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Abstract
We study various types of uniform Calderón–Zygmund estimates for weak solutions
to elliptic equations in periodic homogenization. A global regularity is obtained with
respect to the nonhomogeneous term from weighted Lebesgue spaces, Orlicz
spaces, and weighted Orlicz spaces, which are generalized Lebesgue spaces, provided
that the coefficients have small BMO seminorms and the domains are δ-Reifenberg
domains.
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1 Introduction
In this study, our problem is homogenization of elliptic equations of the form

⎧
⎨

⎩

Di(Aε
ij(x)Djuε(x)) = Difi(x) in Ω ,

uε(x) = 0 on ∂Ω
(1.1)

for 1 ≤ i, j ≤ n with n ≥ 2, and 0 < ε ≤ 1. The given nonhomogeneous term is a vector-
valued function f = {fi} and the unknown is uε . � is a bounded open set in R

n and the
matrix of the coefficients is A = {Aij}, Aij : Rn → R. To consider homogenization, we define
Aε = {Aε

ij} for each 0 < ε ≤ 1 by

Aij(x) = A1
ij(x) and Aε

ij(x) = Aij

(
x
ε

)
(
x ∈R

n).

As usual, we assume that the coefficients are uniformly elliptic and uniformly bounded,
that is, there exist positive constants λ and � such that

λ|ξ |2 ≤ Aij(x)ξiξj and ‖A‖L∞ ≤ � (1.2)
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for every ξ ∈R
n and almost every x ∈R

n. Additionally, we consider periodic homogeniza-
tion with the periodicity condition on A:

A(x + z) = A(x)
(
x ∈R

n, z ∈ Z
n).

Under these settings, our goal is to show uniform Calderón–Zygmund estimates for the
weak solutions uε with respect to the given nonhomogeneous term f from various spaces,
weighted Lebesgue spaces, Orlicz spaces, and weighted Orlicz spaces. Here, uniform esti-
mates mean that the estimates derived from our argument are independent of ε, 0 < ε ≤ 1.
In addition, we study (1.1) with rapidly oscillating coefficients with discontinuity in nons-
mooth domains. In fact, even though our method in this research is applicable to elliptic
systems, see [4], and conormal derivative problems, which are a generalization of Neu-
mann problems in nonsmooth domains, see [6], we here consider elliptic equations for
simplicity in order to focus on various types of Calderón–Zygmund estimates.

Before starting our argument, we introduce some notations and definitions that are used
throughout this paper.

Notations 1.1
(1) The open ball in R

n with center y and radius ρ > 0 is denoted by

Bρ(y) =
{

x ∈R
n : |x – y| < ρ

}
.

If the center is the origin, we denote Bρ(0) by Bρ .
(2) The integral average of g ∈ L1(U) over the bounded domain U in R

n is denoted by

(g)U =
∫

–
U

g(x) dx =
1

|U|
∫

U
g(x) dx.

(3) B+
ρ = Bρ ∩ {xn > 0}, B+

ρ(y) = B+
ρ + y, Tρ = Bρ ∩ {xn = 0}, Tρ(y) = Tρ + y.

(4) �ρ(y) = Bρ(y) ∩ �, �ρ = �ρ(0), ∂w�ρ(y) = Bρ(y) ∩ ∂�, ∂w�ρ = ∂w�ρ(0).
(5) For a set E ⊂R

n, |E| denotes the Lebesgue measure of E.
(6) W 1,p(U) = {g(x) : Dνg ∈ Lp(U) for each multi-index ν with |ν| ≤ 1} is the Sobolev

spaces equipped with the norm ‖g‖W 1,p(U) = ‖g‖Lp(U) + ‖Dg‖Lp(U). When p = 2, we
denote H1(U) = W 1,p(U). The closure of the space C∞

0 (U) with respect to the norm
in W 1,p(U) is denoted by W 1,p

0 (U).

The following is the definition of weak solutions to (1.1).

Definition 1.2 Let f ∈ L2(�). Then uε ∈ H1
0 (�) is called a weak solution to (1.1) if

∫

�

Aε
ijDiuεDjφ dx =

∫

�

fiDiφ dx

holds for all φ ∈ H1
0 (�).

The next definitions cover the regularity requirements on the coefficient A, which al-
lows discontinuity, and on the boundary of the domain �, which is a natural extension of
Lipschitz domains with small Lipschitz constants, see [33].
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Definition 1.3 We say that A is (δ, R)-vanishing if

sup
0<ρ≤R

sup
y∈Rn

∫

–
Bρ (y)

∣
∣A(x) – (A)Bρ (y)

∣
∣2 dx ≤ δ2. (1.3)

Definition 1.4 We say that � is (δ, R)-Reifenberg flat if, for every x ∈ ∂� and every ρ ∈
(0, R], there exists a coordinate system {y1, . . . , yn} depending on ρ and x so that x = 0 in
this coordinate system and

Bρ ∩ {yn > δρ} ⊂ Bρ ∩ � ⊂ Bρ ∩ {yn > –δρ}. (1.4)

Remark 1.5 First of all, the number R in the above two definitions can be 1 or any other
constant greater than 1 to be determined by our purpose, since our problems (1.1), (1.3),
and (1.4) have a scaling invariance property. Also, the small constant δ to be determined
later is scaling invariant. For (1.4), Reifenberg flatness is meaningful when 0 < δ < 1

2n+1 for
n ≥ 2, see [33]. Even though this condition does not mean any smoothness condition on
the boundary, this implies the following measure density condition:

|Br(y)|
|Br(y) ∩ �| ≤

(
2

1 – δ

)n

≤
(

16
7

)n

(1.5)

for every y ∈ ∂� and r ∈ (0, R].

To understand our result in this work intuitively, we introduce a two-scale expansion
method in homogenization, see [2]. For this, we split the variable x into a macroscopic
variable x and a microscopic variable y = x

ε
. Then, according to the two-scale expansion

uε(x) = uε(x, x
ε
) = uε(x, y), we see that

uε(x, y) = u0(x, y) + εu1(x, y) + ε2u2(x, y) + · · ·
= u0(x) + εχi(y)Diu0(x) + O

(
ε2).

Here, u0 is independent of y and χ = {χi(y)} is called a corrector of (1.1) which is periodic.
In fact, since only with (1.2) the corrector χ has nice estimates such as

‖χ‖L∞([0,1]n) ≤ c or ‖χ‖H1([0,1]n) ≤ c,

we can think that

uε(x) ≈ u0(x).

In addition, u0 is a solution to
⎧
⎨

⎩

Di(A0
ijDju0(x)) = Difi(x) in Ω ,

u0(x) = 0 on ∂Ω ,

whose coefficient A0 = {A0
ij} is a constant matrix, and hence we may expect that integra-

bility of Duε could be improved to the integrability of f independent of ε. However, this
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is in a heuristic way but not mathematical, so we need mathematical justification. In fact,
u0 is only the weak limit of the weak solutions uε in H1

0 (�) as ε → 0.
In the previous research [4], we proved that under suitable assumptions related to (1.3)

and (1.4)

f ∈ Lp(�) ⇒ Duε ∈ Lp(�) with the estimate ‖Duε‖Lp(�) ≤ c‖f ‖Lp(�)

for 2 < p < ∞, where the constant c is independent of ε. In a bounded domain f ∈ Lp(�) for
2 < p < ∞ implies f ∈ L2(�), so the Lax–Milgram lemma shows existence and uniqueness
of the solutions uε ∈ H1

0 (�) with the estimate

‖Duε‖L2(�) ≤ c‖f ‖L2(�)

for some constant c independent of ε. Then, by using perturbation method, we can im-
prove integrability of Duε from L2(�) to Lp(�). In this sense, our goal is to prove that if
f ∈ X(�) ⊂ L2(�), then

f ∈ X(�) ⇒ Duε ∈ X(�) with the estimate ‖Duε‖X(�) ≤ c‖f ‖X(�)

for some constant c independent of ε. In particular, X(�) will be weighted Lebesgue
spaces, Orlicz spaces, or weighted Orlicz spaces defined on � which are generalizations
of the Lebesgue space Lp(�).

