
Wang and Zhang Boundary Value Problems         (2021) 2021:33 
https://doi.org/10.1186/s13661-021-01508-7

R E S E A R C H Open Access

Traveling wave solutions for a class of
reaction-diffusion system
Bingyi Wang1 and Yang Zhang1*

*Correspondence:
zhangyanghit0217@163.com
1School of Mathematics Sciences,
Harbin Engineering University,
Harbin, 150001, P.R. China

Abstract
In this paper we investigate the existence of traveling wave for a one-dimensional
reaction diffusion system. We show that this system has a unique translation traveling
wave solution.

Keywords: Reaction-diffusion equation; Traveling wave solution; Existence and
uniqueness

1 Introduction
This paper deals with the existence and uniqueness of traveling wave solutions of the fol-
lowing reaction-diffusion system:

⎧
⎨

⎩

ut = uxx + u(1 – u – rv
1+u ),

vt = vxx + buv
1+u ,

(1.1)

where r and b are positive constant numbers.
In relation to our topic, Fu [2, 3] studied the acid nitrate-ferritin reaction model as fol-

lows:
⎧
⎨

⎩

ut = δuxx – 2uv
β+u ,

vt = vxx + uv
β+u ,

where β is a positive constant, u and v represent the concentration of ferritin and acid
nitrate, respectively, and δ is the ratio of diffusion rate. Fu [2, 3] showed the existence and
uniqueness of traveling solution for the acid nitrate-ferritin reaction model by using the
perturbation method. In (1.1) the U(1 – U) is the logistic term, which means the birth rate
minus death rate of U .

There are also many scientists who study the existence, uniqueness, and stability of
traveling wave solutions for a reaction-diffusion model in population biology and chem-
istry. We first recall some existing methods on the existence of traveling waves for the
reaction-diffusion model. In [9], Trofimchuk, Pinto, and Trofimchuk studied the travel-
ing wavefronts for a model of the Belousov–Zhabotinskii reaction in a chemical model by
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constructing upper and lower method solutions. They showed the existence and unique-
ness of solution. In [4], Huang investigated the existence of traveling wave for a class of
predator-prey systems via the perturbation method. For more details on the existence of
traveling wave solutions for other types of diffusion-reaction models, readers can refer to
[5–8, 10–13] and the references in these papers.

The remaining part of this paper is organized as follows. In Sect. 2, we construct the
supersolution and subsolution of (2.1) and introduce some useful lemmas for the main
result. In Sect. 3, we show the existence and uniqueness of traveling wave for (2.1).

2 Preparation
In this section, we introduce some useful lemmas for the main results of our papers. Note
that some reaction-diffusion models in population biology can be rewritten as the form
(1.1), and the existence and uniqueness of traveling waves for these reaction-diffusion
equations are equivalent to those for (2.1). Throughout this paper, a traveling wave so-
lution of (1.1) always refers to a pair (U , V , c), where U and V are bounded, continuous,
nonnegative, and nonconstant functions from R to R such that u(t, x) := U(x – ct), v(t, x) :=
V (x – ct) satisfies (2.1). Clearly, U(z), V (z) satisfy the following wave profile system:

⎧
⎨

⎩

U ′′ + cU ′ + U(1 – U – rV
1+U ) = 0,

V ′′ + cV ′ + bUV
1+U = 0.

(2.1)

There are boundary conditions (U , V )(–∞) = (0, 1/r) and (U , V )(+∞) = (1, 0). The main
purpose of this paper is to study the existence and uniqueness (up to translation) of trav-
eling waves for (2.1).

Next, we construct the supersolution and subsolution of (2.1) that will be used in the
following sections. For simplicity, we denote

p(s) := s2 – cs +
b
2

.

Due to c > c∗, where c∗ is the minimum wave speed (2.1) and equation p(s) = 0 has two
positive roots λ and λ + d, there are

λ =
1
2

c –
√

c2 + 2b, d =
√

c2 + 2b.

In addition, p(s) < 0, when s ∈ (λ,λ + d).

Lemma 2.1 The function V +(z) := e–λz satisfies the equation

(
V +)′′ + c

(
V +)′ +

b
2

V + = 0

for all z ∈R.

Proof Since p(λ) = 0, we know

(
V +)′′ + c

(
V +)′ +

b
2

V + = p(λ)V + = 0, z ∈R.



Wang and Zhang Boundary Value Problems         (2021) 2021:33 Page 3 of 15

Let 0 < γ < min{ c
δ
,λ}, then c – δγ > 0, γ – δ < 0. If z → ∞, then e(γ –δ)z → 0. There exists

z0 > 0 such that

e(γ –δ)z ≤ 1
r
γ (c – δγ ), ∀z ≥ z0.

