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Abstract
In this paper, we establish the Fujita type theorem for a homogeneous Neumann
outer problem of the coupled quasilinear convection–diffusion equations and
formulate the critical Fujita exponent. Besides, the influence of diffusion term,
reaction term, and convection term on the global existence and the blow-up
property of the problem is revealed. Finally, we discuss the large time behavior of the
solution to the outer problem in the critical case and describe the asymptotic
behavior of the solution.
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1 Introduction
In this paper, we consider the critical Fujita exponent of the following coupled quasilinear
convection–diffusion equations:

∂u
∂t

= �um + κ
x

|x|2 · ∇um + |x|λvp, x ∈R
n\B1, t > 0, (1)

∂v
∂t

= �vm + κ
x

|x|2 · ∇vm + |x|μuq, x ∈R
n\B1, t > 0, (2)

∂um

∂ν
(x, t) =

∂vm

∂ν
(x, t) = 0, x ∈ ∂B1, t > 0, (3)

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈R
n\B1, (4)

where p, q > m > 1, κ ∈ R, λ ≥ 0, μ = λ(q–m)+2(q–p)
p–m ≥ 0. In addition, B1 denotes the unit

ball in R
n, ν denotes the unit inner normal vector to ∂B1, and 0 ≤ u0, v0 ∈ C0(Rn) are

nontrivial.
In 1966, the first result of the exponent of the quasilinear diffusion equation was in-

troduced by Fujita [5]. Precisely, he investigated the Cauchy problem of the semilinear
equation

∂u
∂t

= �u + up, x ∈R
n, t > 0,
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and showed that the problem does not have any nontrivial global nonnegative solution if
1 < p < pc = 1 + 2/n, whereas there exist both nontrivial global (with small initial data) and
nonglobal nonnegative (with large initial data) solutions when p > pc = 1 + 2/n. Among
many other results, it proved p = pc belonged to the blow-up case by Hayakawa [12],
Kobayashi et al. [13], and Weissler [27]. This is what we know as the blow-up theorem of
Fujita type, and pc is called the critical Fujita exponent. Early results of the Fujita type the-
orem can be seen in the review articles of Deng [2], Levine [15], and relevant references.
In recent years, there are a lot of Fujita’s results, such as [2, 3, 8, 10, 11, 14, 16–21, 24–
26, 30, 31] and the references therein.

Among those works, Galaktionov et al. [6, 7] considered the critical Fujita exponent of
the Cauchy problem

∂u
∂t

= �um + up, x ∈ R
n, t > 0 (p, m > 1)

and proved that the critical Fujita exponent is pc = m + 2/n. Aguirre and Escobedo [1]
demonstrated the Fujita type theorem of the following convective–diffusion equation:

∂u
∂t

= �um + b0 · ∇uq + up, x ∈ R
n, t > 0,

where q ≥ 1, p > 1, b0 ∈R
n. They demonstrated that the critical Fujita exponent was

pc = min

{
1 +

2
n

, 1 +
2q

n + 1

}
.

Zheng and Wang [29] studied more general nonlinear convection–diffusion systems

|x|λ1
∂u
∂t

= �um + κ
x

|x|2 · ∇um + |x|λ2 up, x ∈R
n\�, t > 0,

∂um

∂ν
(x, t) = 0, x ∈ ∂�, t > 0,

u(x, 0) = u0(x), x ∈ R
n\�,

where p > m ≥ 1, κ ∈ R, –2 < λ1 ≤ λ2, � is the bounded area inR
n with a smooth boundary

∂� and BR1 ⊂ � ⊂ BR2 for some 0 < R1 ≤ R2, and BR denotes the ball in R
n with radius R

and center at the origin, and ν is a unit outer normal vector to ∂B1. It displayed that the
critical Fujita exponent is

pc =

⎧⎨
⎩

m + 2+λ2
n+κ+λ1

, κ > –n – λ1,

+∞, κ ≤ –n – λ1.

Following from a lot of results, it shows that critical Fujita exponent of a single equation
is usually a constant, while the critical Fujita exponent of the coupled equations is usu-
ally a curve which is called the critical Fujita curve. In 1991, Escobedo and Herrero [4]
investigated the following coupled systems:

∂u
∂t

= �u + vp,
∂v
∂t

= �v + uq, x ∈R
n, t > 0,
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where p, q > 0, and showed that the Fujita curve is

(pq)c = 1 +
2
n

max{p + 1, q + 1}.

In [22], the authors studied the following Newtonian filtration system:

∂u
∂t

= �um + vp,
∂v
∂t

= �vm + uq, x ∈R
n, t > 0, (5)

where 0 < m < 1, p, q ≥ 1, and pq > 1. It was proved that the critical Fujita curve is

(pq)c = m2 +
2
n

max{p + m, q + m}.

In [9], the authors studied the Fujita type theorem for the outer problem of the following
coupled nonlinear diffusion equations with convective terms:

∂u
∂t

= �u + κ
x

|x|2 · ∇u + |x|λ1 vp, x ∈ R
n\B1, t > 0,

∂v
∂t

= �v + κ
x

|x|2 · ∇v + |x|λ2 uq, x ∈R
n\B1, t > 0,

and obtained

(pq)c =

⎧⎨
⎩

1 + max{p(2+λ2)+(2+λ1),q(2+λ1)+(2+λ2)}
n+κ

, κ > –n,

+∞, κ ≤ –n.