For a single equation, which means ε = 1, the Calderón–Zygmund theory for the data
from generalized Lebesgue spaces is widely and extensively studied even for nonlinear
equations, higher-order equations, etc. We refer to [3, 7–12, 15, 16, 19, 20, 25, 27, 30, 32,
34, 35] and the references therein for related results. Based on these results, in this article
we want to extend uniform Lp regularity results studied in [1, 4, 14, 31] to generalized
spaces. The main difference which arises in the proof is that to obtain uniform estimates
in the perturbation method we cannot compare our equation (1.1) to the equation whose
coefficient is given by a constant matrix, such as the average value of A, as the proofs
in the single equation cases. For this reason, different from the single equation case, in
the perturbation argument we have to compare (1.1) with (3.6) whose weak solution does
not have uniform W 1,∞ regularity. Instead, we can derive our desired regularity results
from uniform W 1.q (2 < q < ∞) estimates for weak solutions to (3.6), see Lemma 3.3. In
addition, through this procedure we apply their own properties of generalized Lebesgue
spaces more delicate than single equation cases.

This paper is organized as follows. In Sect. 2, we introduce some useful results in
weighted Lebesgue spaces, and in Sect. 3 we prove uniform Calderón–Zygmund estimates
in weighted Lebesgue spaces. In the way to prove, we introduce an explicit and quantita-
tive study in the approximation procedure. Orlicz spaces are considered in Sect. 4. Finally,
in Sect. 5, we obtain the estimate in weighted Orlicz spaces.

2 Auxiliary results in weighted Lebesgue spaces
To begin with, we introduce the Hardy–Littlewood maximal function which is used in our
approach. The Hardy–Littlewood maximal function is given by

(Mg)(x) = sup
ρ>0

1
|Bρ(x)|

∫

Br(x)

∣
∣g(y)

∣
∣dy
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for any locally integrable function g on R
n. If g is defined only on a bounded subset of Rn,

then we define

Mg = Mg,

where g is the zero extension of g from the bounded set to R
n, and we define the restricted

maximal function

MUg = M(g1U ),

where 1U is the characteristic function of U ⊂ R
n. The main properties of this maximal

function used in our argument are weak 1-1 estimate and strong p-p estimate.
Now we introduce weighted Lebesgue spaces with respect to the measure w dx. Espe-

cially, we consider the weight w is in the Muckenhoupt class As with 1 < s < ∞, see [26].

Definition 2.1 We say that w is a weight in As (or an As weight) for 1 < s < ∞ if w is a
nonnegative and locally integrable function in R

n satisfying

[w]s = sup
y∈Rn

sup
ρ>0

(∫

–
Bρ (y)

w(x) dx
)(∫

–
Bρ (y)

w(x)
–1
s–1 dx

)s–1

< ∞. (2.1)

A typical example of w ∈ As is

w(x) = |x|q – n < q < n(s – 1).

For this weight w, the weighted Lebesgue measure with respect to w is defined by

w(E) =
∫

E
w(x) dx

for measurable sets E ∈ R
n and the weighted Lebesgue space Ls

w(U) is defined by the set
of all measurable functions g on U satisfying

∫

U

∣
∣g(x)

∣
∣sw(x) dx < ∞.

Note that Ls
w(U) is a Banach space equipped with the norm

‖g‖Ls
w(U) =

(∫

U

∣
∣g(x)

∣
∣sw(x) dx

) 1
s
.

The next lemma is a relation between integration and summation, which comes from
the classical measure theory.

Lemma 2.2 ([13]) Assume that g is a nonnegative, measurable function defined on a
bounded domain � ⊂R

n. Let θ > 0 and μ > 1 be constants. Then, for 0 < q < ∞, we have

g ∈ Lq(�) ⇐⇒ S =
∑

k≥1

μqk∣∣
{

x ∈ � : g(x) > θμk}∣∣ < ∞



Jang Boundary Value Problems         (2021) 2021:28 Page 6 of 24

and

1
c

S ≤ ‖g‖q
Lq(�) ≤ c

(|�| + S
)
,

where the constant c depends only on θ , μ, and q.

Lemma 2.2 for the weighted Lebesgue spaces is the following.

Lemma 2.3 ([25]) Assume that g is a nonnegative, measurable function defined on a
bounded domain � ⊂R

n. Let θ > 0 and μ > 1 be constants. Then, for 0 < q < ∞, we have

g ∈ Lq
w(�) ⇐⇒ S =

∑

k≥1

μqkw
({

x ∈ � : g(x) > θμk}) < ∞

and

1
c

S ≤ ‖g‖q
Lq

w(�)
≤ c

(
w(�) + S

)
,

where the constant c depends only on θ , μ, q, and w.

Recalling Definition 1.4, we now introduce the Vitali type covering lemma for weighted
Lebesgue spaces with weight w ∈ As.

Lemma 2.4 ([9]) Let w ∈ As for some 1 < s < ∞. Assume that � is (δ, 1)-Reifenberg flat,
and let C and D be measurable sets with C ⊂ D ⊂ �. We further assume that there exists
small η > 0 with

1. for each x ∈ �,

w
(
B1(x) ∩ C

)
< ηw

(
B1(x)

)
;

2. for each x ∈ � and ρ ∈ (0, 1] with w(C ∩ Bρ(x)) > ηw(Bρ(x)), we have

Bρ(x) ∩ � ⊂D.

Then

w(C) ≤ c∗ηw(D)

for some constant c∗ = c∗(n, s, w).

Remark 2.5 In Lemma 2.4, we note that the constant c∗ depends on 1
1–δ

. According to [33],
δ is smaller than 1

2n+1 . For this reason, we assume throughout this paper that δ < 1
2n+1 ≤ 1

8 . In
this sense, we can take the constant c∗ independent of δ, which means that c∗ is a universal
constant.

We will use some properties of the weighted Lebesgue measure with weight w ∈ As. The
following lemma says that there is a relation between w(x) dx and dx, the usual Lebesgue
measure.
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Lemma 2.6 ([25]) Assume w ∈ As for some 1 < s < ∞, and let E be a measurable subset of
a ball B ⊂R

n. Then, there exist positive constants α and τ ∈ (0, 1), both depending on n, s,
and w, such that

1
[w]s

( |E|
|B|

)s

≤ w(E)
w(B)

≤ α

( |E|
|B|

)τ

. (2.2)

We note that, for the case w = 1, the second part of (2.2) holds for any α > 1 and 0 < τ < 1
but it is natural to consider this inequality as an equality with α = 1 and τ = 1. Also, there
is a fundamental property of the Hardy–Littlewood maximal function in the weighted
Lebesgue spaces.

Lemma 2.7 ([26]) Assume w ∈ As for some 1 < s < ∞. Then there is a constant c =
c(n, s, [w]s) > 0 such that

c–1‖g‖Ls
w(Rn) ≤ ‖Mg‖Ls

w(Rn) ≤ c‖g‖Ls
w(Rn)

for all g ∈ Ls
w(Rn).

