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Abstract
In this paper, we consider the following fractional Kirchhoff problem with strong
singularity:

{
(1 + b

∫
R3

∫
R3

|u(x)–u(y)|2
|x–y|3+2s dx dy)(–�)su + V(x)u = f (x)u–γ , x ∈ R

3,

u > 0, x ∈ R
3,

where (–�)s is the fractional Laplacian with 0 < s < 1, b > 0 is a constant, and γ > 1.
Since γ > 1, the energy functional is not well defined on the work space, which is
quite different with the situation of 0 < γ < 1 and can lead to some new difficulties.
Under certain assumptions on V and f , we show the existence and uniqueness of a
positive solution ub by using variational methods and the Nehari manifold method.
We also give a convergence property of ub as b → 0, where b is regarded as a positive
parameter.
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Keywords: Fractional Kirchhoff problem; Strong singularity; Uniqueness; Variational
method; Concentration

1 Introduction
Nonlinear equations involving fractional powers of the Laplacian have attracted increas-
ing attention in recent years. The fractional Laplacian is the infinitesimal generator of Lévy
stable diffusion process and arises in anomalous diffusion in plasma, population dynamics,
geophysical fluid dynamics, flames propagation, chemical reactions in liquids, and Amer-
ican options in finance, see [1] for instance. There are a lot of applications for nonlocal
fractional problems, see for example [3, 6, 26, 33] and the references therein. In this paper,
we consider the following fractional Kirchhoff problem:

⎧⎨
⎩(1 + b

∫
R3

∫
R3

|u(x)–u(y)|2
|x–y|3+2s dx dy)(–�)su + V (x)u = f (x)u–γ , x ∈R

3,

u > 0, x ∈R
3,

(Pb)
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where b > 0 is a constant and γ > 1. The fractional Laplacian operator (–�)s in R
3 is de-

fined by

(–�)su(x) = C(s) P.V.
∫
R3

u(x) – u(y)
|x – y|3+2s dy, u ∈ S

(
R

3),

where P.V . stands for the Cauchy principal value, C(s) is a normalized constant, S(R3) is
the Schwartz space of rapidly decaying function. Throughout the paper, we suppose that
V and f satisfy:

(V1) V ∈ C(R3) satisfies infx∈R3 V (x) > V0 > 0, where V0 is a constant;
(V2) meas{x ∈ R3 : –∞ < V (x) ≤ h} < +∞ for all h ∈R;
(f1) f ∈ L

2
1+γ (R3) is a nonnegative function.

The motivation for studying problem (Pb) comes from Kirchhoff equation of the form

–
(

a + b
∫

�

|∇u|2 dx
)

�u = f (x, u), x ∈ �, (1.1)

where � ⊂ R
n is a bounded domain, a > 0, b ≥ 0, and u satisfies some boundary condi-

tions. Problem (1.1) is related to the stationary analogue of the equation

ρ
∂2u
∂2t

–
(

P0

h
+

F
2L

∫ L

0

∣∣∣∣∂u
∂x

∣∣∣∣
2

dx
)

∂2u
∂2x

= f (x, u), (1.2)

which was introduced by Kirchhoff [12] in 1883. This equation is an extension of the clas-
sical d’Alembert wave equation by considering the effects of changes in the length of the
string during vibrations. The parameters in (1.2) have the following meanings: L is the
length of the string, h is the area of the cross-section, F is the Young modulus of the ma-
terial, ρ is the mass density, and P0 is the initial tension. Problem (1.2) was proposed and
studied as the fundamental equation for understanding several physical systems, where u
describes a process which depends on its average. After the pioneering work of Lions [22],
the Kirchhoff type equation began to receive the attention of many researchers.

Recently, many scholars have paid attention to fractional Kirchhoff problem, which was
first studied by Fiscella and Valdinoci [10], where they proposed the following stationary
Kirchhoff variational model in bounded regular domains of Rn (n > 2s):

⎧⎨
⎩M(

∫
Rn

∫
Rn

|u(x)–u(y)|2
|x–y|n+2s dx dy)(–�)su = λf (x, u) + |u|2∗

s –2u, x ∈ �,

u = 0, x ∈ R
n \ �,

(1.3)

with 2∗
s = 2n

n–2s . Under some suitable conditions on f , Fiscella and Valdinoci [10] proved
that the existence of nonnegative solutions of problem (1.3) with the Kirchhoff function
M satisfies M(t) ≥ m0 = M(0) for all t ∈R

+, i.e., problem (1.3) is a nondegenerate case, see
also [5, 9, 11, 27, 30, 36]. In particular, Fiscella [8, 9] provided the existence of two solutions
for a fractional Kirchhoff problem involving weak singularity (i.e., 0 < γ < 1) and a critical
nonlinearity on a bounded domain.



Yu and Chen Boundary Value Problems         (2021) 2021:30 Page 3 of 18

In the local setting (s = 1), problem (Pb) is related to the following singular Kirchhoff
problem which was first considered by Liu and Sun [25]:

⎧⎪⎪⎨
⎪⎪⎩

–(a + b
∫
�

|∇u|2 dx)�u = λg(x) up

|u|δ + h(x)u–γ , x ∈ �,

u > 0, x ∈ �,

u = 0, x ∈ ∂�,

(1.4)

where � is a smooth bounded domain in R
3. Considering the weak singular case, when