In this paper, we prove that the critical Fujita exponent is

pc =

⎧⎨
⎩

m + λ+2
n+κ

, κ > –n,

+∞, κ ≤ –n.
(6)

The main attention of this paper is to prove the global existence and blow-up properties
of solutions. For the global existence of the problem solution, we use the method of con-
structing the self-similar solution and the comparison principle to prove our conclusion.
For the blow-up properties of solutions, we adopt the integral estimation method. It is
noted that when discussing the global existence of solutions, we construct the self-similar
upper solution to the system. In order to let the self-similar solutions have the same com-
pact supported set, we introduce the perturbation term (|x| + 1)μ. But the disturbance
term has a negative impact on our results, which is the problem we need to solve.

The paper is organized as follows. In Sect. 2, we state some definitions and some theo-
rems. Then, several useful auxiliary lemmas are given. In Sect. 4, we derive a Fujita type
theorem for problem (1)–(4). At last, we study the asymptotic behavior of the solution to
problem (1)–(4) in the critical case.

2 Preliminaries
In this section, we introduce the definition of the solutions to problem (1)–(4) that will be
useful for the rest of the paper.
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Definition 2.1 Let 0 < T ≤ +∞. A pair of nonnegative functions (u, v) is called a super
(sub) solution to problem (1)–(4) in (0, T) if

u, v ∈ C
(
[0, T), Lm

loc
(
R

n)) ∩ L∞
loc

(
0, T ; L∞(

R
n)),

and the following integral inequalities

∫ T

0

∫
Rn\B1

u(x, t)
∂ϕ

∂t
(x, t) dx dt +

∫ T

0

∫
Rn\B1

um(x, t)�ϕ(x, t) dx dt

– κ

∫ T

0

∫
Rn\B1

um(x, t) div

(
1

|x|2 ϕ(x, t)x
)

dx dt

+
∫ T

0

∫
Rn\B1

|x|λvp(x, t)ϕ(x, t) dx dt

–
∫ T

0

∫
∂B1

um(x, t)
(

∂ϕ

∂ν
(x, t) –

κ

|x|2 ϕ(x, t)x · ν
)

dσ dt

+
∫
Rn\B1

u0(x)ϕ(x, 0) dx ≤ (≥) 0,

∫ T

0

∫
Rn\B1

v(x, t)
∂ψ

∂t
(x, t) dx dt +

∫ T

0

∫
Rn\B1

vm(x, t)�ψ(x, t) dx dt

– κ

∫ T

0

∫
Rn\B1

vm(x, t) div

(
1

|x|2 ψ(x, t)x
)

dx dt

+
∫ T

0

∫
Rn\B1

|x|μuq(x, t)ψ(x, t) dx dt

–
∫ T

0

∫
∂B1

vm(x, t)
(

∂ψ

∂ν
(x, t) –

κ

|x|2 ψ(x, t)x · ν
)

dσ dt

+
∫
Rn\B1

v0(x)ψ(x, 0) dx ≤ (≥) 0

are fulfilled for any 0 ≤ ϕ, ψ ∈ C2,1(Rn × [0, T)) vanishing when t is near T or |x| is suffi-
ciently large. (u, v) is called a solution to problem (1)–(4) in (0, T) if it is both a supersolu-
tion and a subsolution.

Definition 2.2 A solution (u, v) to problem (1)–(4) is said to blow up in a finite time 0 <
T < +∞ if

∥∥u(·, t)
∥∥

L∞(Rn\B1) +
∥∥v(·, t)

∥∥
L∞(Rn\B1) → +∞ as t → T–,

which T is called the blow-up time. Otherwise, (u, v) is said to be global.

The following existence theorem and the comparison principle to problem (1)–(4) play
an important role in proving our main results.

Theorem 2.1 (Local existence) When 0 ≤ u0, v0 ∈ L1
loc(Rn)∩L∞(Rn), the Cauchy problem

(1)–(4) admits at least one solution locally in time.
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Theorem 2.2 (Comparison principle) For 0 < T ≤ +∞, assume that (u∗, v∗) and (u∗∗, v∗∗)
are two solutions to system (1) and (2) with nonnegative initial data u∗

0(x), v∗
0(x) and u∗∗

0 (x),
v∗∗

0 (x) in (0, T), respectively. If (u∗
0(x), v∗

0(x)) ≤ (u∗∗
0 (x), v∗∗

0 (x)) a.e. in R
n, then (u∗, v∗) ≤

(u∗∗, v∗∗) a.e. in R
n × (0, T).

The proofs of Theorem 2.1 and Theorem 2.2 are the same as the one in [23, 25, 28] and
are omitted here.

3 Auxiliary lemmas
In order to research the blow-up property of solutions to problem (1)–(4), we need the
following auxiliary lemmas.

Lemma 3.1 Assume that (u, v) is a solution to problem (1)–(4). Then there exists R0 > 0
depending only on n and κ such that, for any l > R0,

d
dt

∫
Rn\B1

u(x, t)ψl
(|x|)dx

≥ –C0l–2
∫

Bδl\Bl

um(x, t)ψl
(|x|)dx +

∫
Rn\B1

|x|λvp(x, t)ψl
(|x|)dx, (7)

d
dt

∫
Rn\B1

v(x, t)ψl
(|x|)dx

≥ –C0l–2
∫

Bδl\Bl

vm(x, t)ψl
(|x|)dx +

∫
Rn\B1

|x|μuq(x, t)ψl
(|x|)dx, (8)

where

δ =

⎧⎨
⎩

2, n + κ – 1 ≤ 0,
π

n+κ–1 + 1, n + κ – 1 > 0,
C0 =

π2

(δ – 1)2 ,

and

ψl(r) =

⎧⎪⎪⎨
⎪⎪⎩

rκ , 1 ≤ r ≤ l,
1
2 rκ (1 + cos (r–l)π

(δ–1)l ), l < r < δl,

0, r ≥ δl.