From the above formula we get

(c – δγ )γ Me–γ z ≥ rV +(z), ∀z ≥ z0. (2.2)

Set M = eγ z0 . Since γ , z0 > 0, we know M > 1. �

Lemma 2.2 The function U–(z) := max{0, 1 – Me–γ z} satisfies the inequality

(
U–)′′ + c

(
U–)′ + U–

(

1 –
(
U–)

–
rV +

1 + U–

)

≥ 0 (2.3)

for all z �= z0.

Proof When z < z0, it can be concluded from the above inequality that (–∞, z0) is estab-
lished on U– ≡ 0. When z > z0, there is U–(z) = 1 – Me–γ z and 0 < U– < 1, so we have

1 ≥ (U–)
1 + U– . (2.4)

By calculating (2.2), (2.4), and M > 1, we know

(
U–)′′ + c

(
U–)′ + U–(

1 – U–) ≥ rV +(z) ≥ r(U–)V +

1 + U– .

Thus, we can conclude that (2.3) holds. The proof is completed.
Let 0 < η < min{γ , d}. Since 0 < η < γ , p(λ + η) < 0, select

K > max

{

M,
–Mb

2p(λ + η)

}

.

Let z1 = ln K
η

, z0 = ln M
γ

, and K > M > 1, η < γ , therefore z1 > z0 > 0. �

Lemma 2.3 The function V –(z) := max{0, V +(z) – Ke–(λ+η)z} satisfies the following inequal-
ity:

(
V –)′′ + c

(
V –)′ +

bU–V –

1 + U– ≥ 0 (2.5)

for all z �= z1.

Proof If z < z1, from (2.3), we can get that there is V – ≡ 0 on (–∞, z1). If z > z1, there are
V – = V + – Ke–(λ+η)z and U– = 1 – Me–γ z , and by calculating it is easy to see that

(
V –)′ =

(
V +)′ + K(λ + η)e–(λ+η)z,

(
V –)′′ =

(
V +)′′ – K(λ + η)2e–(λ+η)z.
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Note

bU–

1 + U– = b
[

1
2

–
Me–γ z

2(2 – Me–γ z)

]

.

We know

bU–V –

1 + U– = b
[

1
2

–
Me–γ z

2(2 – Me–γ z)

]
(
V + – Ke–(λ+η)z)

≥ b
[

1
2

V + –
1
2

Ke–(λ+η)z –
Me–(λ+γ )z

2(2 – Me–γ z)

]

.

Since (V +)′′ + c(V +)′ + b
2 V + = 0, K > –Mb/(2p(λ + η)), 1 – Me–γ z > 0, and γ > η, we know

(
V –)′′ + c

(
V –)′ +

bU–V –

1 + U–

≥ (
V +)′′ – K(λ + η)2e–(λ+η)z + c

((
V +)′ + K(λ + η)e–(λ+η)z)

+ b
[

1
2

V + –
1
2

Ke–(λ+η)z –
Me–(λ+γ )z

2(2 – Me–γ z)

]

= –Ke–(λ+η)zp(λ + η) –
bMe–(λ+γ )z

2(2 – Me–γ z)

≥ bM
2

e–(λ+η)z –
bM

2
e–(λ+γ )z

=
bM

2
e–(λ+η)z(1 – e–(γ –η)z)

≥ 0.

The proof is completed. �

Next, we establish some prior estimates of solutions to nonhomogeneous equations

w′′(z) + Aw′(z) + g(z)w(z) = h(z).

We need the following lemmas (Lemma 2.4 , Lemma 2.5, Lemma 2.6) (see [3]). For the
convenience of readers, we give the details.

Lemma 2.4 Let A be a constant number and g is a continuous function on [a, b]. Let φ1

and φ2 be the solution of second-order linear equation L[y] := y′′ – Ay′ + g(z)y = 0 on [a, b]
such that

φ1(a) = 0, φ′
1(a) = 1,

φ2(b) = 0, φ′
2(b) = 1.

Then we have the following estimates of φ1 and φ2:
∣
∣φ1(z)

∣
∣ +

∣
∣φ′

1(z)
∣
∣ ≤ e(K1+A+1)(b–a), (2.6)

∣
∣φ2(z)

∣
∣ +

∣
∣φ′

2(z)
∣
∣ ≤ e(K1+A+1)(b–a) (2.7)

for all z ∈ (a, b), where K1 = ‖g‖C[a,b].
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Proof If g ≤ 0, the Langsky matrix W (φ1,φ2) of φ1 and φ2 can be estimated as

∣
∣W (φ1,φ2)

∣
∣ ≥ 1

A
(
eA(b–a) – 1

)
> 0. (2.8)

In order to prove (2.6) and (2.7), rewrite the equation L[y] = 0 as a first-order system

Y ′ = B(z)Y , (2.9)

where Y =
( y

y′
)
, B(z) =

( 0 1
–g(z) A

)
.