λ > 0 is small, Liu and Sun [25] obtained two positive solutions for problem (1.4) with
3 < p < 5 – 2δ and g, h ∈ C(�) are nontrivial nonnegative functions. Later, by the varia-
tional method and perturbation method, Lei et al. [14] obtained two positive solutions for
problem (1.4) with δ = 0, p = 5, i.e., singular Kirchhoff type equation with critical expo-
nent. Liao et al. [21] investigated the existence and multiplicity of positive solutions for
problem (1.4) with δ = 0, p = 3. Liu et al. [24] studied the existence and multiplicity of pos-
itive solutions for the Kirchhoff type problem with singular and critical nonlinearities in
dimension four. Liao et al. [20] obtained the unique result of a class of singular Kirchhoff
type problems. When p = 3, λ = 1, and g ≥ 0 or g changes sign in �, Li et al. [16] showed
the existence and multiplicity of positive solutions for problem (1.4). By the perturbation
method, variational method, and some analysis techniques, Liu et al. [23], Tang et al. [32],
Lei and Liao [13] established a multiplicity theorem for a singular Kirchhoff type problem
with critical Sobolev exponent, Hardy–Sobolev critical exponent, and asymptotically lin-
ear nonlinearities, respectively. Mu and Lu [28], Li et al. [15], and Zhang [40] studied the
existence, uniqueness, and multiple results to a singular Schrödinger–Kirchhoff–Poisson
system. Li et al. [17], Tan and Sun [31], Zhang [41], and we [37] established a necessary
and sufficient condition on the existence of positive solutions for a Kirchhoff problem, a
Kirchhoff–Schrödinger–Poisson system, and a Schrödinger–Poisson system with strong
singularity (i.e., γ > 1), respectively. Wang et al. [35] further obtained a uniqueness result
for a Kirchhoff type fractional Laplacian problem with strong singularity. However, results
on the strong singular problem are dependent on a bounded smooth domain, and there
are few studies on the whole space. For more works on Kirchhoff and singular problems,
one could refer to [2, 4, 19, 34, 38, 39] and the references cited therein.

Motivated by the above results, we are concerned with the existence and convergence
property of positive solutions for problem (Pb) in this paper. Before stating our main re-
sults, we first collect some basic results of fractional Sobolev spaces. In view of the pres-
ence of the potential function V (x), we will work in the space

E =
{

u ∈Ds,2(
R

3) : ‖u‖E < +∞}

equipped with inner product and the norm

(u, v)E =
∫
R3

∫
R3

(u(x) – u(y))(v(x) – v(y))
|x – y|3+2s dx dy +

∫
R3

V (x)u(x)v(x) dx,

‖u‖E = (u, u)1/2
E .
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Here, Ds,2(R3) is the homogeneous fractional Sobolev space as the completion of C∞
0 (R3)

under the norm

‖u‖Ds,2(R3) =
(∫

R3

∫
R3

|u(x) – u(y)|2
|x – y|3+2s dx dy

)1/2 .= [u]s.

Moreover, by virtue of Proposition 3.4 and Proposition 3.6 in [7], we also have

∫
R3

∣∣(–�)
s
2 u

∣∣2 dx =
C(s)

2

∫
R3

∫
R3

|u(x) – u(y)|2
|x – y|3+2s dx dy.

Without loss of generality, we assume that C(s) = 2.
The energy functional corresponding to problem (Pb) is given by

Ib(u) =
1
2
‖u‖2

E +
b
4

(∫
R3

∣∣(–�)
s
2 u

∣∣2 dx
)2

–
1

1 – γ

∫
R3

f (x)|u|1–γ dx, (1.5)

and a function u ∈ E is called a solution of problem (Pλ) if u > 0 in R
3, and for every v ∈ E,

(u, v)E + b
∫
R3

∣∣(–�)
s
2 u

∣∣2 dx
∫
R3

(–�)
s
2 u(–�)

s
2 v dx –

∫
R3

f (x)u–γ v dx = 0. (1.6)

To the best of our knowledge, there are no results on the existence of positive solu-
tions for the fractional Kirchhoff problem with singularity on unbounded domains. Here
we need to overcome the lack of compactness as well as the non-differentiability of the
functional Ib on E and indirect availability of critical point theory due to the presence of
singular term. By the variational method and the Nehari method, we obtain the following
existence and uniqueness of positive solution and the asymptotic behavior of solutions
with respect to the parameter b.

Theorem 1.1 Let b ≥ 0 and γ > 1. Assume (V1), (V2), and (f1). Then problem (Pb) admits
a unique positive solution ub if and only if there exists u0 ∈ E such that

∫
R3

f (x)|u0|1–γ dx < +∞. (1.7)

Theorem 1.2 Let γ > 1. Assume (V1), (V2), and (f1). For every vanishing sequence {bn} ⊂
(0, 1), let ubn be the unique positive solution to problem (Pb) provided by Theorem 1.1. Then
ubn converge to w0 in E, where w0 is the unique positive solution to problem

⎧⎨
⎩(–�)su + V (x)u = f (x)u–γ , x ∈R

3,

u > 0, x ∈R
3.

(P0)

2 Preliminaries and proofs of the main results
Throughout the paper, we use the following notations:

• Lp(R3) is a Lebesgue space whose norm is denoted by ‖u‖p = (
∫
R3 |u|p dx)

1
p .

• For any α ∈ (0, 1), 2∗
α = 6

3–2α
is the fractional critical exponent in dimension three.

• → denotes the strong convergence and ⇀ denotes the weak convergence.
• u+ = max{u, 0} and u– = max{–u, 0} for any function u.
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• C and Ci (i = 1, 2, . . .) denote various positive constants which may vary from line to
line.

Using conditions (V1) and (V2), we can obtain the following continuous or compact em-
bedding theorem (see [18], Lemma 2.2).

Lemma 2.1 Let 0 < s < 1 and suppose that (V1) and (V2) hold. If p ∈ [2, 2∗
s ], then the

embedding E ↪→ Lp(R3) is continuous, and so there exists a constant Cp > 0 such that
‖u‖p ≤ Cp‖u‖E for all u ∈ E. If p ∈ [2, 2∗

s ), then the embedding E ↪→ Lp(R3) is compact.

In order to prove our main results, we consider the following two constrained sets:

N (b)
1 =

{
u ∈ E : ‖u‖2

E + b
(∫

R3

∣∣(–�)
s
2 u

∣∣2 dx
)2

–
∫
R3

f (x)|u|1–γ dx ≥ 0
}

and

N (b)
2 =

{
u ∈ E : ‖u‖2

E + b
(∫

R3

∣∣(–�)
s
2 u

∣∣2 dx
)2

–
∫
R3

f (x)|u|1–γ dx = 0
}

for any b ≥ 0. We now come to prove our main results.