Proof It follows from Definition 2.1 that

d
dt

∫
Rn\B1

u(x, t)ψl
(|x|)dx

=
∫

Bδl\B1

um(x, t)
(

�ψl
(|x|) – κ div

(
1

|x|2 ψl
(|x|)x

))
dx

–
∫

∂B1

vm(x, t)
(

∂ψl(|x|)
∂ν

–
κ

|x|2 ψl
(|x|)x · ν

)
dσ +

∫
Rn\B1

vp(x, t)ψl
(|x|)dx

=
∫

Bδl\B1

um(x, t)
(

�ψl
(|x|) – κ div

(
1

|x|2 ψl
(|x|)x

))
dx



Zhou et al. Boundary Value Problems         (2021) 2021:36 Page 6 of 20

+
∫
Rn\B1

vp(x, t)ψl
(|x|)dx, t > 0, (9)

where ψl(r) ∈ C1([0, +∞)) satisfies ψ ′
l (0) = 0 and

∂ψl(|x|)
∂ν

–
κ

|x|2 ψl
(|x|)x · ν = 0, x ∈ ∂B1.

For 0 ≤ |x| ≤ l, it is easily verified that

�ψl
(|x|) – κ div

(
1

|x|2 ψl
(|x|)x

)

= ψ ′′
l
(|x|) +

n – κ – 1
|x| ψ ′

l
(|x|) – κ

n – 2
|x|2 ψl

(|x|) = 0. (10)

While for l ≤ |x| ≤ δl, a direct calculation gives

�ψl
(|x|) – κ div

(
1

|x|2 ψl
(|x|)x

)

= –
1
2

(δ – 1)–1π (n + κ – 1)l–1|x|κ–1 sin
(|x| – l)π
(δ – 1)l

–
1
2

(δ – 1)–2π2l–2|x|κ cos
(|x| – l)π
(δ – 1)l

.

If n + κ – 1 ≤ 0, one gets

�ψl
(|x|) – κ div

(
1

|x|2 ψl
(|x|)x

)
≥ –

1
2

(δ – 1)–2π2l–2|x|κ cos
(|x| – l)π
(δ – 1)l

≥ –
1
2

(δ – 1)–2π2l–2ψl
(|x|). (11)

If n + κ – 1 > 0, we have

�ψl
(|x|) – κ div

(
1

|x|2 ψl
(|x|)x

)

≥ –
1
2

(δ – 1)–2π2l–2|x|κ sin
(|x| – l)π
(δ – 1)l

–
1
2

(δ – 1)–2π2l–2|x|κ cos
(|x| – l)π
(δ – 1)l

≥ –
1
2

(δ – 1)–2π2l–2ψl
(|x|). (12)

By (9)–(12), we obtain (7). Similarly, one can prove that (8) holds. �

To prove the existence of a nontrivial global solution to problem (1)–(4), we introduce
the following form of self-similar supersolutions to system (1) and (2):

u(x, t) = (t + 1)–αU
(
(t + 1)–β |x|), x ∈R

n\B1, t ≥ 0, (13)

v(x, t) = (t + 1)–αV
(
(t + 1)–β |x|), x ∈ R

n\B1, t ≥ 0, (14)

where

α =
λ + 2

λ(m – 1) + 2(p – 1)
, β =

(p – m)α
λ + 2

.
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By a simple calculation, we show that

(
Um)′′(r) +

n + κ – 1
r

(
Um)′(r) + βrU ′(r) + αU(r) + rλV p(r) ≤ 0, (15)

(
V m)′′(r) +

n + κ – 1
r

(
V m)′(r) + βrV ′(r) + αV (r) + rμUq(r) ≤ 0, (16)

for any r > 0. Then the self-similar function (u, v) with the structure (13)–(14) is a super-
solution to (1) and (2).

Lemma 3.2 Assume that m > 1, κ > –n, p > pc and set

U(r) = V (r) =
(
η – Ar2)1/(m–1)

+ , r ≥ 0, (17)

where s+ = max{0, s}, η > 0, and

A =
(m – 1)(p – m)α

m(n + κ)(p + pc – 2m)
.

Then there exists sufficiently small η > 0 such that (u, v) given by (13), (14), and (17) is a
supersolution to system (1) and (2).

Proof It is clear that Um and V m satisfy (15) and (16) when r ≥ (η/A)1/2. For 0 < r <
(η/A)1/2, a simple computation can obtain

(
Um)′′(r) +

n + κ – 1
r

(
Um)′(r) + βrU ′(r) + αU(r)

=
(

2A
m – 1

(
2Am
m – 1

– β

)
U1–m(r) +

(
α –

2Am(n + κ)
m – 1

))
U(r)

and

(
V m)′′(r) +

n + κ – 1
r

(
V m)′(r) + βrV ′(r) + αV (r)

=
(

2A
m – 1

(
2Am
m – 1

– β

)
V 1–m(r) +

(
α –

2Am(n + κ)
m – 1

))
V (r).