3 Uniform estimates in weighted Lebesgue spaces
Our main theorem in this section is the following.

Theorem 3.1 Let w ∈ A p
2

with 2 < p < ∞ and assume f ∈ Lp
w(�). Then there exists a small

positive constant δ = δ(λ,�, n, p, w) such that if A = {Aij} is (δ, 96)-vanishing and � is (δ, 96)-
Reifenberg flat, then the weak solution uε ∈ H1

0 (�) to (1.1) satisfies

Duε ∈ Lp
w(�)

with the estimate

‖Duε‖Lp
w(�) ≤ c‖f ‖Lp

w(�) (3.1)

for some constant c = c(diam(�),λ,�, n, p, w, w(�)) which is independent of ε.

Our method is based on localization and perturbation argument. To do this, we first
consider the localized version of (1.1)

⎧
⎨

⎩

Di(Aε
ij(x)Djuε(x)) = Difi(x) in Ω6,

uε(x) = 0 on ∂wΩ6.
(3.2)

In (3.2), according to the Reifenberg flatness condition (1.4) we assume that

B+
6 ⊂ �6 ⊂ B6 ∩ {xn > –12δ} (3.3)

and a weak solution uε to (3.2) satisfies

1
|B6|

∫

�6

|Duε |2 dx ≤ 1. (3.4)
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We next let wε be a weak solution to

⎧
⎨

⎩

Di(Aε
ij(x)Djwε(x)) = 0 in Ω5,

wε(x) = uε(x) on ∂Ω5.
(3.5)

Then, from (3.4), as we can see in the following lemma, we have a higher integrability
result for wε . In fact, since in the original version of the following lemma the authors con-
sidered very rough domains so that our domain, an intersection of a ball and a Reifenberg
flat domain, which satisfies measure density condition (1.5) in Remark 1.5, is in the case
of the original one, see [21]. More precisely, even though in (3.3) �6 itself may not be a
Reifenberg flat domain, under the definition of Reifenberg domains in every scale, we have
to approximate our domain in the same way as (3.3) and eventually it describes the bound-
ary of Reifenberg domains from every scale with the measure density condition (1.5). In
addition, under our L2 approach in this paper, (1.5) implies the p-capacity condition with
p = 2, see [24, Sect. 2.2.3], we can apply [21] to our problem.

Lemma 3.2 ([21]) Assume (3.3) and let uε be a weak solution to (3.2) satisfying (3.4), and
let wε be a weak solution to (3.5). Then there exist positive constants σ1 � 1 and c, which
depend only on λ, �, and n such that

‖Dwε‖L2+σ1 (�4) ≤ c.

Then we consider the following equation up to the flat boundaries:

⎧
⎨

⎩

Di(Aε
ij(x)Djvε(x)) = 0 in B+

4 ,

vε(x) = 0 on T4.
(3.6)

According to the previous works [4, 5, 18, 31], we have the following lemma.

Lemma 3.3 Let vε be a weak solution to (3.6) and 2 < q < ∞. Then there exists δ =
δ(λ,�, n, q) such that if A is (δ, 6)-vanishing, then we have

Dvε ∈ Lq(B+
3
)

with the estimate

(∫

–
B+

3

|Dvε |q dx
) 1

q
≤ c

(∫

–
B+

4

|Dvε |2 dx
) 1

2
(3.7)

for some constant c = c(λ,�, n, q) independent of ε.

We here point out that estimate (3.7) is a uniform one for each given 2 < q < ∞. In fact,
Lemma 3.3 is very important in our method since all the ε independent uniform estimates
in this paper, (3.1), (4.4), and (5.1), come from this lemma whose proof can be found in [6,
31]. To complete our perturbation argument, we have to choose a weak solution vε to (3.6)
suitably with respect to wε , which is a weak solution to (3.5). For this, in the previous work
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[4] we used a compactness argument which is an indirect one, but we here find an explicit
approximate solution vε to (3.6) with respect to wε based on the method in [22]. This is
not only a direct method but also a quantitative study for the approximation procedure in
Reifenberg domains.

Lemma 3.4 Assume (3.3). Let uε be a weak solution to (3.2) satisfying (3.4) and wε be the
weak solution to (3.5). Then, for any fixed κ > 0, there exists small δ = δ(κ ,λ,�, n) > 0 in
(3.3) such that there exists a weak solution vε to (3.6) with

1
|B4|

∫

B+
4

|Dvε |2 dx ≤ c

for some positive constant c = c(λ,�, n) and

1
|B4|

∫

B+
4

∣
∣D(wε – vε)

∣
∣2 dx ≤ κ2.

Proof Firstly, we note that, according to (3.4),

1
|B5|

∫

�5

|Dwε |2 dx ≤ c (3.8)

for some constant c = c(λ,�, n) by the standard L2 energy estimate for (3.5).
Next, we let φ be a smooth function that satisfies

0 ≤ φ ≤ 1, φ = 1 on {xn ≥ 6δ}, φ = 0 on {xn ≤ 0} and |Dφ| ≤ c
δ

.

Then we consider that

⎧
⎨

⎩

Di(Aε
ij(x)Djvε) = 0 in B+

4 ,

vε = φwε on ∂B+
4 .

(3.9)

According to [22], since wε = 0 on ∂w�5,

∫

�4∩{xn≤6δ}

∣
∣
∣
∣
wε

δ

∣
∣
∣
∣

2

dx ≤ c
∫

�4∩{xn≤6δ}
|Dwε |2 dx. (3.10)

Applying the L2 estimate to (3.9) with (3.8) and (3.10), we have

1
|B4|

∫

B+
4

|Dvε |2 dx ≤ c
|B4|

∫

B+
4

∣
∣D(φwε)

∣
∣2 dx ≤ c

|B4|
∫

B+
4

|Dwε |2 dx ≤ c

for some constant c = c(λ,�, n).
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Since vε = 0 on T4, we denote v̄ε to be the zero extension of ṽε from B+
4 to B4. By the

uniform ellipticity (1.2),

1
|B4|

∫

B+
4

∣
∣D(vε – φwε)

∣
∣2 dx ≤ c

|B4|
∫

�4

Aε
ijDi(v̄ε – φwε)Dj(v̄ε – φwε) dx

=
c

|B4|
∫

�4

Aε
ijDi(v̄ε – wε)Dj(v̄ε – φwε) dx

+
c

|B4|
∫

�4

Aε
ijDi(wε – φwε)Dj(v̄ε – φwε) dx

(3.11)

for some constant c = c(λ). Since wε and vε are solutions to (3.5) and (3.9), respectively, by
a direct computation, we see from (3.10) and (3.11) that

1
|B4|

∫

B+
4

∣
∣D(vε – φwε)

∣
∣2 dx

≤ c
|B4|

∫

�4

∣
∣D(wε – φwε)

∣
∣
∣
∣D(v̄ε – φwε)

∣
∣dx

=
c

|B4|
∫

�4

∣
∣D

(
(1 – φ)wε

)∣
∣
∣
∣D(v̄ε – φwε)

∣
∣dx

≤ c
|B4|

∫

�4∩{xn≤6δ}

(|Dwε | +
∣
∣D(φwε)

∣
∣
)∣
∣D(v̄ε – φwε)

∣
∣dx

≤ c
|B4|

(∫

�4∩{xn≤6δ}
|Dwε |2 dx

) 1
2
(∫

B+
4

∣
∣D(vε – φwε)

∣
∣2 dx

) 1
2

for some constant c = c(λ,�, n). Therefore,

1
|B4|

∫

B+
4

∣
∣D(vε – φwε)

∣
∣2 dx ≤ c

|B4|
∫

�4∩{xn≤6δ}
|Dwε |2 dx,

and hence

1
|B4|

∫

B+
4

∣
∣D(vε – wε)

∣
∣2 dx ≤ c

|B4|
∫

B+
4

∣
∣D(vε – φwε)

∣
∣2 +

∣
∣D(φwε – wε)

∣
∣2 dx

≤ c
|B4|

∫

�4∩{xn≤6δ}
|Dwε |2 dx.