Considering z ∈ (a, b), we know that, for Y ′ = B(z)Y in Y , the integral equation is satisfied

Y (z) = Y (a) +
∫ z

a
B(τ )Y (τ ) dτ . (2.10)

Thus

∥
∥Y (z)

∥
∥ ≤ ∥

∥Y (a)
∥
∥ + (K1 + A + 1)

∫ z

a

∥
∥Y (τ )

∥
∥,

where ‖·‖ represents the absolute norm, because of ‖B(·)‖ = max{|g(·)|, A+1} ≤ K1 +A+1,
we can easily derive

∥
∥Y (z)

∥
∥ ≤ ∥

∥Y (a)
∥
∥e(K1+A+1)(z–a). (2.11)

Replacing a with b in (2.10), we get

∥
∥Y (z)

∥
∥ ≤ ∥

∥Y (b)
∥
∥e(K1+A+1)(b–z). (2.12)

Now, let Y =
(

φ1 φ′
1
)T , ‖Y (z)‖ = |φ1(z)| + |φ′

1(z)|, ‖Y (a)‖ = 1, so (2.6) can be obtained from
(2.11). Similarly, we let Y =

(
φ2 φ′

2
)T in (2.12) to get (2.7). Note that we prove (2.8), applying

the Abel formula and noting W (φ1,φ2)(b) = –φ1(b), we get

W (φ1,φ2)(b) = –φ1(b)eA(b–z). (2.13)

In order to estimate φ1(b), we make the second-order equation ρ(z) = 1
A (eA(z–a) – 1) on

[a, b] have a unique solution ρ ′′ – Aρ ′ = 0. So, there is ρ(a) = 0, ρ ′(a) = 1. When z ∈ (a, b),
taking note of ρ ≥ 0, g ≤ 0, we find that the function ψ := φ1 – ρ satisfies

ψ ′′ – Aψ ′ + gψ = –gρ ≥ 0,

ψ(a) = ψ ′(a) = 0.

According to the maximum principles, we get ψ ≥ 0, so φ1 ≥ ρ on [a, b], then

φ1(b) ≥ ρ(b) =
1
A

(
eA(b–a) – 1

)
> 0. (2.14)

Combining (2.13) and (2.14), we know

∣
∣W (φ1,φ2)(z)

∣
∣ = φ1(b)eA(b–z) ≥ 1

A
(
eA(b–a) – 1

)
> 0.

Therefore, this lemma is proved. �
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Lemma 2.5 Let A be a positive constant, and let g and h be continuous functions on [a, b].
Let w ∈ C([a, b]) ∩ C2([a, b]) satisfy the differential equation

w′′(z) + Aw′(z) + g(z)w(z) = h(z), z ∈ (a, b).

There is w(a) = w(b). If –K1 ≤ g ≤ 0, |h| ≤ K2 on [a, b], where K1, K2 are constant. There
exist a positive constant K1 that depends only on the length of [a, b] and a positive constant
K3 such that ‖w‖C[a,b] ≤ K2K3 holds.

Proof First, we notice that both w′(a+) := limz→a+ w′(z), w′(b–) := limz→b– w′(z) exist, such
that z̄ ∈ (a, b) is fixed. Integrating the both sides of w′′(z) + Aw′(z) + g(z)w(z) = h(z) from z̄
to z, we have

w′(z) = w′(z̄) – A
(
w(z) – w(z̄)

)
–

∫ z

z̄
g(τ )w(τ ) dτ +

∫ z

z̄
h(τ ) dτ .

Since w, g , and h are right continuous at point a, thus w′(a+) exists. Similarly, we also
have the existence of w′(b–). Let φ1 and φ2 be as shown in Lemma 2.4. For any z ∈ (a, b),
integrating the inequality w′′(z)φ1(z) + Aw′(z)φ1(z) + g(z)w(z)φ1(z) = h(z)φ1(z) from a to b,
we know

φ1(z)w′(z) –
(
φ′

1(z) – Aφ1(z)w(z) + w(a)
)

=
∫ z

a
φ1(τ )h(τ ) dτ . (2.15)

Similarly, we have

–φ2(z)w′(z) +
(
φ′

2(z) – Aφ2(z)w(z) + w(b)
)

=
∫ b

z
φ2(τ )h(τ ) dτ . (2.16)

Since w(a) = w(b) = 0, multiplying (2.15) and (2.16) by φ1, φ2 respectively, we get

W (φ1,φ2)(z)w(z) = φ2(z)
∫ z

a
φ1(τ )h(τ ) dτ + φ1(z)

∫ b

z
φ2(τ )h(τ ) dτ .