Due to 2Am
m–1 < β , there exists sufficiently small η1 > 0 such that, for 0 < η < η1,

(
Um)′′(r) +

n + κ – 1
r

(
Um)′(r) + βrU ′(r) + αU(r) < –

(p – pc)αU(r)
2(p + pc – 2m)

, (18)

(
V m)′′(r) +

n + κ – 1
r

(
V m)′(r) + βrV ′(r) + αV (r) < –

(p – pc)αV (r)
2(p + pc – 2m)

. (19)

Then, due to λ,μ > 0 and the definition of U , V , there exists η2 > 0 such that, for any
0 < η < η2,

rμUq–1(r) ≤ A–μ/2η(q–1)/(m–1)+μ/2 <
(p – pc)α

2(p + pc – 2m)
, 0 < r <

(
η

A

)1/2

,

rλV p–1(r) ≤ A–λ/2η(p–1)/(m–1)+λ/2 <
(p – pc)α

2(p + pc – 2m)
, 0 < r <

(
η

A

)1/2

.
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Combining the above inequations with (18) and (19), we can see that for sufficiently small
0 < η2 < η1 and 0 < η < η2 < η1, one gets (15) and (16). Thus, (u, v) given by (13), (14), and
(17) is a supersolution of system (1) and (2). �

4 Blow-up theorems of Fujita type
In this section, we establish the blow-up theorems of Fujita type for problem (1)–(4). First,
we consider the case κ ≤ –n.

Theorem 4.1 Assume that p, q > m, λ,μ ≥ 0, κ ≤ –n, and 0 ≤ u0, v0 ∈ C0(Rn \ B1) are
nontrivial, the solution to problem (1)–(4) blows up in a finite time.

Proof Let (u, v) be the solution to problem (1)–(4). Denote

wl(t) =
∫
Rn\B1

(
u(x, t) + v(x, t)

)
ψl

(|x|)dx, t ≥ 0. (20)

For any l > R0, Lemma 3.1 shows that

d
dt

wl(t) ≥ –
C0

l2

∫
Bδl\Bl

um(x, t)ψl
(|x|)dx +

∫
Rn\B1

|x|μuq(x, t)ψl
(|x|)dx

–
C0

l2

∫
Bδl\Bl

vm(x, t)ψl
(|x|)dx +

∫
Rn\B1

|x|λvp(x, t)ψl
(|x|)dx. (21)

The Hölder inequality leads to

∫
Bδl\Bl

um(x, t)ψl
(|x|)dx

≤ C1ln+κ–m(n+κ+μ)/q
(∫

Rn\B1

|x|μuq(x, t)ψl
(|x|)dx

)m/q

, (22)

∫
Bδl\Bl

vm(x, t)ψl
(|x|)dx

≤ C1ln+κ–m(n+κ+λ)/p
(∫

Rn\B1

|x|μvp(x, t)ψl
(|x|)dx

)m/p

, (23)

where C1 > 0 is a positive constant independent of l. Substituting (22) and (23) into (21)
shows that

d
dt

wl(t)

≥
(∫

Rn\B1

|x|μuq(x, t)ψl
(|x|)dx

)m/q((∫
Rn\B1

|x|μuq(x, t)ψl
(|x|)dx

)(q–m)/q

– C0C1l–2+n+κ–m(n+κ+μ)/q
)

+
(∫

Rn\B1

|x|λvp(x, t)ψl
(|x|)dx

)m/p((∫
Rn\B1

|x|λvp(x, t)ψl
(|x|)dx

)(p–m)/p

– C0C1l–2+n+κ–m(n+κ+λ)/p
)

. (24)
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Owing to the Hölder inequality, for any t > 0, we have
∫
Rn\B1

u(x, t)ψl
(|x|)dx

≤
(∫

Bδl\B1

|x|–μ/(q–1)ψl
(|x|)dx

)(q–1)/q(∫
Rn\B1

|x|μuq(x, t)ψl
(|x|)dx

)1/q

,
∫
Rn\B1

v(x, t)ψl
(|x|)dx

≤
(∫

Bδl\B1

|x|–λ/(p–1)ψl
(|x|)dx

)(p–1)/p(∫
Rn\B1

|x|λvp(x, t)ψl
(|x|)dx

)1/p

,

which imply
∫
Rn\B1

|x|μuq(x, t)ψl
(|x|)dx

≥

⎧⎪⎪⎨
⎪⎪⎩

C2(
∫
Rn\B1

u(x, t)ψl(|x|) dx)qln+κ+μ–q(n+κ), if A(q,μ) < 0,

C2(
∫
Rn\B1

u(x, t)ψl(|x|) dx)q(ln l)–(q–1), if A(q,μ) = 0,

C2(
∫
Rn\B1

u(x, t)ψl(|x|) dx)q, if A(q,μ) > 0,

(25)

∫
Rn\B1

|x|λvp(x, t)ψl
(|x|)dx

≥

⎧⎪⎪⎨
⎪⎪⎩

C2(
∫
Rn\B1

v(x, t)ψl(|x|) dx)pln+κ+λ–p(n+κ), if A(p,λ) < 0,

C2(
∫
Rn\B1

v(x, t)ψl(|x|) dx)p(ln l)–(p–1), if A(p,λ) = 0,

C2(
∫
Rn\B1

v(x, t)ψl(|x|) dx)p, if A(p,λ) > 0,

(26)

where C2 > 0 is a positive constant independent of l and A(q,μ) = n + κ + μ – q(n + κ),
A(p,λ) = n + κ + λ – p(n + κ). Here, it should be pointed out that the above discussion only
requires p, q > m.