(3.12)

Finally, applying the higher integrability result in Lemma 3.2, Hölder’s inequality and (3.8)
to (3.12), we have

1
|B4|

∫

B+
4

∣
∣D(vε – wε)

∣
∣2 dx ≤ cδ

σ1
2+σ1

for some constant c = c(λ,�, n). Then we can choose a small constant δ satisfying
cδ

σ1
2+σ1 < κ2. This completes the proof. �

Remark 3.5 We note that in the proof of Lemma 3.4, we did not use Lemma 3.3. In addi-
tion, we do not need any regularization on the coefficients in the proof of Lemma 3.4. In



Jang Boundary Value Problems         (2021) 2021:28 Page 11 of 24

particular, the higher integrability result in Lemma 3.2 holds for the general cases not only
for the homogenization problems. In this sense, we can see that Lemma 3.4 holds for the
general cases that the coefficients only satisfy (1.2).

The next lemma is the main lemma in our argument. This verifies the second condition
of Lemma 2.4 in the procedure to prove Theorem 3.1. In the following lemma, we let c∗
be the constant in Lemma 2.4 with respect to w ∈ As.

Lemma 3.6 Let w ∈ As for some 1 < s < ∞, and let uε be the weak solution to (1.1). Then
there exists a constant η = η(λ,�, n, p, s, w) so that one can select small δ = δ(λ,�, n, p, s, w) >
0 such that if A is (δ, 96)-vanishing, if � is (δ, 96)-Reifenberg flat, and if for all y ∈ � and
for every 0 < ρ ≤ 1, Bρ(y) satisfies

w
({

x ∈ � : M
(|Duε |2

)
> N2} ∩ Bρ(y)

)
> ηw

(
Bρ(y)

)
, (3.13)

where

c∗Npη =
1
2

, (3.14)

then there holds

� ∩ Bρ(y) ⊂ {
x ∈ � : M

(|Duε |2
)

> 1
} ∪ {

x ∈ � : M
(|f |2) > δ2}. (3.15)

Proof We prove it by contradiction. Assume that Bρ(y) satisfies (3.13), but (3.15) is false.
Then there is a point y1 ∈ � ∩ Bρ(y) such that

1
|Br(y1)|

∫

�r(y1)
|Duε |2 dx ≤ 1 and

1
|Br(y1)|

∫

�r(y1)
|f |2 dx ≤ δ2 (3.16)

for all r > 0.
We split our problem into two cases: the interior case B8ρ(y) ⊂ � and the boundary case

B8ρ(y) �⊂ �. We here only consider the boundary case because the proof for the interior
case is a simple modification of the proof for the boundary case.

We now assume B8ρ(y) �⊂ �. Since our problem is invariant under rotation and transla-
tion, without loss of generality we can assume that

B8ρ(y) ∩ � ⊂ B16ρ ∩ �

and

B+
96ρ ⊂ �96ρ ⊂ B96ρ ∩ {xn > –192δ}.

Then from (3.16) we can see that

1
|B96ρ |

∫

�96ρ

|Duε |2 dx ≤ |B192ρ(y1)|
|B96ρ |

1
|B192ρ |

∫

�192ρ (y1)
|Duε |2 dx ≤ 2n
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and similarly

1
|B96ρ |

∫

�96ρ

|f |2 dx ≤ 2nδ2

since B96ρ ⊂ B192ρ(y1).
Now we consider the following rescaled maps:

ũε(z) =
uε(16ρz)
16ρ

√
2n

, f̃ (z) =
f (16ρz)
16ρ

√
2n

, and Ãε
ij(z) = Aε

ij(16ρz) (3.17)

for z ∈ �̃6 = 1
16ρ

�96ρ . Then ũε is a weak solution to

⎧
⎨

⎩

Di(Ãε
ij(z)Djũε(z)) = Dα f̃ α

i (z) in �̃6,

ũε(z) = 0 on ∂w�̃6,
(3.18)

satisfying

B+
6 ⊂ �̃6 ⊂ B6 ∩ {zn > –12δ},
1

|B6|
∫

�̃6

|Dũε |2 dz ≤ 1 and
1

|B6|
∫

�̃6

|f̃ |2 dz ≤ δ2.

Next, we let w̃ε be the weak solution to
⎧
⎨

⎩

Di(Ãε
ij(z)Djw̃ε(z)) = 0 in �̃5,

w̃ε(z) = ũε(z) on ∂�̃5.
(3.19)

Comparing (3.19) with (3.18), the standard L2 estimate yields

1
|B5|

∫

�̃5

|Dũε – Dw̃ε |2 dz ≤ c
|B5|

∫

�̃5

|f̃ |2 dz ≤ cδ2 (3.20)

for some constant c = c(λ,�, n).
Now, we apply Lemma 3.4 to (3.19). Then, for any fixed κ > 0, there exists small δ =

δ(κ ,λ,�, n) > 0 such that we can find a weak solution ṽε to

⎧
⎨

⎩

Di(Ãε
ij(z)Djṽε(z)) = 0 in B+

4 ,

ṽε(z) = 0 on T4,
(3.21)

satisfying

1
|B4|

∫

B+
4

|Dṽε |2 dz ≤ c (3.22)

for some positive constant c = c(λ,�, n) and

1
|B4|

∫

B+
4

∣
∣D(w̃ε – ṽε)

∣
∣2 dz ≤ κ2. (3.23)
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Note that according to the scaling in (3.17) Ã is (δ, 6)-vanishing, so we can apply
Lemma 3.3 to (3.21) with q = p+τ

τ
, where τ = τ (n, s, w) is a constant in Lemma 2.6. Then

there is a small δ = δ(λ,�, n, p, s, w) such that

(∫

–
B+

3

|Dṽε | p+τ
τ dz

) τ
p+τ

≤ c
(∫

–
B+

4

|Dṽε |2 dz
) 1

2 ≤ c (3.24)

for some positive constant c = c(λ,�, n, p, s, w).
We now claim that if N2

1 ≥ 2n, then

{
z ∈ �̃1 : M

(|Dũε |2
)

> N2
1
} ⊂ {

z ∈ �̃1 : MB3

(|Dũε |2
)

> N2
1
}

. (3.25)

To show this, we denote z1 = y1
16ρ

and let z0 be a point in {z ∈ �̃1 : MB3 (|Dũε |2) ≤ N2
1 }. If

r ≤ 2, we have Br(z0) ⊂ B3 and

1
|Br|

∫

�̃r (z0)
|Dũε |2 dz ≤MB3

(|Dũε |2
)
(z0) ≤ N2

1 .

For r > 2, as z1 ∈ �̃r(z0) ⊂ B2r(z1), we obtain from (3.16)

1
|Br|

∫

�̃r (z)
|Dũε |2 dz ≤ |B2r|

|Br|
1

|B2r|
∫

�̃2r (z1)
|Dũε |2 dz ≤ 2n ≤ N2

1 .

Thus, M(|Dũε |2)(z0) ≤ N2
1 , and hence the claim is proved.

To complete our argument, we denote ṽε to be the zero extension of ṽε from B+
3 to B3,

and let N2 = N2
1 2n for large N1 ≥ 2n to be determined later in the proof.