Proof of Theorem 1.1 (Necessity) Suppose that u ∈ E is a solution of problem (Pb), then
u > 0 and satisfies (1.6). Choosing v = u in (1.6), we can get

∫
R3

f (x)u1–γ dx = ‖u‖2
E + b

(∫
R3

∣∣(–�)
s
2 u

∣∣2 dx
)2

< +∞,

and the necessity is proved.
(Sufficiency) The proof will be complete in five steps under assumption (1.7) and b > 0

always hold.
Step 1. We prove that N (b)

i �= ∅, i = 1, 2.
Fix u ∈ E with

∫
R3 f (x)|u|1–γ dx < +∞. For any η > 0, we have

Ib(ηu) =
η2

2
‖u‖2

E +
bη4

4

(∫
R3

∣∣(–�)
s
2 u

∣∣2 dx
)2

–
η1–γ

1 – γ

∫
R3

f (x)|u|1–γ dx.

Set g(η) = η
dIb(ηu)

dη
, then

g(η) = η2‖u‖2
E + bη4

(∫
R3

∣∣(–�)
s
2 u

∣∣2 dx
)2

– η1–γ

∫
R3

f (x)|u|1–γ dx.

By γ > 1, one can easily obtain that g(η) is increasing on (0, +∞), with limη→0+ g(η) =
–∞ and limη→+∞ g(η) = +∞. Thus, there exists unique η(u) > 0 such that Ib(η(u)u) =
minη>0 Ib(ηu) and g(η(u)) = 0, i.e.,

η2(u)‖u‖2
E + bη4(u)

(∫
R3

∣∣(–�)
s
2 u

∣∣2 dx
)2

– η1–γ (u)
∫
R3

f (x)|u|1–γ dx = 0,

that is, η(u)u ∈ N (b)
2 . Specially, assumption (1.7) implies that there exists η(u0) > 0 such

that η(u0)u0 ∈N (b)
2 ⊂N (b)

1 , and so N (b)
i �= ∅, i = 1, 2, for any b ≥ 0.
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Step 2. We prove that N (b)
1 is an unbounded closed set, and there exists a positive constant

C1 such that ‖u‖ ≥ C1 for all u ∈N (b)
1 .

According to Step 1, ηu ∈ N (b)
1 for any η ≥ η(u0), so N (b)

1 is unbounded. The closeness
of N (b)

1 follows from Fatou’s lemma. We claim that there exists a positive constant C1 such
that ‖u‖E ≥ C1 for all u ∈ N (b)

1 . Arguing by contradiction, there exists a sequence {un} ⊂
N (b)

1 satisfying un → 0 in E. Since γ > 1 and un ∈ N (b)
1 , by the reverse form of Hölder’s

inequality, one can get (note that un �≡ 0 as γ > 1)

(∫
R3

f
2

1+γ (x) dx
) 1+γ

2
(∫

R3
|un|2 dx

) 1–γ
2 ≤

∫
R3

f (x)|un|1–γ dx

≤ ‖un‖2
E + b

(∫
R3

∣∣(–�)
s
2 un

∣∣2 dx
)2

→ 0.

Since f ∈ L
2

1+γ (R3) is nonnegative and then (
∫
R3 f

2
1+γ (x) dx)

1+γ
2 > 0, we have

∫
R3 |un|2 dx →

∞, which is impossible. So there exists a positive constant C1 such that ‖u‖E ≥ C1 for all
u ∈N (b)

1 .
Step 3. We show the properties of the minimizing sequence {un}.
For any u ∈N (b)

1 , according to Step 2, there exists a positive constant C1 such that ‖u‖E ≥
C1, then by (1.5) and γ > 1 one has

Ib(u) =
1
2
‖u‖2

E +
b
4

(∫
R3

∣∣(–�)
s
2 u

∣∣2 dx
)2

–
1

1 – γ

∫
R3

f (x)|u|1–γ dx ≥ 1
2
‖u‖2

E . (2.1)

Therefore, Ib(u) is coercive and bounded from below on N (b)
1 , and so infN (b)

1
Ib is well de-

fined. Since N (b)
1 is closed, we apply the Ekeland variational principle to construct a min-

imizing sequence {un} ⊂N (b)
1 satisfying

(1) Ib(un) < infN (b)
1

Ib + 1
n ;

(2) Ib(z) ≥ Ib(un) – 1
n‖un – z‖E , ∀z ∈N (b)

1 .
The coerciveness of Ib on N (b)

1 shows that ‖un‖E ≤ C2 uniformly for some suitable posi-
tive constant C2. Hence, C1 ≤ ‖un‖E ≤ C2 and then there exist a subsequence of {un} (still
denoted by {un}) and a function ub ∈ E such that

un ⇀ ub, in E and Ds,2(
R

3),

un → ub, in Lp(
R

3), p ∈ [2, 2∗
s ),

un → ub, a.e. in R
3.

Since Ib(|u|) ≤ Ib(u), we could assume un ≥ 0, then ub(x) ≥ 0. By {un} ⊂ N (b)
1 and Fatou’s

lemma, we further get
∫
R3 f (x)u1–γ

b dx < +∞, which implies ub(x) > 0 a.e. in R
3.

Step 4. We prove that ub ∈N (b)
2 , infN (b)

1
Ib = Ib(ub), and for any 0 ≤ ψ ∈ E,

(ub,ψ)E + b
∫
R3

∣∣(–�)
s
2 ub

∣∣2 dx
∫
R3

(–�)
s
2 ub(–�)

s
2 ψ dx –

∫
R3

f (x)u–γ

b ψ dx ≥ 0.

To prove the above statements, we consider the following two cases regarding whether
{un} belongs to N (b)

1 \N (b)
2 or N (b)

2 .
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Case 1. Suppose that {un} ⊂N (b)
1 \N (b)

2 for all n large.
For any 0 ≤ ψ ∈ E, since {un} ⊂N (b)

1 \N (b)
2 , f (x) is nonnegative and γ > 1, we can derive

∫
R3

f (x)(un + ηψ)1–γ dx ≤
∫
R3

f (x)u1–γ
n dx

< ‖un‖2
E + b

(∫
R3

∣∣(–�)
s
2 un

∣∣2 dx
)2

, ∀η ≥ 0.