Due to κ ≤ –n, it is easy to verify that A(q,μ) > 0, A(p,λ) > 0. From (24)–(26),

d
dt

wl(t)

≥ Cm/q
2

(∫
Rn\B1

u(x, t)ψl
(|x|)dx

)m(
C(q–m)/q

2

(∫
Rn\B1

u(x, t)ψl
(|x|)dx

)q–m

– C0C1l–2+n+κ–m(n+κ+μ)/q
)

+ Cm/p
2

(∫
Rn\B1

v(x, t)ψl
(|x|)dx

)m(
C(p–m)/p

2

(∫
Rn\B1

v(x, t)ψl
(|x|)dx

)p–m

– C0C1l–2+n+κ–m(n+κ+λ)/p
)

. (27)

For sufficiently large l1 > 1, and note that –2 + n + κ – m(n + κ + μ)/q < 0, –2 + n + κ – m(n +
κ + λ)/p < 0, one can get

d
dt

wl1 (t)

≥ Cm/q
2

(∫
Rn\B1

u(x, t)ψl1
(|x|)dx

)m
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× 1
2

C(q–m)/q
2

(∫
Rn\B1

u(x, t)ψl1
(|x|)dx

)q–m

+ Cm/p
2

(∫
Rn\B1

v(x, t)ψl1
(|x|)dx

)m

× 1
2

C(p–m)/p
2

(∫
Rn\B1

v(x, t)ψl1
(|x|)dx

)p–m

≥ C3

((∫
Rn\B1

u(x, t)ψl1
(|x|)dx

)q

+
(∫

Rn\B1

v(x, t)ψl1
(|x|)dx

)p)

≥ 2p+qC3 · min
{

wp
l1 (t), wq

l1 (t)
}

,

where C3 > 0 is a constant depending on l1. Since p, q > m > 1, there exists 0 < T < +∞
such that

wl1 (t) =
∫
Rn\B1

(
u(x, t) + v(x, t)

)
ψl1

(|x|)dx → +∞, t → T–.

Obviously, suppψl1 (x) = B2l1 . Then one gets

∥∥u(·, t)
∥∥

L∞(Rn\B1) +
∥∥v(·, t)

∥∥
L∞(Rn\B1) → +∞, t → T–.

That is to say, (u, v) blows up in a finite time. �

Next, we discuss the case κ > –n.

Theorem 4.2 Assume that p, q > m > 1, λ,μ > 0, κ > –n, and 0 ≤ u0, v0 ∈ C0(Rn \ B1) are
nontrivial. Then, for p < pc, any nontrivial solution to problem (1)–(4) blows up in a finite
time.

Proof Let (u, v) be a nontrivial solution to problem (1)–(4). Set

wl(t) =
∫
Rn\B1

(
u(x, t) + lθ v(x, t)

)
ψl

(|x|)dx, t ≥ 0, (28)

where θ is a constant determined below. According to Lemma 3.1, for any l > R0,

d
dt

wl(t)

≥ –C0l–2
∫

Bδl\Bl

um(x, t)ψl
(|x|)dx + lθ

∫
Rn\B1

|x|μuq(x, t)ψl
(|x|)dx

– C0l–2+θ

∫
Bδl\Bl

vm(x, t)ψl
(|x|)dx +

∫
Rn\B1

|x|λvp(x, t)ψl
(|x|)dx. (29)

Substituting (22) and (23) into (29) shows that

d
dt

wl(t)

≥
(∫

Rn\B1

|x|μuq(x, t)ψl
(|x|)dx

)m/q
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·
(

lθ
(∫

Rn\B1

|x|μuq(x, t)ψl
(|x|)dx

)(q–m)/q

– C0C1l–2+n+κ–m(n+κ+μ)/q
)

+
(∫

Rn\B1

|x|λvp(x, t)ψl
(|x|)dx

)m/p((∫
Rn\B1

|x|λvp(x, t)ψl
(|x|)dx

)(p–m)/p

– C0C1l–2+θ+n+κ–m(n+κ+λ)/p
)

. (30)

Let us discuss the classification of symbols of A(q,μ) and A(p,λ) in (25), (26).
If A(q,μ) < 0, A(p,λ) < 0, we substitute (25) and (26) into (30), and this yields that

dwl(t)
dt

≥ –C0C4lm(θ )wm
l (t) + C2l–q(n+κ)+n+κ+μ+θ

(∫
Rn\B1

u(x, t)ψl
(|x|)dx

)q

+ C2l–p(n+κ)+n+κ+λ–pθ

(∫
Rn\B1

lθ v(x, t)ψl
(|x|)dx

)p

, (31)

where C4 = max{Cm/p
2 , Cm/q

2 } > 0, and

m(θ ) = max
{

(1 – m)(n + κ) – 2, (1 – m)(n + κ) – 2 – (m – 1)θ
}

.

Set

θ =
q – p
p + 1

(
n + κ –

λ + 2
p – m

)
,

which implies that

–p(n + κ) + n + κ + λ – pθ = –q(n + κ) + n + κ + μ + θ = �,

namely,

� =
(–p2q + pqm + p – m)(n + κ) + (λ + 2)(pq – p2)

(p + 1)(p – m)
+ λ.

By a simple calculation,

dwl(t)
dt

≥ –C0C4lm(θ )wm
l (t)

+ C2l�
((∫

Rn\B1

u(x, t)ψl
(|x|)dx

)q

+
(∫

Rn\B1

lθ v(x, t)ψl
(|x|)dx

)p)

≥ wm
l (t)

(
–C0C4lm(θ ) + 2–(p+q)C2l� · min

{
wp–m

l (t), wq–m
l (t)

})
. (32)

Note that if p < pc, then m(θ ) < �. Further, wl(0) is nondecreasing with respect to l ∈
(0, +∞) and

sup
{

wl(0) : l ∈ (0, +∞)
}

> 0.
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Then there exists sufficiently large l2 > 1 such that

C0C4lm(θ )
2 ≤ 2–(p+q+1)C2l�2 · min

{
wp–m

l2 (0), wq–m
l2 (0)

}
. (33)

Combining (32) with (33), we get

dwl2 (t)
dt

≥ 2–(p+q+1)C2l�2 · min
{

wp
l2 (t), wq

l2 (t)
}

.