Using claim (3.25) and (3.17), we compute

1
|Bρ |

∣
∣
{

x ∈ � : M
(|Duε |2

)
> N2} ∩ Bρ(y)

∣
∣

≤ 16n

|B1|
∣
∣
{

z ∈ �̃1 : M
(|Dũε |2

)
> N2

1
}∣
∣

≤ 16n

|B1|
∣
∣
{

z ∈ �̃1 : MB3

(|Dũε |2
)

> N2
1
}∣
∣

≤ 16n

|B1|
∣
∣
∣
∣

{

z ∈ �̃1 : MB3

(|Dũε – Dw̃ε |2
)

>
N2

1
9

}∣
∣
∣
∣

+
16n

|B1|
∣
∣
∣
∣

{

z ∈ �̃1 : MB3

(|Dw̃ε – Dṽε |2
)

>
N2

1
9

}∣
∣
∣
∣

+
16n

|B1|
∣
∣
∣
∣

{

z ∈ �̃1 : MB3

(|Dṽε |2
)

>
N2

1
9

}∣
∣
∣
∣

≤ c
N2

∫

�̃3

|Dũε – Dw̃ε |2 dz +
c

N2

∫

�̃3

|Dw̃ε – Dṽε |2 dz +
c

N
p+τ
τ

∫

B+
3

|Dṽε | p+τ
τ dz

=: I1 + I2 + I3,

where the constant c = c(λ,�, n, p, s, w).
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From (3.20)

I1 ≤ c
N2 δ2. (3.26)

For I2, we use Lemma 3.2 and (3.23) for given κ > 0, then we obtain

I2 ≤ c
N2

(
1

|B1|
∫

B+
3

|Dw̃ε – Dṽε |2 dz +
1

|B1|
∫

�̃3\B+
3

|Dw̃ε |2 dz
)

≤ c
N2

(

κ2 +
(∫

�̃3

|Dw̃ε |2+σ1 dz
) 2

2+σ1
(∫

�̃3\B+
3

dz
) σ1

2+σ1
)

(3.27)

≤ c
N2

(
κ2 + δ

σ1
2+σ1

)
.

Finally, by (3.22) and (3.24),

I3 ≤ c
N

p+τ
τ

(∫

B+
3

|Dṽε |2 dz
) p+τ

2τ ≤ c
N

p+τ
τ

. (3.28)

Therefore, we have from (3.14), (3.26), (3.27), and (3.28) that

I1 + I2 + I3 ≤ c
N2

(
κ2 + δ2 + δ

σ1
2+σ1

)
+

c
N

p+τ
τ

= cη
2
p
(
κ2 + δ2 + δ

σ1
2+σ1

)
+ cη

p+τ
pτ (3.29)

= η
1
τ
(
cη

2
p – 1

τ
(
κ2 + δ2 + δ

σ1
2+σ1

)
+ cη

1
p
)

for some constant c = c(λ,�, n, p, s, w).
To derive a contradiction, we now use the relation between the weighted Lebesgue mea-

sure and the usual Lebesgue measure in (2.2) in the following way:

w({x ∈ � : M(|Duε |2) > N2} ∩ Bρ(y))
w(Bρ(y))

≤ α

( |{x ∈ � : M(|Duε |2) > N2} ∩ Bρ(y)|
|Bρ |

)τ

.

According to (3.29), we see that

w({x ∈ � : M(|Duε |2) > N2} ∩ Bρ(y))
w(Bρ(y))

≤ α
(
η

1
τ
(
cη

2
p – 1

τ
(
κ2 + δ2 + δ

σ1
2+σ1

)
+ cη

1
p
))τ

= η
(
α
(
cη

2
p – 1

τ
(
κ2 + δ2 + δ

σ1
2+σ1

)
+ cη

1
p
)τ ).

We first take η = η(λ,�, n, p, s, w) so that

0 < cη
τ
p ≤ 1

3τ α
. (3.30)

Then we can select N from (3.14). From this η, we next choose κ = κ(λ,�, n, p, s, w) such
that

0 < cη
2τ
p –1

κ2τ ≤ 1
3τ α

. (3.31)
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Finally, we can find the corresponding δ = δ(λ,�, n, p, s, w) for κ selected as (3.31) that

0 < cη
2τ
p –1(

δ2 + δ
σ1

2+σ1
)τ ≤ 1

3τ α
. (3.32)

Consequently, from (3.14), (3.30), (3.31), and (3.32), we have, for such N , η, and δ,

w
({

x ∈ � : M
(|Duε |

)2 > N2} ∩ Bρ(y)
) ≤ ηw(Bρ),

which is a contradiction to (3.13). This completes the proof. �

We are going to prove Theorem 3.1. For this, we now fix any p ∈ (2,∞) and let η and N
be constants given by Lemma 3.6 with respect to s = p

2 , and we denote by c the constants
that can be explicitly computed in terms of the known data such as �, λ, �, n, p, and w.

Proof of Theorem 3.1 Firstly, we can assume that ‖f ‖Lp
w(�) ≤ δ for f ∈ Lp

w(�) with w ∈ A p
2

since our problem (1.1) is invariant under normalization. Then it suffices to show that

‖Duε‖Lp
w(�) ≤ c.

Now, we note that

∫

�

|f |2 dx ≤
(∫

�

|f |pw dx
) 2

p
(∫

�

w
–2

p–2 dx
) p–2

p
. (3.33)

Moreover, we let d = diam(�), then � ⊂ Bd(x0) for any x0 ∈ �, and hence from the defini-
tion of the weight function w ∈ A p

2
in (2.1)

(∫

�

w
–2

p–2 dx
) p–2

p
≤

((∫

Bd(x0)
w

–2
p–2 dx

) p
2 –1) 2

p

≤
((∫

–
Bd(x0)

w dx
)–1

[w] p
2
|Bd| p

2 –1
) 2

p
(3.34)

≤
( [w] p

2
|Bd| p

2

w(Bd(x0))

) 2
p

.

From (3.33) and (3.34), we see from w(�) ≤ w(Bd(x0)) that

∫

�

|f |2 dx ≤ dn|B1|
( [w] p

2

w(�)

) 2
p
‖f ‖2

Lp
w(�) ≤ cδ2. (3.35)

In order to apply Lemma 2.3 and Lemma 2.4, we denote

C =
{

x ∈ � : M
(|Duε |2

)
> N2}

and

D =
{

x ∈ � : M
(|Duε |2

)
> 1

} ∪ {
x ∈ � : M

(|f |2) > δ2}.
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Using (2.2), we know that, for any y ∈ �,

w(B1(y) ∩ C)
w(B1(y))

≤ α

( |B1(y) ∩ C|
|B1(y)|

)τ

. (3.36)

Then by the weak 1-1 estimate, the L2-estimate and (3.35) yield

∣
∣B1(y) ∩ C

∣
∣ ≤ c

N2

∫

�

|Duε |2 dx ≤ c
N2

∫

�

|f |2 dx ≤ cδ2∣∣B1(y)
∣
∣. (3.37)

Then we can take small δ > 0 satisfying from (3.36) and (3.37) that

w
(
B1(y) ∩ C

) ≤ cδ2τ < ηw
(
B1(y)

)
.

This shows that the first condition in Lemma 2.4 is satisfied with respect to η. Also,
Lemma 3.6 verifies the other condition of Lemma 2.4. Therefore,

w(C) < η1w(D),

where η1 = c∗η, and hence we obtain

w
({

x ∈ � : M
(|Duε |2

)
> N2}) (3.38)

≤ η1w
({

x ∈ � : M
(|Duε |2

)
> 1

})
+ η1w

({
x ∈ � : M

(|f |2) > δ2}).