Therefore, we could choose η > 0 small enough such that

∫
R3

f (x)(un + ηψ)1–γ dx < ‖un + ηψ‖2
E + b

(∫
R3

∣∣(–�)
s
2 (un + ηψ)

∣∣2 dx
)2

,

that is, un + ηψ ∈N (b)
1 . Applying condition (2) with z = un + ηψ leads to

‖ηψ‖E

n
≥ Ib(un) – Ib(un + ηψ)

=
1
2
(‖un‖2

E – ‖un + ηψ‖2
E
)

+
1

1 – γ

∫
R3

f (x)
[
(un + ηψ)1–γ – u1–γ

n
]

dx

+
b
4

[(∫
R3

∣∣(–�)
s
2 un

∣∣2 dx
)2

–
(∫

R3

∣∣(–�)
s
2 (un + ηψ)

∣∣2 dx
)2]

.

Dividing by η > 0 and passing to the liminf as η → 0+, according to Fatou’s lemma, we
obtain

‖ψ‖E

n
+ (un,ψ)E + b

∫
R3

∣∣(–�)
s
2 un

∣∣2 dx
∫
R3

(–�)
s
2 un(–�)

s
2 ψ dx

≥ lim inf
η→0+

1
1 – γ

∫
R3

f (x)
(un + ηψ)1–γ – u1–γ

n

η
dx

≥
∫
R3

lim inf
η→0+

f (x)
1 – γ

(un + ηψ)1–γ – u1–γ
n

η
dx

=
∫
R3

f (x)u–γ
n ψ dx.

(2.2)

Letting n → ∞ and using Fatou’s lemma again, one can get

∫
R3

f (x)u–γ

b ψ dx < +∞ (2.3)

for any 0 ≤ ψ ∈ E. Choose ψ = ub in (2.3), we get
∫
R3 f (x)u1–γ

b dx < +∞ and then Step
1 shows the existence of unique η(ub) > 0 satisfying η(ub)ub ∈ N (b)

2 and Ib(η(ub)ub) =
minη>0 Ib(ηub). Hence, according to the weak lower semi-continuity of the norm and Fa-
tou’s lemma, one has

inf
N (b)

1

Ib = lim
n→∞ Ib(un)

= lim inf
n→∞

[
1
2
‖un‖2

E +
b
4

[un]4
s –

1
1 – γ

∫
R3

f (x)u1–γ
n dx

]
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≥ lim inf
n→∞

[
1
2
‖un‖2

E

]
+ lim inf

n→∞

[
b
4

[un]4
s

]
+ lim inf

n→∞

[
1

γ – 1

∫
R3

f (x)u1–γ
n dx

]

≥ 1
2
‖ub‖2

E +
b
4

[ub]4
s +

1
γ – 1

∫
R3

f (x)u1–γ

b dx

= Ib(ub) ≥ Ib
(
η(ub)ub

)
≥ inf

N (b)
2

Ib ≥ inf
N (b)

1

Ib.

Thus, the above inequalities are actually equalities. By the uniqueness of η(ub), we have
η(ub) = 1, that is,

ub ∈N (b)
2 , inf

N (b)
1

Ib = Ib(ub). (2.4)

Moreover, we can also obtain that lim infn→∞ ‖un‖2
E = ‖ub‖2

E with lim infn→∞[un]s = [ub]s

and a subsequence of {un} (still denoted by {un}) such that limn→∞ ‖un‖2
E = ‖ub‖2

E and
limn→∞[un]s = [ub]s This together with the weak convergence of {un} in E and Ds,2(R3)
implies un → ub strongly in E and Ds,2(R3). Hence, using Fatou’s lemma again, it follows
from (2.2) that, for any 0 ≤ ψ ∈ E,

(ub,ψ)E + b
∫
R3

∣∣(–�)
s
2 ub

∣∣2 dx
∫
R3

(–�)
s
2 ub(–�)

s
2 ψ dx

≥
∫
R3

f (x)u–γ

b ψ dx. (2.5)

Case 2. There exists a subsequence of {un} (still denoted by {un})which belongs to N (b)
2 .

For any 0 ≤ ψ ∈ E, using γ > 1 and the boundedness of {un}, we have

∫
R3

f (x)(un + ηψ)1–γ dx ≤
∫
R3

f (x)u1–γ
n dx

= ‖un‖2
E + b

(∫
R3

∣∣(–�)
s
2 un

∣∣2 dx
)2

< +∞, ∀η ≥ 0,

then Step 1 shows the existence of some functions hn,ψ (η) : [0, +∞) → (0, +∞) corre-
sponding to un + ηψ such that

hn,ψ (0) = 1, hn,ψ (η)(un + ηψ) ∈N (b)
2 , ∀η ≥ 0.

The continuity of hn,ψ (η) with respect to η ≥ 0 follows from the dominated convergence
theorem since γ > 1 and

∫
R3 f (x)u1–γ

n dx < +∞. However, we have no idea whether or not
hn,ψ (η) is differentiable. For the sake of proof, we set

h′
n,ψ (0) = lim

η→0+

hn,ψ (η) – 1
η

∈ [–∞, +∞].

If the above limit does not exist, we choose ηk → 0 (instead of η → 0) with ηk > 0 such that
h′

n,ψ (0) = limk→∞
hn,ψ (ηk )–1

ηk
∈ [–∞, +∞]. According to un ∈ N (b)

2 and hn,ψ (η)(un + ηψ) ∈
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N (b)
2 , we have

‖un‖2
E + b

(∫
R3

∣∣(–�)
s
2 un

∣∣2 dx
)2

=
∫
R3

f (x)u1–γ
n dx,

h2
n,ψ (η)‖un + ηψ‖2

E + bh4
n,ψ (η)

(∫
R3

∣∣(–�)
s
2 (un + ηψ)

∣∣2 dx
)2

= h1–γ

n,ψ (η)
∫
R3

f (x)(un + ηψ)1–γ dx.