Just like the proof of Theorem 4.1, we can obtain that (u, v) blows up in a finite time.
For A(q,μ) = 0, A(p,λ) < 0, we set θ = 0. It follows from (25), (26), and (30) that

dwl(t)
dt

≥
(

C2(ln l)–(q–1)
(∫

Rn\B1

u(x, t)ψl
(|x|)dx

)q)m/q

×
(

C(q–m)/q
2 (ln l)–(q–1)(q–m)/q

(∫
Rn\B1

u(x, t)ψl
(|x|)dx

)q–m

– C0C1ln+κ–2–m(n+κ+μ)/q
)

+
(

C2l–p(n+κ)+n+κ+λ

(∫
Rn\B1

v(x, t)ψl
(|x|)dx

)p)m/p

×
(

C(p–m)/p
2 l(–p(n+κ)+n+κ+λ)(p–m)/p

(∫
Rn\B1

v(x, t)ψl
(|x|)dx

)p–m

– C0C1ln+κ–2–m(n+κ+λ)/p
)

. (34)

Here

n + κ – 2 – m(n + κ + μ)/q < 0,

n + κ – 2 – m(n + κ + λ)/p <
(
–p(n + κ) + n + κ + λ

)
(p – m)/p.

Then there exists sufficiently large l3 such that

dwl3 (t)
dt

≥ Cm/q
2 (ln l3)m(1–q)/q

(∫
Rn\B1

u(x, t)ψl3
(|x|)dx

)m

× 1
2

C(q–m)/q
2 (ln l3)(1–q)(q–m)/q

(∫
Rn\B1

u(x, t)ψl3
(|x|)dx

)q–m

+ Cm/p
2 l–m(n+κ)+m(n+κ+λ)/p

3

(∫
Rn\B1

v(x, t)ψl3
(|x|)dx

)m

× 1
2

C(p–m)/p
2 l(–p(n+κ)+n+κ+λ)(p–m)/p

3

(∫
Rn\B1

v(x, t)ψl3
(|x|)dx

)p–m

≥ C5

((∫
Rn\B1

u(x, t)ψl3
(|x|)dx

)q

+
(∫

Rn\B1

v(x, t)ψl3
(|x|)dx

)p)



Zhou et al. Boundary Value Problems         (2021) 2021:36 Page 13 of 20

≥ 2–(p+q)C5 · min
{

wp
l3 (t), wq

l3 (t)
}

,

where C5 > 0 is a positive constant depending only on l3. Therefore, we can obtain that
(u, v) blows up in a finite time by a similar proof process of Theorem 4.1.

For other cases, select θ = 0. By the similar argument as A(q,μ) = 0, A(p,λ) < 0, we can
also prove that any nontrivial solution blows up in a finite time. �

Theorem 4.3 Assume that p, q > m > 1, λ,μ > 0, κ > –n, and 0 ≤ u0, v0 ∈ C0(Rn \ B1)
are nontrivial. Then, if p > pc, there exist both nontrivial global and blow-up solutions to
problem (1)–(4).

Proof The comparison principle and Lemma 3.1 can prove the existence of the nontrivial
global solution to problem (1)–(4) with sufficiently small initial value. Next, we study the
blow-up solution to problem (1)–(4) when the initial value is sufficiently large.

For l > 1 and (u, v) is the solution to problem (1)–(4), set

w̃l(t) =
∫
Rn\B1

(
u(x, t) + v(x, t)

)
ψl

(|x|)dx, t ≥ 0.

According to the Hölder inequality and (30), we have

d
dt

w̃l(t)

≥
(∫

Rn\B1

|x|μuq(x, t)ψl
(|x|)dx

)m/q((∫
Rn\B1

|x|μuq(x, t)ψl
(|x|)dx

)(q–m)/q

– C0C1l–2+n+κ–m(n+κ+μ)/q
)

+
(∫

Rn\B1

|x|λvp(x, t)ψl
(|x|)dx

)m/p((∫
Rn\B1

|x|λvp(x, t)ψl
(|x|)dx

)(p–m)/p

– C0C1l–2+n+κ–m(n+κ+λ)/p
)

≥ w̃m
l (t)

(
–C0C1C6 + 2–(p+q)C7 · min

{
w̃p–m

l (t), w̃q–m
l (t)

})
, (35)

where

C6 = max

{
l–2+n+κ–m(n+κ+μ)/q

(∫
Rn\B1

|x|–μ/(q–1)ψl
(|x|)dx

)(1–q)m/q

,

l–2+n+κ–m(n+κ+λ)/p
(∫

Rn\B1

|x|–λ/(p–1)ψl
(|x|)dx

)(1–p)m/p}
,

C7 = min

{(∫
Rn\B1

|x|μ/(1–q)ψl
(|x|)dx

)1–q

,
(∫

Rn\B1

|x|λ/(1–p)ψl
(|x|)dx

)1–p}
.

If (u0, v0) is so large that

C0C1C6 ≤ 2–(p+q+1)C7 · min
{

w̃p–m
l (0), w̃q–m

l (0)
}

,



Zhou et al. Boundary Value Problems         (2021) 2021:36 Page 14 of 20

then (35) leads to

dw̃l(t)
dt

≥ 2–(p+q+1)C7 · min
{

w̃p
l (t), w̃q

l (t)
}

, t > 0.