In addition, after iterating (3.38), we have

w
({

x ∈ � : M
(|Duε |2

)
> N2m})

≤ ηm
1 w

({
x ∈ � : M

(|Duε |2
)

> 1
})

+
m∑

i=1

ηi
1w

({
x ∈ � : M

(|f |2) > δ2N2(m–i)}).

Now we apply Lemma 2.3 to

g = M
(|Duε |2

)
, μ = N2, θ = 1, and q =

p
2

.

By a direct computation we find that

∥
∥M

(|Duε |2
)∥
∥

p
2

L
p
2
w (�)

≤ c
(

w(�) +
∑

m≥1

N2m p
2 w

({
x ∈ � : M

(|Duε |2
)

> N2m})
)

≤ c + c
∑

m≥1

Nmpηm
1 w

({
x ∈ � : M

(|Duε |2
)

> 1
})
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+ c
∑

m≥1

Nmp
m∑

i=1

ηi
1w

({
x ∈ � : M

(|f |2) > δ2N2(m–i)})

= c + cw(�)
∑

m≥1

Nmpηm
1 + c

∑

i≥1

(
Npη1

)i
‖f ‖2

Lp
w(�)

δ2 .

Therefore

∥
∥M

(|Duε |2
)∥
∥

p
2

L
p
2
w (�)

≤ c
(

1 +
∑

m≥1

(
Npη1

)m
)

≤ c

since

Npη1 = c∗Npη =
1
2

.

Then Lemma 2.7 shows that

‖Duε‖Lp
w(�) ≤ c.

This completes the proof. �

Remark 3.7 Our argument is based on the L2 theory. In this sense, the condition w ∈ A p
2

is natural, see (3.33). In fact, since

‖f ‖2
Lp

w(�) =
(∫

�

|f |pw dx
) 2

p
=

(∫

�

(|f | p
2
)2w dx

) 2
p

=
∥
∥|f |2∥∥

L
p
2
w (�)

,

it makes sense. Moreover, for the next two sections, we interpret Theorem 3.1 in the fol-
lowing way:

w ∈ Ap and |f |2 ∈ Lp
w(�) with 1 < p < ∞ ⇒ |Duε |2 ∈ Lp

w(�)

with the estimate

∥
∥|Duε |2

∥
∥

Lp
w(�) ≤ c

∥
∥|f |2∥∥Lp

w(�).

4 Estimates in Orlicz spaces
In this section, we are going to derive uniform Calderón–Zygmund estimates with respect
to a given data f from Orlicz spaces. Orlicz spaces are another natural generalization of
the usual Lebesgue spaces, see [28, 29], but they are different from weighted Lebesgue
spaces. For this reason, in order to focus on the estimates in Orlicz spaces, throughout
this section, we let w = 1 for w dx, that is, w(E) = |E| for any measurable set E ⊂ R

n, and
we use Lemma 2.6 with α = 1 and τ = 1. In these settings, we apply lemmas in Sect. 3 to
this section for our purpose. To describe Orlicz spaces, we start with some definitions.

Definition 4.1 Let � be a real-valued function defined on [0,∞).
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(1) We call � a Young function if it is a nondecreasing and convex function which
satisfies

�(0) = 0, lim
ρ→∞�(ρ) = ∞,

lim
ρ→0+

�(ρ)
ρ

= 0, and lim
ρ→∞

�(ρ)
ρ

= ∞.

(2) A Young function � satisfies �2-condition, denoted by � ∈ �2, if there is a constant
c1 such that, for all ρ ≥ 0,

�(2ρ) ≤ c1�(ρ).

(3) A Young function � satisfies ∇2-condition, denoted by � ∈ ∇2, if there is a constant
c2 such that, for all ρ ≥ 0,

�(ρ) ≤ �(c2ρ)
2c2

.

(4) Given a Young function � ∈ �2 ∩ ∇2 and a bounded domain U ∈R
n, the Orlicz

space L�(U) is defined by the set of all measurable functions g : U →R satisfying

∫

U
�

(|g|)dx < ∞

equipped with the Luxemburg norm

‖g‖L�(U) = inf

{

ρ > 0 :
∫

U
�

( |g|
ρ

)

dx ≤ 1
}

.

Based on Definition 4.1, we can see that a Young function � ∈ �2 ∩ ∇2 has growth
conditions neither too slow nor too fast. In fact, �(ρ) = eρ2 /∈ �2 and �(ρ) = ρ log(1 + ρ) /∈
∇2. A typical example of � ∈ �2 ∩ ∇2 is �(ρ) = ρp for 1 < p < ∞ that coincides with Lp

spaces, and hence the usual Lebesgue spaces are special cases of the Orlicz spaces. In
addition, for � ∈ �2 ∩ ∇2, there exist constants q1 and q2 with 1 < q1 ≤ q2 < ∞ such that,
for any ρ1 and ρ2 with 0 < ρ1 ≤ 1 ≤ ρ2 < ∞,

�(ρ1ρ) ≤ cρq1
1 �(ρ) and �(ρ2ρ) ≤ cρq2

2 �(ρ) for all ρ ≥ 0 (4.1)

for some constant c independent of ρ , ρ1, and ρ2. In other words, for any l > 0 and ρ > 0,

1
c

min
{

lq1 , lq2
} ≤ �(lρ) ≤ c max

{
lq1 , lq2

}

for some constant c independent of l and ρ . Then, from the definition of ‖g‖L�(�), for a
bounded domain �, we see that

Lq2 (�) ⊂ L�(�) ⊂ Lq1 (�) ⊂ L1(�) (4.2)
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and g ∈ L�(�) implies g ∈ L1(�) with the estimate

∫

�

|g|dx ≤ c
((∫

�

�
(|g|)dx

) 1
q1

+
(∫

�

�
(|g|)dx

) 1
q2

)

, (4.3)

see [3, 30].
Similar to the weighted Lebesgue spaces, there is a fundamental property of the Hardy–

Littlewood maximal function in the Orlicz spaces.

Lemma 4.2 ([23]) Let � be a Young function satisfying � ∈ �2 ∩ ∇2 and � be a bounded
domain. Then there is a constant c = c(n,�) > 0 such that

c–1‖g‖L�(�) ≤ ‖Mg‖L�(�) ≤ c‖g‖L�(�)

for all g ∈ L�(�).

Additionally, Lemma 2.2 for Orlicz spaces is the following.

Lemma 4.3 ([23]) Assume that g is a nonnegative, measurable function defined on a
bounded domain � ⊂ R

n. Let θ > 0 and μ > 1 be constants. Then, for any Young function
� ∈ �2 ∩ ∇2, we have

g ∈ L�(�) ⇐⇒ S =
∑

k≥1

�
(
μk)∣∣

{
x ∈ � : g(x) > θμk}∣∣ < ∞

and

1
c

S ≤
∫

�

�
(|g|)dx ≤ c

(|�| + S
)
,

where the constant c depends only on θ , μ, q, and �.

The next is our theorem for the Orlicz spaces. In the proof of this, we mainly use prop-
erties (4.1) and (4.2) for the Orlicz space with respect to a Young � ∈ �2 ∩ ∇2.