Since γ > 1, the above two equalities yield

0 ≥ [
hn,ψ (η) – 1

]{[
hn,ψ (η) + 1

]‖un + ηψ‖2
E

–
h1–γ

n,ψ (η) – 1
hn,ψ (η) – 1

∫
R3

f (x)(un + ηψ)1–γ dx

+ b
[
h2

n,ψ (η) + 1
][

hn,ψ (η) + 1
](∫

R3

∣∣(–�)
s
2 (un + ηψ)

∣∣2 dx
)2}

+
[‖un + ηψ‖2

E – ‖un‖2
E
]

+ b
[(∫

R3

∣∣(–�)
s
2 (un + ηψ)

∣∣2 dx
)2

–
(∫

R3

∣∣(–�)
s
2 un

∣∣2 dx
)2]

.

Dividing by η > 0 and passing to the limit as η → 0+, using the continuity of hn,ψ (η) and
un ∈N (b)

2 , we obtain

0 ≥ h′
n,ψ (0)

{
2‖un‖2

E + (γ – 1)
∫
R3

f (x)u1–γ
n dx + 4b

(∫
R3

∣∣(–�)
s
2 un

∣∣2 dx
)2}

+ 2(un,ψ)E + 4b
∫
R3

∣∣(–�)
s
2 un

∣∣2 dx
∫
R3

(–�)
s
2 un(–�)

s
2 ψ dx

= h′
n,ψ (0)

{
(γ + 1)‖un‖2

E + b(γ + 3)
(∫

R3

∣∣(–�)
s
2 un

∣∣2 dx
)2}

+ 2(un,ψ)E + 4b
∫
R3

∣∣(–�)
s
2 un

∣∣2 dx
∫
R3

(–�)
s
2 un(–�)

s
2 ψ dx,

which implies that h′
n,ψ (0) �= +∞. Since C1 ≤ ‖un‖E ≤ C2 by Step 3, we can further con-

clude from the above inequality that

h′
n,ψ (0) ≤ C3 uniformly in n (2.6)

for some suitable constant C3 > 0 and

‖un‖E

n
–

(γ + 1)C2
1

γ – 1
< 0

for n large enough. We claim that there exists a constant C4 such that h′
n,ψ (0) ≥ C4 uni-

formly in all n large. Fix n, without loss of generality, we can assume h′
n,ψ (0) < 0, and so
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hn,ψ (η) < 1 for η > 0 small. Applying condition (2) with z = hn,ψ (η)(un + ηψ) leads to

1
n

[
1 – hn,ψ (η)

]‖un‖E +
η

n
hn,ψ (η)‖ψ‖E ≥ 1

n
∥∥un – hn,ψ (η)(un + ηψ)

∥∥
E

≥ Ib(un) – Ib
[
hn,ψ (η)(un + ηψ)

]
. (2.7)

Since un ∈N (b)
2 , we can further get

‖ψ‖E

n
hn,ψ (η) ≥ hn,ψ (η) – 1

η

{‖un‖E

n
–

(
1
2

+
1

γ – 1

)[
hn,ψ (η) + 1

]‖un + ηψ‖2
E

– b
(

1
4

+
1

γ – 1

)[
h2

n,ψ (η) + 1
][

hn,ψ (η) + 1
]

×
(∫

R3

∣∣(–�)
s
2 (un + ηψ)

∣∣2 dx
)2}

–
(

1
2

+
1

γ – 1

)‖un + ηψ‖2
E – ‖un‖2

E
η

– b
(

1
4

+
1

γ – 1

)

× [(
∫
R3 |(–�) s

2 (un + ηψ)|2 dx)2 – (
∫
R3 |(–�) s

2 un|2 dx)2]
η

.

Letting η → 0+, using the continuity of hn,ψ (η) and C1 ≤ ‖un‖E ≤ C2, we obtain

‖ψ‖E

n
≥ h′

n,ψ (0)
{‖un‖E

n
–

(
γ + 1
γ – 1

)
‖un‖2

E – b
(

γ + 3
γ – 1

)(∫
R3

∣∣(–�)
s
2 un

∣∣2 dx
)2}

–
(

γ + 1
γ – 1

)
(un,ψ)E – b

(
γ + 3
γ – 1

)∫
R3

∣∣(–�)
s
2 un

∣∣2 dx
∫
R3

(–�)
s
2 un(–�)

s
2 ψ dx

= h′
n,ψ (0)

{‖un‖E

n
–

1
γ – 1

[
(γ + 1)‖un‖2

E + b(γ + 3)
(∫

R3

∣∣(–�)
s
2 un

∣∣2 dx
)2]}

–
(

γ + 1
γ – 1

)
(un,ψ)E – b

(
γ + 3
γ – 1

)∫
R3

∣∣(–�)
s
2 un

∣∣2 dx
∫
R3

(–�)
s
2 un(–�)

s
2 ψ dx

≥ h′
n,ψ (0)

{‖un‖E

n
–

(γ + 1)C2
1

γ – 1

}
–

(
γ + 1
γ – 1

)
(un,ψ)E

– b
(

γ + 3
γ – 1

)∫
R3

∣∣(–�)
s
2 un

∣∣2 dx
∫
R3

(–�)
s
2 un(–�)

s
2 ψ dx

since γ > 1 and h′
n,ψ (0) < 0. Then, from the construction of coefficient, we see that h′

n,ψ (0) �=
–∞ and cannot diverge to –∞ as n → ∞, that is,

h′
n,ψ (0) �= –∞, and h′

n,ψ (0) ≥ C4 uniformly in n large (2.8)

for some suitable constant C4. So, it follows from (2.6) and (2.8) that

h′
n,ψ (0) ∈ (–∞, +∞), and

∣∣h′
n,ψ (0)

∣∣ ≤ C uniformly in n large,
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where C = max{C3, |C4|} is independent of n. Furthermore, applying condition (2) with
z = hn,ψ (η)(un + ηψ) again leads to

|1 – hn,ψ (η)|
η

‖un‖E

n
+

‖ψ‖E

n
hn,ψ (η)

≥ 1
nη

∥∥un – hn,ψ (η)(un + ηψ)
∥∥

E

≥ 1
η

[
Ib(un) – Ib

[
hn,ψ (η)(un + ηψ)

]]

≥ hn,ψ (η) – 1
η

{
–

hn,ψ (η) + 1
2

‖un + ηψ‖2
E

+
h1–γ

n,ψ (η) – 1
(1 – γ )[hn,ψ (η) – 1]

∫
R3

f (x)(un + ηψ)1–γ dx

–
b
4
[
h2

n,ϕ(η) + 1
][

hn,ϕ(η) + 1
](∫

R3

∣∣(–�)
s
2 (un + ηψ)

∣∣2 dx
)2}

–
b
4

[(
∫
R3 |(–�) s

2 (un + ηψ)|2 dx)2 – (
∫
R3 |(–�) s

2 un|2 dx)2]
η

–
1
2

‖un + ηψ‖2
E – ‖un‖2

E
η

+
1

1 – γ

∫
R3

f (x)
(un + ηψ)1–γ – u1–γ

n

η
dx.