By a similar argument in the proof of Theorem 4.1, one can show that (u, v) blows up in a
finite time. �

5 The critical case
In this section, we consider the critical case

p = pc = m +
2 + λ

n + κ
. (36)

Obviously, we can prove that (29), (32) still hold, and

n + κ + μ – q(n + κ) = n + κ + λ – pc(n + κ) = (1 – m)(n + κ) – 2. (37)

The result of the critical case is based on the following three lemmas.

Lemma 5.1 Assume that (u, v) is a nontrivial global solution to problem (1)–(4) with p =
pc, then there exists M0 > 0 independent of t such that

∫
Rn\B1

(
u(x, t) + v(x, t)

)|x|κ dx ≤ M0, t > 0. (38)

Proof For any sufficiently large l > 1, it follows from (32) that

dwl(t)
dt

≥ wm
l (t)l–(m–1)(n+κ)–2(–C0C4 + 2–(pc+q)C2 · min

{
wpc–m

l (t), wq–m
l (t)

})
,

where wl is defined by (28) with θ = 0. Similar to the end of the proof of Theorem 4.1,
there exists some l3 > 1 such that, for any l > l3,

2–(pc+q+1)C2 · min
{

wpc–m
l (t), wq–m

l (t)
} ≤ C0C4,

which implies

wl(t) ≤ max
{(

C0C4C–1
2 2pc+q+1)1/(pc–m),

(
C0C4C–1

2 2pc+q+1)1/(q–m)}.

Let l → +∞ in the above inequality, then we can obtain (38). �

Lemma 5.2 Under the assumption of Lemma 5.1, there exist three positive constants
M1, M2, M3 > 0 independent of l and t such that, for any sufficiently large l > 1,

dwl(t)
dt

≥ Mm–τ
1 l(1–m)(n+κ)–2wm–τ

l (t)

×
(

–M2

(∫
Bδl\Bl

(
u(x, t) + v(x, t)

)
ψl

(|x|)dx
)τ
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+ M–(m–τ )
1 M3 · min

{
wpc–m+τ

l (t), wq–m+τ

l (t)
})

, (39)

where

0 < τ < min

{
pc – m
pc – 1

,
q – m
q – 1

}
.

Proof It is easy to verify that

n + κ – 2 – m(n + κ + μ)/q + τ
(
μ – (q – 1)(n + κ)

)
/q

=
(
(1 – q)(n + κ) + μ

)
(q – m + τ )/q, (40)

n + κ – 2 – m(n + κ + λ)/pc + τ
(
λ – (pc – 1)(n + κ)

)
/pc

=
(
(1 – pc)(n + κ) + λ

)
(pc – m + τ )/pc. (41)

For any sufficiently large l > 1, it follows from the Hölder inequality that
∫

Bδl\Bl

um(x, t)ψl
(|x|)dx

≤
(∫

Bδl\Bl

|x|–(m–τ )μ/(q–m–(q–1)τ )ψl
(|x|)dx

)(q–m–(q–1)τ )/q

×
(∫

Bδl\Bl

|x|μuq(x, t)ψl
(|x|)dx

)(m–τ )/q(∫
Bδl\Bl

u(x, t)ψl
(|x|)dx

)τ

≤ C8ln+κ–(n+κ+μ)m/q+τ (μ–(q–1)(n+κ))/q

×
(∫

Rn\B1

|x|μuq(x, t)ψl
(|x|)dx

)(m–τ )/q(∫
Bδl\Bl

u(x, t)ψl
(|x|)dx

)τ

,

∫
Bδl\Bl

vm(x, t)ψl
(|x|)dx

≤
(∫

Bδl\Bl

|x|–(m–τ )λ/(pc–m–(pc–1)τ )ψl
(|x|)dx

)(pc–m–(pc–1)τ )/pc

×
(∫

Bδl\Bl

|x|λvpc (x, t)ψl
(|x|)dx

)(m–τ )/pc(∫
Bδl\Bl

v(x, t)ψl
(|x|)dx

)τ

≤ C8ln+κ–(n+κ+λ)m/pc+τ (λ–(pc–1)(n+κ))/pc

×
(∫

Rn\B1

|x|λvpc (x, t)ψl
(|x|)dx

)(m–τ )/pc(∫
Bδl\Bl

v(x, t)ψl
(|x|)dx

)τ

,

where C8 > 0 is a constant independent of l. Substituting the above two inequalities into
(29) with θ = 0, it follows from (25), (26), (37), (40), and (41) that

d
dt

wl(t)

≥ –C0C8l–(m–1)(n+κ)–2(M1wl(t)
)m–τ

(∫
B2l\Bl

(
u(x, t) + v(x, t)

)
ψl

(|x|)dx
)τ

+ 2–(pc+q)C2l–(m–1)(n+κ)–2 · min
{

wpc
l (t), wq

l (t)
}

,
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which yields (39) by choosing

M1 = max
{

C1/pc
2 , C1/q

2
}

, M2 = C0C8, M3 = 2–(pc+q)C2. �

Lemma 5.3 Under the assumption of Lemma 5.1, there exists a constant M4 > 0 indepen-
dent of l and t such that, for any sufficiently large l > 1,

d
dt

∫
Rn\B1

(
u(x, t) + v(x, t)

)
ψl

(|x|)dx ≥ –M4l(pc(n+κ–2)–m(n+κ+λ))/(pc–m). (42)