Thus

w(z) =
φ2(z)

∫ z
a φ1(τ )h(τ ) dτ + φ1(z)

∫ b
z φ2(τ )h(τ ) dτ

W (φ1,φ2)(z)
.

Since |h| ≤ K2, this implies

w(z) ≤ K2
φ2(z)

∫ z
a φ1(τ ) dτ + φ1(z)

∫ b
z φ2(τ ) dτ

W (φ1,φ2)(z)
.

Finally, by virtue of (2.6), (2.7), (2.8), and the above inequality, we can get that ‖w‖C[a,b] ≤
K2K3 holds. �

Lemma 2.6 Let A, g , and h be the same as in the previous lemma. Let w ∈ C([a, b]) ∩
C2([a, b]) satisfy w′′(z) + Aw′(z) + g(z)w(z) = h(z) in (a, b). If ‖w‖C[a,b] ≤ K0, then there is a
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constant K4, only on A, K0, K1, K2 and interval length [a, b], so there is

∥
∥w′∥∥

C[a,b] ≤ K4. (2.17)

Proof Let φ1, φ2 be the same as in Lemma 2.4. For any point z ∈ (a, b), multiplying (2.15),
(2.16) by φ′

1 and φ′
2, respectively, we have

W (φ1,φ2)(z)
(
w′(z) + Aw(z)

)
+ φ′

2(z)w(a) + φ′
1(z)w(b)

= φ′
2(z)

∫ z

a
φ1(τ )h(τ ) dτ + φ′

1(z)
∫ b

z
φ2(τ )h(τ ) dτ .

It can be concluded that

w′(z) =
φ′

2(z)[
∫ z

a φ1(τ )h(τ ) dτ – w(a)] + φ′
1(z)[

∫ b
z φ2(τ )h(τ ) dτ – w(b)]

W (φ1,φ2)(z)
– Aw(z).

Under the assumptions of |h| ≤ K2 and |w| ≤ K0, we know

w′(z) ≤ |φ′
2(z)|[K2

∫ b
a φ1(τ )h(τ ) dτ + K0] + |φ′

1(z)|[K2
∫ b

a φ2(τ )h(τ ) dτ + K0]
|W (φ1,φ2)(z)| + AK0.

By virtue of (2.6), (2.7), and (2.8), we find that (2.17) holds.
Next, we consider the existence and uniqueness of solution to problem (2.1) within the

interval [–l, l]. The system is

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

U ′′ + cU ′ + U(1 – U – rV
1+U ) = 0, z ∈ (–l, l),

V ′′ + cV ′ + bUV
1+U = 0, z ∈ (–l, l),

(U , V )(–l) = (U–(–l), V –(–l)),

(U , V )(l) = (U–(l), V –(l)).

(2.18)

By studying some references [1–3], we know that the existence and uniqueness of trav-
eling wave solutions of reaction-diffusion equations in a finite interval can be completed
by the following Schauder fixed point theorem. �

Lemma 2.7 Let E be a closed convex set in a Banach space, let T : E → E be a continuous
map such that TE is compact, then T has a fixed point.

Let

Il := [–l, l], X := C(Il) × C(Il),

E :=
{

(U , V ) ∈ X|U– ≤ U ≤ U+ ≡ 1, V – ≤ V ≤ V +, x ∈ Il
}

.

It is easy to see that E is a closed convex set. In Banach space X, we denote the norm
‖(f1, f2)‖X = ‖f1‖C(Il) + ‖f2‖C(Il). Since U– and V – are nonnegative, we have U ≥ 0, V ≥ 0
for any (U , V ) ∈ E.
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Lemma 2.8 For given (U0, V0) ∈ E, there is a unique solution (U , V ) to the following bound-
ary value problem:

⎧
⎪⎪⎨

⎪⎪⎩

U ′′ + cU ′ + U(1 – U – rV0
1+U ) = 0, z ∈ (–l, l),

V ′′ + cV ′ + bU0V0
1+U0

= 0, z ∈ (–l, l),

(U , V )(l) = (U–, V –)(l), (U , V )(–l) = (U–, V –)(–l).

(2.19)

In addition, the solution (U , V ) satisfies U > 0, V > 0 in (–l, l).