Passing to the liminf as η → 0+, since un ∈ N (b)
2 , by the continuity of hn,ψ (η) and Fatou’s

lemma, we have

|h′
n,ψ (0)| · ‖un‖E

n
+

‖ψ‖E

n

≥ h′
n,ψ (0)

{
–‖un‖2

E +
∫
R3

f (x)u1–γ
n dx – b

(∫
R3

∣∣(–�)
s
2 un

∣∣2 dx
)2}

– b
∫
R3

∣∣(–�)
s
2 un

∣∣2 dx
∫
R3

(–�)
s
2 un(–�)

s
2 ψ dx

– (un,ψ)E + lim inf
η→0+

1
1 – γ

∫
R3

f (x)
(un + ηψ)1–γ – u1–γ

n

η
dx

≥ –(un,ψ)E – b
∫
R3

∣∣(–�)
s
2 un

∣∣2 dx
∫
R3

(–�)
s
2 un(–�)

s
2 ψ dx

+
∫
R3

f (x)
1 – γ

lim inf
η→0+

(un + ηψ)1–γ – u1–γ
n

η
dx

= –(un,ψ)E – b
∫
R3

∣∣(–�)
s
2 un

∣∣2 dx
∫
R3

(–�)
s
2 un(–�)

s
2 ψ dx +

∫
R3

f (x)u–γ
n ψ dx.

Furthermore, for n large, we have

∫
R3

f (x)u–γ
n ψ dx

≤ |h′
n,ψ (0)| · ‖un‖E + ‖ψ‖E

n
+ (un,ψ)E
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+ b
∫
R3

∣∣(–�)
s
2 un

∣∣2 dx
∫
R3

(–�)
s
2 un(–�)

s
2 ψ dx

≤ C · C2 + ‖ψ‖E

n
+ (un,ψ)E + b

∫
R3

∣∣(–�)
s
2 un

∣∣2 dx
∫
R3

(–�)
s
2 un(–�)

s
2 ψ dx,

thanks to C1 ≤ ‖un‖E ≤ C2 and |h′
n,ϕ(0)| ≤ C uniformly in n large. Passing to the limit as

n → ∞ with using Hölder’s inequality and Fatou’s lemma again leads to

∫
R3

f (x)u–γ

b ψ dx < +∞

for any 0 ≤ ψ ∈ E. By the same argument as in Case 1, we can also obtain that

ub ∈N (b)
2 , inf

N (b)
1

Ib = Ib(ub), (2.9)

and for any 0 ≤ ψ ∈ E,

(ub,ψ)E + b
∫
R3

∣∣(–�)
s
2 ub

∣∣2 dx
∫
R3

(–�)
s
2 ub(–�)

s
2 ψ dx

≥
∫
R3

f (x)u–γ

b ψ dx (2.10)

in Case 2. Therefore, combining (2.4), (2.5), (2.9), and (2.10), we could conclude that in
either case, up to a subsequence, un → ub strongly in E, ub ∈N (b)

2 , infN (b)
1

Ib = Ib(ub), and

(ub,ψ)E + b
∫
R3

∣∣(–�)
s
2 ub

∣∣2 dx
∫
R3

(–�)
s
2 ub(–�)

s
2 ψ dx ≥

∫
R3

f (x)u–γ

b ψ dx (2.11)

for any 0 ≤ ψ ∈ E.
Step 5. We prove that ub > 0 in R

3 and ub is a solution of problem (Pb).
According to Step 4, ub ∈N (b)

2 , that is,

‖ub‖E + b
(∫

R3

∣∣(–�)
s
2 ub

∣∣2 dx
)2

–
∫
R3

f (x)u1–γ

b = 0. (2.12)

For any v ∈ E and ε > 0, set vε = ub + εv, then

(
ub(x) – ub(y)

)(
v+
ε (x) – v+

ε (y)
)

=
(
ub(x) – ub(y)

)(
vε(x) + v–

ε (x) – vε(y) – v–
ε (y)

)
=

∣∣ub(x) – ub(y)
∣∣2 + ε

(
ub(x) – ub(y)

)(
v(x) – v(y)

)
+

(
ub(x) – ub(y)

)(
v–
ε (x) – v–

ε (y)
)
. (2.13)

Using the proof of Theorem 3.2 in [8], we can obtain

lim inf
ε→0+

1
ε

∫
R3

∫
R3

(ub(x) – ub(y))[v–
ε (x) – v–

ε (y)]
|x – y|3+2s dx dy ≤ 0. (2.14)
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Set �ε = {x ∈ R
3 : vε ≤ 0}, then using (2.12)–(2.13) and applying inequality (2.11) with

ψ = v+
ε lead to

0 ≤ 1
ε

{∫
R3

∫
R3

(ub(x) – ub(y))(v+
ε (x) – v+

ε (y))
|x – y|3+2s dx dy +

∫
R3

V (x)ubv+
ε dx

+ b
∫
R3

∣∣(–�)
s
2 ub

∣∣2 dx
∫
R3

(–�)
s
2 ub(–�)

s
2 v+

ε dx –
∫
R3

f (x)u–γ

b v+
ε dx

}

=
1
ε

∫
R3

∫
R3

|ub(x) – ub(y)|2
|x – y|3+2s dx dy +

∫
R3

∫
R3

(ub(x) – ub(y))(v(x) – v(y))
|x – y|3+2s dx dy

+
1
ε

∫
R3

∫
R3

(ub(x) – ub(y))(v–
ε (x) – v–

ε (y))
|x – y|3+2s dx dy

+
1
ε

(∫
R3

–
∫

�ε

){
V (x)ub(ub + εv)