Theorem 4.4 Let � be a Young function satisfying � ∈ �2 ∩∇2, and assume |f |2 ∈ L�(�).
Then there exists a small positive constant δ = δ(λ,�, n, p,�) such that if A = {Aij} is (δ, 96)-
vanishing and � is (δ, 96)-Reifenberg flat, then the weak solution uε ∈ H1

0 (�) to (1.1) satis-
fies

|Duε |2 ∈ L�(�)

with the estimate

∥
∥|Duε |2

∥
∥

L�(�) ≤ c
∥
∥|f |2∥∥L�(�) (4.4)

for some constant c = c(|�|,λ,�, n, p,�) which is independent of ε.
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Proof In view of (4.2), according to the proofs in Lemma 3.6 with w = 1 and p = 2q2, we
have the following: there exists a constant η = η(λ,�, n,�) so that one can select a small
δ = δ(λ,�, n,�) > 0 such that if A is (δ, 96)-vanishing, if � is (δ, 96)-Reifenberg flat, and if
for all y ∈ � and for every 0 < ρ ≤ 1, Bρ(y) satisfies

∣
∣
{

x ∈ � : M
(|Duε |2

)
> N2} ∩ Bρ(y)

∣
∣ > η

∣
∣Bρ(y)

∣
∣,

where

c∗N2q2η =
1
2

, (4.5)

then there holds

� ∩ Bρ(y) ⊂ {
x ∈ � : M

(|Duε |2
)

> 1
} ∪ {

x ∈ � : M
(|f |2) > δ2}.

Here, c∗ is the constant in Lemma 2.4 for w = 1.
Similar to the proof of Theorem 3.1, we can assume that

∥
∥|f |2∥∥L�(�) ≤ δ2

for |f |2 ∈ L�(�), and hence it suffices to show that

∥
∥|Duε |2

∥
∥

L�(�) ≤ c.

As before, we let

C =
{

x ∈ � : M
(|Duε |2

)
> N2}

and

D =
{

x ∈ � : M
(|Duε |2

)
> 1

} ∪ {
x ∈ � : M

(|f |2) > δ2}.

Using (4.3) with the computation in (3.37), we can choose small δ satisfying for any y ∈ �

∣
∣B1(y) ∩ C

∣
∣ ≤ c

N2

(
δ

1
q1 + δ

1
q2

)
< η

∣
∣B1(y)

∣
∣.

Then we can apply Lemma 2.4 for w = 1 to our problem to see that

∣
∣
{

x ∈ � : M
(|Duε |2

)
> N2m}∣

∣

≤ ηm
1
∣
∣
{

x ∈ � : M
(|Duε |2

)
> 1

}∣
∣

+
m∑

i=1

ηi
1
∣
∣
{

x ∈ � : M
(|f |2) > δ2N2(m–i)}∣∣,



Jang Boundary Value Problems         (2021) 2021:28 Page 21 of 24

where η1 = c∗η. Following from Lemma 4.3, we compute
∫

�

�
(
M

(|Duε |2
))

dx

≤ c
(

|�| +
∑

m≥1

�
(
N2m)∣

∣
{

x ∈ � : M
(|Duε |2

)
> N2m}∣

∣

)

≤ c + c
∑

m≥1

�
(
N2m)

ηm
1
∣
∣
{

x ∈ � : M
(|Duε |2

)
> 1

}∣
∣

+ c
∑

m≥1

�
(
N2m)

m∑

i=1

ηi
1
∣
∣
{

x ∈ � : M
(|f |2) > δ2N2(m–i)}∣∣.

Due to (4.1), we have �(N2m) ≤ cN2mq2�(1), and then we obtain
∫

�

�
(
M

(|Duε |2
))

dx ≤ c + c|�|
∑

m≥1

N2mq2ηm
1 + c

∑

i≥1

(
N2q2η1

)i.

Since by (4.5)

N2q2η1 = c∗N2q2η =
1
2

,

finally we have
∫

�

�
(
M

(|Duε |2
))

dx ≤ c

for some constant c = c(λ,�, n,�,�) independent of ε. Then Lemma 4.2 shows that

∥
∥|Duε |2

∥
∥

L�(�) ≤ c.

This completes the proof. �

5 Estimates in weighted Orlicz spaces
In this section, we consider weighted Orlicz spaces. To do this, we let � be a Young func-
tion such that � ∈ �2 ∩ ∇2. As in the previous section, for this � there exist constants q1

and q2 satisfying (4.1). We next define i(�) the lower index of a Young function � by

i(�) = lim
l→0+

log(h�(l))
log l

, where h�(l) = sup
l>0

�(lρ)
�(ρ)

.

Then we can see that the index number i(�) is equal to the supremum value of q1 satisfying
(4.1). We note that, as we have seen in Remark 3.7, in order to obtain uniform estimates in
weighted Orlicz spaces, it is natural to consider the weight w ∈ Ai(�) for a Young function
� ∈ �2 ∩ ∇2 because of relation (4.2).

To apply our argument, we introduce the weighted Orlicz space L�
w (�) for the weight

w ∈ Ai(�). The weighted Orlicz space L�
w (�) is defined by the set of all measurable functions

g : � → R satisfying
∫

�

�
(|g|)w dx < ∞
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equipped with the Luxemburg norm

‖g‖L�
w (U) = inf

{

ρ > 0 :
∫

U
�

( |g|
ρ

)

w dx ≤ 1
}

.

Similar to (4.3) we see that g ∈ L�
w (�) implies g ∈ L1(�) with the estimate

∫

�

|g|w dx ≤ c
((∫

�

�
(|g|)w dx

) 1
q1

+
(∫

�

�
(|g|)w dx

) 1
q2

)

,

see [30]. In these spaces, there is a fundamental property of the Hardy–Littlewood maxi-
mal function like Lemma 2.7 and Lemma 4.2, that is, there is a constant c = c(n, w,�) such
that

c–1‖g‖L�
w (�) ≤ ‖Mg‖L�

w (�) ≤ c‖g‖L�
w (�)

for all g ∈ L�(�), see [17, 23]. In addition, we have the following relation between integra-
tion and summation in L�

w (�).

Lemma 5.1 Assume that g is a nonnegative, measurable function defined on a bounded
domain � ⊂R

n. Let θ > 0 and μ > 1 be constants. Then, for any Young function � ∈ �2 ∩∇2

and corresponding w ∈ Ai(�), we have

g ∈ L�
w (�) ⇐⇒ S =

∑

k≥1

�
(
μk)w

({
x ∈ � : g(x) > θμk}) < ∞

and

1
c

S ≤
∫

�

�
(|g|)w dx ≤ c

(
w(�) + S

)
,

where the constant c depends only on θ , μ, q, w, and �.

The main result in this section is the following.

Theorem 5.2 Let � be a Young function satisfying � ∈ �2 ∩∇2, and let w ∈ Ai(�). Assume
|f |2 ∈ L�

w (�). Then there exists a small positive constant δ = δ(λ,�, n, p, w,�) such that if
A = {Aij} is (δ, 96)-vanishing and � is (δ, 96)-Reifenberg flat, then the weak solution uε ∈
H1

0 (�) to (1.1) satisfies

|Duε |2 ∈ L�
w (�)

with the estimate

∥
∥|Duε |2

∥
∥

L�
w (�) ≤ c

∥
∥|f |2∥∥L�

w (�) (5.1)

for some constant c = c(diam(�),λ,�, n, p, w, w(�),�), which is independent of ε.
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Proof The proof of this theorem is a combined one of the proofs in Theorem 3.1 and
Theorem 4.4, so here we explain briefly the procedure of the proof.

After a suitable normalization, as the proof of Theorem 4.4, we can prove Lemma 3.6 for
w ∈ Ai(�) and p = q2, where q2 is the constant in (4.1), in the same way. Then we can apply
Lemma 2.4 for w ∈ Ai(�) to our problem, and hence we finally obtain by using Lemma 5.1
that

∫

�

�
(
M

(|Duε |2
))

w dx ≤ c + c
∑

i≥1

(
N2q2η1

)i

for some constant c = c(λ,�, n, w,�) independent of ε, where

N2q2η1 = c∗N2q2η =
1
2

.