Proof The system is not a coupled system, thus we know that there are existence and
uniqueness of U and V . By the definition of U– and V –, we know U–(–l) = V –(–l) = 0,
U–(l) > 0, V –(l) > 0. Since the equation of V is a linear equation, it is easy to see the ex-
istence and uniqueness of V . Moreover, V ′′ + cV ′ ≤ 0, V (±l) ≥ 0, by using the maximum
principle, there is V > 0 on (–l, l). Next, we claim the existence and uniqueness of U . When
V0 is a given function, we see that the first equation of (2.19) is second order elliptic equa-
tion with boundary condition. Since the term U(1 – U – rV0

1+U ) is Lipschitz continuous,
according to the argument of regularity of the elliptic problem, the Sobolev imbedding
theorem, and the contraction mapping principle, the existence of U is obtained. In addi-
tion, by applying the maximum principle, we can see that U > 0, U ′ > 0 in (–l, l).

Now, we define the mapping T : E → X by T(U0, V0) = (U , V ), ∀(U0, V0) ∈ E, where
(U , V ) is the unique solution to the boundary value problem (2.19). Obviously, any fixed
point of T is the solution of problem (2.19). �

Lemma 2.9 TE ⊆ E.

Proof For given (U0, V0) ∈ E, denote

(U , V ) := T(U0, V0).

We claim to have V – ≤ V ≤ V + on Il . Due to 0 ≤ U– ≤ U0 ≤ U+ ≡ 1 and 0 ≤ V – ≤ V0 ≤
V +, we have

bU–V –

1 + U– ≤ bU0V0

1 + U0
≤ bV +

2
.

Thus

V ′′ + cV ′a +
bU–V –

1 + U– ≤ 0 (2.20)

and

V ′′ + cV ′a +
bV +

2
≥ 0 (2.21)

for all z in (–l, l). Let w1 = V – V –, note that V – = 0 and V ≥ 0 in [–l, z1], therefore

w ≥ 0, ∀z ∈ [–l, z1]. (2.22)
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From the third formula of (2.19), we get w1(l) = 0. In addition, from (2.5) and (2.20), there
are w′′

1(z) + cw′
1(z) ≤ 0 for all z ∈ (z1, l). According to the principle of maximum value, there

is w1 ≥ 0 in [z1, l]. And from the two conditions of w1 ≥ 0 and (2.22) in [z1, l], we can get
V – ≤ V in Il . Similarly, we can conclude that there is V ≤ V + in Il .

Next, we claim that U– ≤ U in Il . Since U– ≡ 0 and U ≥ 0 on [–l, z1], thus

U ≥ U–, x ∈ [–l, z1]. (2.23)

On the interval (z0, l], we know

U ′′ + cU ′ + U
(

1 – U –
rV +

1 + U

)

≤ 0. (2.24)

For simplicity, we denote ψ(ξ ) := ξ

1+ξ
and w2 := U – U–. According to (2.3) and (2.24), we

have w′′
2 + cw′

2 + w2(1 – w2) – q(z)w2 ≤ 0 on (z0, l), where

q(z) =

⎧
⎨

⎩

rV +(z) ψ(U(z))–ψ(U–(z))
U(z)–U–(z) , U(z) �= U–(z),

rV +(z)ψ ′(U(z)), U(z) = U–(z).

By using of the mean value theorem, we know that q is nonnegative at (z0, l). In view of
(2.23) and (2.19), it is easy to see that w2(z0) ≥ 0, w2l = 0. Applying the principle of maxi-
mum value, we have w2 ≥ 0 on [z0, l], thus U ≥ U– on [z0, l].

Finally, we would like to prove U ≤ U+ on Il . Since U∗ ≡ 1 and V0 ≥ 0, we have

U+(±l) = 1 ≥ U–(±l) = U(±l),

U+′′
+ cU+′

+ U+
(

1 – U+ –
rV +

1 + U+

)

≤ 0.

Similarly, we find U ≤ U+ on Il . �

Lemma 2.10 T is a continuous map.

Proof For (U0, V0) and (Ũ0, Ṽ0) in E, it implies

(U , V ) = T(U0, V0), (Ũ , Ṽ ) = T(Ũ0, Ṽ0). (2.25)

Let w1 := U – Ũ , it is easy to see that w′′
1 + cw′

1 + w1(1 – w1) + g(z)w1 = h1(z) and w1(–l) =
w1(l) = 0, where

g(z) =

⎧
⎨

⎩

–rV0(z) ψ(U(z))–ψ(Ũ(z))
U(z)–Ũ(z) , U(z) �= Ũ(z),

–rV0(z)ψ ′(U(z)), U(z) = Ũ(z),

and

h1(z) = –rψ
(
Ũ(z)

)(
V0(z) – Ṽ0(z)