+ b
(∫

R3

∣∣(–�)
s
2 ub

∣∣2 dx
)

(–�)
s
2 ub(–�)

s
2 (ub + εv) – f (x)u–γ

b (ub + εv)
}

dx

=
1
ε

{
‖ub‖2

E + b
(∫

R3

∣∣(–�)
s
2 ub

∣∣2 dx
)2

–
∫
R3

f (x)u1–γ

b dx
}

+
{

(ub, v)E + b
∫
R3

∣∣(–�)
s
2 ub

∣∣2 dx
∫
R3

(–�)
s
2 ub(–�)

s
2 v dx –

∫
R3

f (x)u–γ

b v dx
}

–
1
ε

∫
�ε

{
V (x)ub(ub + εv) + b

(∫
R3

∣∣(–�)
s
2 ub

∣∣2 dx
)

(–�)
s
2 ub(–�)

s
2 (ub + εv)

– f (x)u–γ

b (ub + εv)
}

dx +
1
ε

∫
R3

∫
R3

(ub(x) – ub(y))(v–
ε (x) – v–

ε (y))
|x – y|3+2s dx dy

≤
{

(ub, v)E + b
∫
R3

∣∣(–�)
s
2 ub

∣∣2 dx
∫
R3

(–�)
s
2 ub(–�)

s
2 v dx –

∫
R3

f (x)u–γ

b v dx
}

–
1
ε

∫
�ε

[
V (x)u2

b + b
(∫

R3

∣∣(–�)
s
2 ub

∣∣2 dx
)∣∣(–�)

s
2 ub

∣∣2
]

dx

–
∫

�ε

[
V (x)ubv + b

(∫
R3

∣∣(–�)
s
2 ub

∣∣2 dx
)

(–�)
s
2 ub(–�)

s
2 v

]
dx

+
1
ε

∫
R3

∫
R3

(ub(x) – ub(y))(v–
ε (x) – v–

ε (y))
|x – y|3+2s dx dy

≤
{

(ub, v)E + b
∫
R3

∣∣(–�)
s
2 ub

∣∣2 dx
∫
R3

(–�)
s
2 ub(–�)

s
2 v dx –

∫
R3

f (x)u–γ

b v dx
}

–
∫

�ε

[
V (x)ubv + b

(∫
R3

∣∣(–�)
s
2 ub

∣∣2 dx
)

(–�)
s
2 ub(–�)

s
2 v

]
dx

+
1
ε

∫
R3

∫
R3

(ub(x) – ub(y))(v–
ε (x) – v–

ε (y))
|x – y|3+2s dx dy.

Passing to the liminf as ε → 0+ to the above inequality and using (2.14) and the fact that
|�ε| → 0 as ε → 0+, we have

(ub, v)E + b
∫
R3

∣∣(–�)
s
2 ub

∣∣2 dx
∫
R3

(–�)
s
2 ub(–�)

s
2 v dx –

∫
R3

f (x)u–γ

b v dx ≥ 0, ∀v ∈ E.
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This inequality also holds for –v, hence we obtain

(ub, v)E + b
∫
R3

∣∣(–�)
s
2 ub

∣∣2 dx
∫
R3

(–�)
s
2 ub(–�)

s
2 v dx

–
∫
R3

f (x)u–γ

b v dx = 0, ∀v ∈ E. (2.15)

From an argument similar to [29, Theorem 6.3], we know that ub ∈ Cα
loc(R3) for some

α ∈ (0, s). On the other hand, (2.15) implies that

[
1 + b

∫
R3

∣∣(–�)
s
2 ub

∣∣2 dx
]

(–�)sub + V (x)ub ≥ 0. (2.16)

Assume that there exists x0 ∈ R
3 such that ub(x0) = 0, then from (2.16) we have

(–�)sub(x0) ≥ 0. On the other hand, since ub ≥ 0 and ub �≡ 0, we can get from Lemma 3.2
in [7] that

(–�)sub(x0) = –
∫
R3

ub(x0 + y) + ub(x0 – y) – 2ub(x0)
|y|3+2s dy

= –
∫
R3

ub(x0 + y) + ub(x0 – y)
|y|3+2s dy < 0,

a contradiction. Therefore, ub > 0 in R
3 and ub ∈ E is a solution of problem (Pb).

Step 6. We show that ub is a unique solution of problem (Pb).
Suppose that u∗ ∈ E is also a solution of problem (Pb), then we have

(u∗, v)E + b
∫
R3

∣∣(–�)
s
2 u∗

∣∣2 dx
∫
R3

(–�)
s
2 u∗(–�)

s
2 v dx

–
∫
R3

f (x)u–γ
∗ v dx = 0, ∀v ∈ E. (2.17)

Taking v = ub – u∗ in both equations (2.15)–(2.17) and subtracting term by term, we obtain

0 ≥
∫
R3

f (x)
(
u–γ

b – u–γ
∗

)
(ub – u∗) dx

= ‖ub – u∗‖2
E + b

[(∫
R3

∣∣(–�)
s
2 ub

∣∣2 dx
)2

–
∫
R3

∣∣(–�)
s
2 ub

∣∣2 dx
∫
R3

(–�)
s
2 ub(–�)

s
2 u∗ dx

–
∫
R3

∣∣(–�)
s
2 u∗

∣∣2 dx
∫
R3

(–�)
s
2 u∗(–�)

s
2 ub dx +

(∫
R3

∣∣(–�)
s
2 u∗

∣∣2 dx
)2]

≥ ‖ub – u∗‖2
E + b

(
[ub]4

s – [ub]3
s [u∗]s – [u∗]3

s [ub]s + [u∗]4
s
)

= ‖ub – u∗‖2
E + b

(
[ub]s – [u∗]s

)2([ub]2
s + [ub]s[u∗]s + [u∗]2

s
)