This completes the proof. �

Acknowledgements
The author is very grateful to the handling editors and the anonymous reviewers for the careful reading of this
manuscript and offering valuable comments for this manuscript.

Funding
This work was supported by 2020 Research Grant from Kangwon National University and the National Research
Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. NRF-2020R1F1A1A01050243).

Availability of data and materials
Not applicable.

Competing interests
The author declares that they have no competing interests.

Authors’ contributions
The author conceived of the study, drafted the manuscript, and approved the final manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 6 December 2020 Accepted: 25 February 2021

References
1. Avellaneda, M., Lin, F.: Compactness methods in the theory of homogenization. Commun. Pure Appl. Math. 40(6),

803–847 (1987)
2. Bensoussan, A., Lions, J.L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures, p. xii+398 AMS, Providence

(2011). ISBN 978-0-8218-5324-5
3. Byun, S.-S., Cho, Y.: Nonlinear gradient estimates for parabolic obstacle problems in non-smooth domains. Manuscr.

Math. 146(3–4), 539–558 (2015)
4. Byun, S.-S., Jang, Y.: GlobalW1,p estimates for elliptic systems in homogenization problems in Reifenberg domains.

Ann. Mat. Pura Appl. (4) 195(6), 2061–2075 (2016)
5. Byun, S.-S., Jang, Y.: Calderón–Zygmund estimate for homogenization of parabolic systems. Discrete Contin. Dyn.

Syst. 36(12), 6689–6714 (2016)
6. Byun, S.-S., Jang, Y.: Homogenization of the conormal derivative problem for elliptic systems in Reifenberg domains.

Commun. Contemp. Math. 20(2), 1650062 (2018)
7. Byun, S.-S., Lee, M.: Weighted estimates for nondivergence parabolic equations in Orlicz spaces. J. Funct. Anal. 269(8),

2530–2563 (2015)
8. Byun, S.-S., Lee, M., Palagachev, D.K.: Hessian estimates in weighted Lebesgue spaces for fully nonlinear elliptic

equations. J. Differ. Equ. 260(5), 4550–4571 (2016)
9. Byun, S.-S., Palagachev, D.K.: Weighted Lp-estimates for elliptic equations with measurable coefficients in nonsmooth

domains. Potential Anal. 41(1), 51–79 (2014)
10. Byun, S.-S., Ryu, S.: Global estimates in Orlicz spaces for the gradient of solutions to parabolic systems. Proc. Am. Math.

Soc. 138(2), 641–653 (2010)
11. Byun, S.-S., Ryu, S.: Gradient estimates for higher order elliptic equations on nonsmooth domains. J. Differ. Equ. 250(1),

243–263 (2011)



Jang Boundary Value Problems         (2021) 2021:28 Page 24 of 24

12. Byun, S.-S., So, H.: Weighted estimates for generalized steady Stokes systems in nonsmooth domains. J. Math. Phys.
58(2), 023101 (2017)

13. Caffarelli, L.A., Cabré, X.: Fully Nonlinear Elliptic Equations. American Mathematical Society Colloquium Publications,
vol. 43. Am. Math. Soc., Providence (1995)

14. Caffarelli, L.A., Peral, I.: OnW1,p estimates for elliptic equations in divergence form. Commun. Pure Appl. Math. 51(1),
1–21 (1998)

15. Dong, H., Kim, D.: Elliptic and parabolic equations with measurable coefficients in weighted Sobolev spaces. Adv.
Math. 274, 681–735 (2015)

16. Dong, H., Kim, D.: On Lp-estimates for elliptic and parabolic equations with Ap weights. Trans. Am. Math. Soc. 370(7),
5081–5130 (2018)

17. Fiorenza, A., Krbec, M.: Indices of Orlicz spaces and some applications. Comment. Math. Univ. Carol. 38(3), 433–451
(1997)

18. Geng, J., Shen, Z.: Uniform regularity estimates in parabolic homogenization. Indiana Univ. Math. J. 64(3), 697–733
(2015)

19. Jia, H., Li, D., Wang, L.: Regularity theory in Orlicz spaces for elliptic equations in Reifenberg domains. J. Math. Anal.
Appl. 334, 804–817 (2007)

20. Jia, H., Wang, L., Yao, F., Zhou, S.: Optimal regularity for the Poisson equation. Proc. Am. Math. Soc. 137(6), 2037–2047
(2009)

21. Kilpeläinen, T., Koskela, P.: Global integrability of the gradients of solutions to partial differential equations. Nonlinear
Anal. 23(7), 899–909 (1994)

22. Kim, Y., Ryu, S.: Global gradient estimates for parabolic equations with measurable nonlinearities. Nonlinear Anal. 164,
77–99 (2017)

23. Kokilashvili, V., Krbec, M.: Weighted Inequalities in Lorentz and Orlicz Spaces, p. xii+233 World Scientific, River Edge
(1991). ISBN 981-02-0612-7

24. Maz’ya, V.G.: Sobolev Spaces. With Applications to Elliptic Partial Differential Equations, Grundlehren der
Mathematischen Wissenschaften, vol. 342 (2nd revised and augmented ed.), p. xxviii+866. Springer, Berlin (2011).
ISBN 978-3-642-15563-5

25. Mengesha, T., Phuc, N.C.: Weighted and regularity estimates for nonlinear equations on Reifenberg flat domains.
J. Differ. Equ. 250(5), 2485–2507 (2011)

26. Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Am. Math. Soc. 165, 207–226
(1972)

27. Phuc, N.C.: Nonlinear Muckenhoupt–Wheeden type bounds on Reifenberg flat domains, with applications to
quasilinear Riccati type equations. Adv. Math. 250, 387–419 (2014)

28. Rao, M.M., Ren, Z.D.: Theory of Orlicz Spaces. Monographs and Textbooks in Pure and Applied Mathematics, vol. 146,
p. xii+449 Dekker, New York (1991). ISBN 0-8247-8478-2

29. Rao, M.M., Ren, Z.D.: Applications of Orlicz Spaces. Monographs and Textbooks in Pure and Applied Mathematics, vol.
250, p. xii+464 Dekker, New York (2002). ISBN 0-8247-0730-3

30. Ryu, S.: Global gradient estimates for nonlinear elliptic equations. J. Korean Math. Soc. 51(6), 1209–1220 (2014)
31. Shen, Z.:W1,p estimates for elliptic homogenization problems in nonsmooth domains. Indiana Univ. Math. J. 57(5),

2283–2298 (2008)
32. Sun, Y., Yao, F., Zhou, S.: Gradient estimates in Orlicz spaces for quasilinear elliptic equation. Nonlinear Anal. 69(8),

2553–2565 (2008)
33. Toro, T.: Doubling and flatness: geometry of measures. Not. Am. Math. Soc. 44(9), 1087–1094 (1997)
34. Wang, L., Yao, F.: Higher-order nondivergence elliptic and parabolic equations in Sobolev spaces and Orlicz spaces.

J. Funct. Anal. 262(8), 3495–3517 (2012)
35. Yao, F.: Global weightedW2,p estimates for nondivergence elliptic equations with small BMO coefficients. Int. J. Math.

26(11), 1550089 (2015)


	Uniform estimates with data from generalized Lebesgue spaces in periodic structures
	Abstract
	MSC
	Keywords

	Introduction
	Auxiliary results in weighted Lebesgue spaces
	Uniform estimates in weighted Lebesgue spaces
	Estimates in Orlicz spaces
	Estimates in weighted Orlicz spaces
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Publisher's Note
	References


