

2 +
V0

8(2 + p)
‖un‖2

2

≥ C4‖un‖2. (3.32)

This shows that {un} is bounded in H1(RN ). Since cλn → c1, then similar to the proof of
Lemma 3.7, there exists ũ ∈ H1(RN )\{0} such that

E′(ũ) = 0, 0 < E(ũ) = c1. (3.33)

Let

� :=
{

u ∈ H1(
R

2)\{0} : E′(u) = 0
}

, Î = inf
u∈�

E(u),

it follows from (3.33) that � �= ∅ and Î ≤ c1. For any u ∈ �, Lemma 3.2 yields Pλ(u) =
P1(u) = 0. Therefore, it follows from (3.23) that E(u) = E1(u) > 0, thus Î ≥ 0. Set {un} ⊂ �

such that

E′(un) = 0, E(un) → Î. (3.34)

By Lemma 3.5, we have Î ≤ c1 < I∞
1 . Through a similar argument as in the proof of

Lemma 3.7, we can certify that there exists ū ∈ Hs(RN )\{0} such that

E′(ū) = 0, E(ū) = Î. (3.35)

This shows that ū is a nontrivial least energy solution of (1.1). �
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