≥ ‖ub – u∗‖2
E ≥ 0,

where we use Hölder’s inequality. So ‖ub – u∗‖2
E = 0, then ub = u∗ and ub is the unique

solution of problem (Pb). This ends the proof of Theorem 1.1. �
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Proof of Theorem 1.2 In the proof of Theorem 1.1, b = 0 and b = 1 are allowed. Hence,
under the assumptions of Theorem 1.2, there exist a unique positive solution w0 ∈ E to
problem (P0) and a unique positive solution w1 ∈ E to problem (P1), that is, for any v ∈ E,
one has

⎧⎨
⎩

(w0, v)E =
∫
R3 f (x)w–γ

0 v dx,

w0 ∈N (0)
2 , infN (0)

1
I0 = I0(w0),

(2.18)

⎧⎨
⎩

(w1, v)E +
∫
R3 |(–�) s

2 w1|2 dx
∫
R3 (–�) s

2 w1(–�) s
2 v dx =

∫
R3 f (x)w–γ

1 v dx,

w1 ∈N (1)
2 , infN (1)

1
I1 = I1(w1).

(2.19)

Step 1. We prove that cb ≤ c1 for b ∈ [0, 1] where cb = infN (b)
1

Ib.

By the proof of the necessity of Theorem 1.1, we have
∫
R3 f (x)w1–γ

1 dx < +∞. Accord-
ing to Step 1 in the proof of Theorem 1.1 and (2.19), there exists unique η(w1) > 0 such
that η(w1)w1 ∈ N (b)

2 , Ib(η(w1)w1) = minη>0 Ib(ηw1), and c1 = I1(w1) = minη>0 I1(ηw1). Since
N (b)

2 ⊂N (b)
1 and b ∈ [0, 1], we then have

cb = inf
N (b)

1

Ib ≤ inf
N (b)

2

Ib ≤ Ib
(
η(w1)w1

)
= min

η>0
Ib(ηw1) ≤ min

η>0
I1(ηw1) = c1.

For every vanishing sequence {bn} ⊂ (0, 1), since {ubn} is a positive solution sequence to
problem (Pb) provided by Theorem 1.1, then cbn ≤ c1 and for every v ∈ E,

(ubn , v)E + bn

∫
R3

∣∣(–�)
s
2 ubn

∣∣2 dx
∫
R3

(–�)
s
2 ubn (–�)

s
2 v dx =

∫
R3

f (x)u–γ

bn
v dx. (2.20)

Using (2.1), we can further get

1
2
‖ubn‖2

E ≤ Ibn (ubn ) = cbn ≤ c1,

which implies that {ubn} is bounded in E, and so there exist a subsequence of {ubn} (still
denoted by {ubn}) and a nonnegative function u0 ∈ E such that

ubn ⇀ u0, in E,

ubn → u0, in Lp(
R

3), p ∈ [2, 2∗
s ), (2.21)

ubn → u0, a.e. in R
3.

Step 2. We prove that u0 ∈N (0)
2 , infN (0)

1
I0 = I0(u0), ubn → u0 in E, and for any 0 ≤ v ∈ E,

(u0, v)E ≥
∫
R3

f (x)u–γ
0 v dx.

Passing to the liminf as n → ∞ in (2.20) and using Fatou’s lemma, for any 0 ≤ v ∈ E, we
have

(u0, v)E –
∫
R3

f (x)u–γ
0 v dx ≥ 0. (2.22)
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Similar to Step 4 in the proof of Theorem 1.1, we have u0 > 0 in R
3. Choosing v = u0 in

(2.22) leads to ‖u0‖2
E –

∫
R3 f (x)u1–γ

0 dx ≥ 0, i.e., u0 ∈N (0)
1 , so I0(u0) ≥ c0. Similar to Step 1,

for any n ∈ N, there exists unique ηn(w0) > 0 such that ηn(w0)w0 ∈ N (bn)
2 , Ibn (ηn(w0)w0) =

minη>0 Ibn (ηw0). Thus

c0 = I0(w0)

= Ibn (w0) –
bn

4

(∫
R3

∣∣(–�)
s
2 w0

∣∣2 dx
)2

≥ Ibn

(
ηn(w0)w0

)
–

bn

4

(∫
R3

∣∣(–�)
s
2 w0

∣∣2 dx
)2

≥ cbn –
bn

4

(∫
R3

∣∣(–�)
s
2 w0

∣∣2 dx
)2

,

which yields

lim sup
n→+∞

cbn ≤ c0. (2.23)

On the other hand,

cbn = Ibn (ubn )

=
1
2
‖ubn‖2

E +
bn

4

(∫
R3

∣∣(–�)
s
2 ubn

∣∣2 dx
)2

–
1

1 – γ

∫
R3

f (x)u1–γ

bn
dx

≥ 1
2
‖ubn‖2

E –
1

1 – γ

∫
R3

f (x)u1–γ

bn
dx.

By the weak lower semi-continuity of the norm, (2.21), Fatou’s lemma, and I0(u0) ≥ c0, we
have

lim inf
n→∞ cbn ≥ lim inf

n→∞

[
1
2
‖ubn‖2

E

]
+ lim inf

n→∞

[
1

γ – 1

∫
R3

f (x)u1–γ

bn
dx

]

≥ 1
2
‖u0‖2

E +
1

γ – 1

∫
R3

f (x)u1–γ
0 dx = I0(u0) ≥ c0. (2.24)

This combined with (2.23) leads to limn→+∞ cbn = c0. Thus, the above inequalities are ac-
tually equalities, so ubn → u0 in E and I0(u0) = c0 = infN (0)

1
I0. Choosing v = ubn in (2.20)

and passing to the liminf as n → +∞, one can get

‖u0‖2
E =

∫
R3

f (x)u1–γ
0 dx.

That is to say, u0 ∈N (0)
2 .

Step 3. We prove that u0 = w0 and then ubn → w0 in E.
By (2.22) and u0 ∈ N (0)

2 , similar to Step 5 in the proof of Theorem 1.1, we can further
that 0 < u0 ∈ E is also a solution of problem (P0). By the uniqueness of solution to problem
(P0), u0 = w0. Hence ubn → w0 in E and w0 is the unique positive solution to problem (P0).
This completed the proof of Theorem 1.2. �
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