)
,
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ψ is the same as in Lemma 2.9. Since 0 ≤ U , Ũ ≤ 1, and 0 ≤ ξ ≤ 1, we know 0 ≤ ψ ′(ξ ) ≤ 1.
By applying the mean value theorem, we find 0 ≤ ψ(U(z))–ψ(Ũ(z))

U(z)–Ũ(z) ≤ 1, when U(z) �= Ũ(z).
Note that δ > 0, 0 ≤ V0 ≤ V +, 0 ≤ ψ ′(U(z)) ≤ 1, we have –K1 ≤ g ≤ 0, where K1 =

r‖V +‖C(Il). In fact 0 ≤ ψ(Ũ) ≤ 1, it is easy to see |h1| ≤ r‖V0 – Ṽ0‖C(Il).
By applying Lemma 2.5, we know that there is a constant C1 that depends only on δ, c,

K1, l such that

‖w1‖C(Il) ≤ rC1‖V0 – Ṽ0‖C(Il).

By the definition of w1, we know

‖U – Ũ‖C(Il) ≤ rC1‖V0 – Ṽ0‖C(Il). (2.26)

Let w2 = V – Ṽ and φ(ξ ) = ξ

1+ξ
, we have w2(–l) = w2(l) = 0 and w′′

2 + cw′
2 = h2(z), where

h2 = –b(φ(Ũ0)Ṽ0 – φ(U0)V0). This implies

h2 = –b
[
Ṽ0

(
φ(Ũ0) – φ(U0)

)
+ φ(U0)(Ṽ0 – V0)

]
. (2.27)

Since 0 ≤ U0, Ũ0 ≤ 1, by using the mean value theorem to

∣
∣φ(Ũ0) – φ(U0)

∣
∣ ≤ |Ũ0 – U0|,

it implies

∣
∣φ(Ũ0) – φ(U0)

∣
∣ ≤ ‖Ũ0 – U0‖C(Il).

Using

|Ṽ0| ≤
∥
∥V +∥

∥
C(Il)

,
∣
∣φ(U0)

∣
∣ ≤ 1

and

|V0 – Ṽ0| ≤ ‖V0 – Ṽ0‖C(Il),

by (2.27), we infer

|h2| ≤ b
∥
∥V +∥

∥
C(Il)

‖Ũ0 – U0‖C(Il) + b‖V0 – Ṽ0‖C(Il).

Then, from Lemma 2.5, there is a constant C2 depending only on c and l such that

‖w2‖C(Il) ≤ bC2
∥
∥V +∥

∥
C(Il)

‖Ũ0 – U0‖C(Il) + bC2‖V0 – Ṽ0‖C(Il).

Together with the definition of w2, we get

‖V – Ṽ‖C(Il) ≤ bC2
∥
∥V +∥

∥
C(Il)

‖Ũ0 – U0‖C(Il) + bC2‖V0 – Ṽ0‖C(Il). (2.28)
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By virtue of (2.25),(2.26), and (2.28), we have

∥
∥T(U0, V0) – T(Ũ0, Ṽ0)

∥
∥

X

=
∥
∥(U , V ) – (Ũ , Ṽ )

∥
∥

X

= ‖U – Ũ‖C(Il)

≤ bC2
∥
∥V +∥

∥
C(Il)

‖Ũ0 – U0‖C(Il) + (rC1bC2)‖V0 – Ṽ0‖C(Il)

≤ C3
(‖Ũ0 – U0‖C(Il) + ‖V0 – Ṽ0‖C(Il)

)

≤ C3
∥
∥(U0, V0) – (Ũ0, Ṽ0)

∥
∥

X , (2.29)

where C3 = bC2‖V +‖C(Il) + rC1 + bC2. For any given ε > 0, we set 0 < δ < ε
C3

. By (2.29), for
ε > 0, there is δ > 0 such that

∥
∥T(U0, V0) – T(Ũ0, Ṽ0)

∥
∥

X < ε

if ‖(U0, V0) – (Ũ0, Ṽ0)‖X < δ for any (U0, V0), (Ũ0, Ṽ0) ∈ E. Therefore, T is a continuous
map. Thus, the proof is completed. �

Lemma 2.11 TE is compact.

Proof For a sequence {(U0,n, V0,n)}n∈N in E, let (Un, Vn) = T(U0,n, V0,n). Because U+ and
U– are uniformly bounded on Il , and from Lemma 2.6, we know that the sequences {U ′

n}
and {V ′

n} are also uniformly bounded on Il . Therefore, by applying the Arzela–Ascoli the-
orem, we obtain that {(Un, Vn)} such that (Unj, Vnj) → (U , V ) uniformly on Il as i → ∞.
Therefore, T(E) is compact in E. So T is precompact. �

In view of Lemma 2.8, Lemma 2.9, Lemma 2.10, and Lemma 2.11, we prove that the
mapping T satisfies all the assumptions of Lemma 2.7. Therefore, T has a fixed point.
This fixed point is the nonnegative solution of system (2.18), so we can get the following
result.

Lemma 2.12 System (2.18) has a solution (U , V ) on Il , and this solution satisfies

0 ≤ U– ≤ U ≤ 1, 0 ≤ V – ≤ V ≤ V +, z ∈ Il. (2.30)

3 The existence of traveling wave solution
In this section, we would like to show the main result of this paper.

Theorem 3.1 System (2.1) has a unique traveling wave solution (U , V ) and

U(∞) = 1, U(–∞) = 0, V (∞) = 0, V (–∞) =
1
r

.

Proof Let {ln}n∈N be an increasing sequence in (z1,∞) such that when n → ∞, there is
ln → ∞, and let (Un, Vn) be the solution of system (2.19) and l = ln. And, for any given
N ∈ N, because the function V + is bounded on [–lN , lN ], by (2.8), we find that the se-
quence {Un}n≥N , {Vn}n≥N , {UnVn

1+Un
}n≥N is uniformly bounded on [–l, l]. Then, by virtue of
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Lemma 2.6, the sequence {U ′
n}n≥N , {V ′

n}n≥N is uniformly bounded on [–l, l]. From (2.19),
we have the sequence {U ′′

n }n≥N , {V ′′
n }n≥N , {U ′′′

n }n≥N , {V ′′′
n }n≥N is uniformly bounded on

[–l, l].
Applying the Arzela–Ascoli theorem and the diagonal process, there is a subsequence

{(Unj, Vnj)} of {(Un, Vn)} such that

Unj → U , U ′
nj → U ′, U ′′

nj → U ′′,

Vnj → V , V ′
nj → V ′, V ′′

nj → V ′′.

When n → ∞, U and V in C2(R) are uniformly continuous in a compact set in R. It is easy
to conclude that U ′ > 0 on R. (U , V ) is the nonnegative solution of problem (2.1). From
the definition of U– and V +, if z → ∞, then U– → 1, V + → 0 and

(U , V )(+∞) = (1, 0). (3.1)

The following proves that (U , V )(–∞) = (0, 1/r) can be divided into the following steps.
First, we prove

(
U ′, V ′)(+∞) = (0, 0). (3.2)

Integrating the both sides of (2.18) from 0 to z, we have

[U ′(z) – U ′(0)] + c
[
U(z) – U(0)

]
=

∫ z

0
U(τ )

[

U(τ ) – 1 +
rV (τ )

1 + U(τ )

]

dτ . (3.3)

Since U(+∞) exists, we find that U ′(∞) exists if and only if the integral

∫ ∞

0
U(τ )

[

U(τ ) – 1 +
rV (τ )

1 + U(τ )

]

dτ (3.4)

is convergence. Otherwise, it will deviate to ∞. And get U ′(∞) = ∞ from (3.3). Therefore,
U(∞) = ∞, which contradicts the existence of U(∞), so U ′(∞) exists. At the same time,
we can easily verify U ′(∞) = 0 from U(+∞) = 1. Similarly, V ′(∞) = 0 can be obtained by
integrating the second expression of system (2.18) from 0 to z.

Then, we would like to prove the existence of (U , V ) and 1 > U(–∞) ≥ 0, V (–∞) ≥ 0.
Since U is increasing, and there is 0 ≤ U ≤ 1, thus U(–∞) exists and 0 ≤ U(–∞) ≤ 1,
where U(–∞) �= 1. If U(–∞) ≡ 1, according to the monotonicity of U , then U ≡ 1. By
(2.18), we have V ≡ 0, which contradicts V ≥ V – > 0 in (z1,∞). Therefore, U(–∞) �= 1.

In order to prove the existence of V (–∞), we need to state that V ≤ 1 in R. By (1.1), we
know

bU ′′ + rV ′′ + c
(
bU ′ + rV ′) + bU(1 – U) = 0.

Integrating the above equality from z to ∞, we obtain

∫ ∞

z
bU ′′ + rV ′′ dτ +

∫ ∞

z
c
(
bU ′ + rV ′)dτ +

∫ ∞

z
bU(1 – U) dτ = 0.
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This implies that

bU ′(∞) + rV ′(∞) –
(
bU ′ + rV ′)

+ c
(
bU(∞) + rV (∞)

)
– c(bU + rV ) +

∫ ∞

z
bU(1 – U) dτ = 0.

Since U(∞) = 1, V (∞) = 0, U ′(∞) = V ′(∞) = 0, we know that

–
(
bU ′ + rV ′) + cb – c(bU + rV ) +

∫ ∞

z
bU(1 – U) dτ = 0. (3.5)

Since
∫ ∞

–∞
bU(1 – U) dτ

is convergence (by (3.11) and (3.12)), take a constant K such that

K >
∫ ∞

–∞
bU(1 – U) dτ .

Let W = bU + rV – b – K , since U ≤ 1 and (2.30), we obtain

W (z) ≤ rV ≤ rV + ≤ re–λz, ∀z ∈R. (3.6)

Note that
∫ ∞

z bU(1 – U) dτ ≥ 0, by (3.5), we get

W ′ + cW =
∫ ∞

z
bU(1 – U) dτ – K ≤ 0. (3.7)

Multiplying the above inequality by the term ecz, it is easy to see that [eczW (z)]′ ≤ 0, which
implies that the function [eczW (z)] is nonincreasing. Thus, if –∞ < z1 < z < +∞, then

eczW (z) ≤ ecz1 W (z1) ≤ e(c–λ)z1 r. (3.8)

Note that c > λ, if z1 → –∞, then W (z) ≤ 0. It is easy to see that bU + rV – b – K ≤ 0.
Thus, we get that V ≤ K/r in R.

Next, we prove the existence of V (–∞) and V (–∞) ≥ 0.
Since V (∞) = 0 and V (z1 + 1) ≥ V –(z1 + 1), we use the mean value theorem to infer the

existence of ξ1 ≥ z1 + 1 such that V ′(ξ1) ≥ 0. Multiplying the second equation of (3.2) by
the term ecz, we can easily obtain [eczV ′(z)]′ = –ecz bUV

1+U ≤ 0. Thus eczV ′(z) is nonincreasing.
Since z > ξ1, eczV ′(z) ≥ ecξ1 V ′(ξ1) > 0, then there is V ′ < 0 on [ξ1,∞). Let ξ2 := inf{z|V ′ >
0, in [z,∞)}. Set ξ2 be a finite number or ξ2 = –∞. If ξ2 = –∞, then there is V ′ > 0 on R.
Note that 0 ≤ V ≤ 1, we know V (–∞) exists and V (–∞) > 0. If ξ2 is a finite number, then
there is V ′(ξ2) = 0, which together with the monotonicity of eczV ′(z) leads to eczV ′(z) ≤
ecξ2 V ′(ξ2) = 0, where z ≥ ξ2. Therefore, there is V ′ ≤ 0 on (–∞, ξ2]. We obtain that V (–∞)
exists and V (–∞) ≥ 0. Next, we would like to prove

(
U ′, V ′)(–∞) = (0, 0). (3.9)
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Under the condition U(∞) = 1, U ′(∞) = 0, integrating the first equation of (2.18) from z
to ∞, we find

–U ′(z) + c
[
1 – U(z)

]
=

∫ ∞

z
U(τ )

[

U(τ ) – 1 +
rV (τ )

1 + U(τ )

]

dτ . (3.10)

By U ≥ 0, U ′ ≥ 0, we have

∫ ∞

z
U(τ )

[

U(τ ) – 1 +
rV (τ )

1 + U(τ )

]

dτ ≤ c.

This implies that the improper integral

∫ +∞

–∞
U(τ )

[

1 – U(τ ) –
rV (τ )

1 + U(τ )

]

dτ (3.11)

converges. Let z → –∞, from (3.10) get U(–∞) exist, we infer that U ′(–∞) exists. In
addition, because of U ′ ≥ 0, then U ′(–∞) ≥ 0 is derived. In fact, U ′(–∞) = 0, if U ′(–∞) >
0, then U(–∞) = –∞, which contradicts the existence of U(–∞).

Through a similar proof, we can also get V ′(–∞) = 0 and

∫ +∞

–∞
rU(τ )V (τ )
1 + U(τ )

dτ . (3.12)

Next, we prove that (U , V )(–∞) = (0, 1/r). Since U(–∞), V (–∞) exists, by the improper
integrals (3.12), we have

U(–∞)V (–∞) = 0. (3.13)

Similarly, by virtue of (3.11), we obtain

1 – U(–∞) –
rV (–∞)

1 + U(–∞)
= 0. (3.14)

Since U(–∞) �= 1, from (3.13) and (3.14), we obtain that (U , V )(–∞) = (0, 1/r). There-
fore, the proof is completed. �

4 Conclusion
In this paper, we discuss that system (1.1) has a unique translation traveling wave solu-
tion by the supersolution and subsolution method and the Schauder fixed point theo-
rem. Moreover, the uniqueness wave solution (U , V ) of (1.1) satisfies U(∞) = 1, U(–∞) =
0, V (∞) = 0, V (–∞) = 1/r.
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