Proof Owing to the Hölder inequality, one obtains

∫
B2l\Bl

um(x, t)ψl
(|x|)dx

≤
(∫

B2l\Bl

|x|– mμ
q–m ψl

(|x|)dx
)(q–m)/q(∫

B2l\Bl

|x|μuq(x, t)ψl
(|x|)dx

)m/q

≤ C9ln+κ–m(n+κ+μ)/q
(∫

B2l\Bl

|x|μuq(x, t) dx
)m/q

,

∫
B2l\Bl

vm(x, t)ψl
(|x|)dx

≤
(∫

B2l\Bl

|x|– mλ
pc–m ψl

(|x|)dx
)(pc–m)/pc(∫

B2l\Bl

|x|μvpc (x, t)ψl
(|x|)dx

)m/pc

≤ C9ln+κ–m(n+κ+λ)/pc

(∫
B2l\Bl

|x|λvpc (x, t) dx
)m/pc

,

where C9 > 0, independent of l. Substitute the above results into (29) and

q(n + κ – 2) – m(n + κ + μ)
q – m

=
pc(n + κ – 2) – m(n + κ + λ)

pc – m
,

then it follows from the Young inequality that

d
dt

wl(t) ≥ –C0C9ln+κ–2–m(n+κ+μ)/q
(∫

B2l\Bl

|x|μuq(x, t) dx
)m/q

+
∫
Rn\B1

|x|μuq(x, t)ψl
(|x|)dx

– C0C9ln+κ–2–m(n+κ+λ)/pc

(∫
B2l\Bl

|x|λvpc (x, t) dx
)m/pc

+
∫
Rn\B1

|x|λvp(x, t)ψl
(|x|)dx

≥ –
m
q

∫
Rn\B1

|x|μuq(x, t)ψl
(|x|)dx +

∫
Rn\B1

|x|μuq(x, t)ψl
(|x|)dx

–
q – m

q
(C0C9)q/(q–m)l(q(n+κ–2)–m(n+κ+μ))/(q–m)

–
m
pc

∫
Rn\B1

|x|λvp(x, t)ψl
(|x|)dx +

∫
Rn\B1

|x|λvp(x, t)ψl
(|x|)dx
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–
pc – m

pc
(C0C9)pc/(pc–m)l(pc(n+κ–2)–m(n+κ+λ))/(pc–m)

≥ –M4l(pc(n+κ–2)–m(n+κ+λ))/(pc–m),

where

M4 = max

{
q – m

q
(C0C9)q/(q–m),

pc – m
pc

(C0C9)pc/(pc–m)
}

. �

Now we prove the following theorem.

Theorem 5.1 Assume that κ > –n. Then any nontrivial solution to problem (1)–(4) with
p = pc blows up in a finite time.

Proof We prove the theorem by contradiction. Assume that (u, v) is a nontrivial global
solution to problem (1)–(4) with p = pc. Set

� = sup
l>0,t>0

wl(t) = sup
t>0

∫
Rn\B1

(
u(x, t) + v(x, t)

)|x|κ dx. (43)

It follows from (38) and the nontriviality of (u, v) that 0 < � < +∞. Owing to (43) and the
monotonicity of wl(t) with respect to l ∈ (0, +∞), there exist l0 > 1 and t0 > 0 such that, for
any 0 < ε < �,

wl0/δ(t0) ≥ � – ε.

From Lemma 5.3, for s ≥ t0, we obtain

∫
Rn\B1

(
u(x, s) + v(x, s)

)
ψl0/δ

(|x|)dx

≥
∫
Rn\B1

(
u(x, t0) + v(x, t0)

)
ψl0/δ

(|x|)dx

– M4(l0/δ)(pc(n+κ–2)–m(n+κ+λ))/(pc–m)(s – t0)

≥ � – ε – M4(l0/δ)(pc(n+κ–2)–m(n+κ+λ))/(pc–m)(s – t0),

which yields that

∫
Bδl0 \Bl0

(
u(x, s) + v(x, s)

)
ψl0

(|x|)dx

≤
∫
Rn\B1

(
u(x, t) + v(x, t)

)|x|κ dx –
∫
Rn\B1

(
u(x, s) + v(x, s)

)
ψl0/δ

(|x|)dx

≤ ε + M4(l0/δ)(pc(n+κ–2)–m(n+κ+λ))/(pc–m)(s – t0), s ≥ t0.

Let l = l0 in (39), from the above inequality, one gets that

dwl0 (t)
dt

≥ Mm–τ
1 l(1–m)(n+κ)–2

0 wm–τ
l0 (t)
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×
(

–M2

(∫
Bδl0 \Bl0

(
u(x, t) + v(x, t)

)
ψl0 dx

)τ

+ M–(m–τ )
1 M3 · min

{
wpc–m+τ

l0 (t), wq–m+τ

l0 (t)
})

≥ Mm–τ
1 l(1–m)(n+κ)–2

0 wm–τ
l0 (t)

× (
–M2

(
ε + M4(l0/δ)(pc(n+κ–2)–m(n+κ+λ))/(pc–m)(s – t0)

)τ

+ M–(m–τ )
1 M3 · min

{
wpc–m+τ

l0 (t), wq–m+τ

l0 (t)
})

.

Take ε0 ∈ (0,�) and M5 > 0 to get

M2(ε0 + M5)τ ≤ 1
2

M–(m–τ )
1 M3 · min

{
(� – ε)pc–m+τ (t), (� – ε)q–m+τ (t)

}
,

where ε0 and M5 are independent of l0, 0 < τ < min{ pc–m
pc–1 , q–m

q–1 }. Then we obtain

dwl0 (t)
dt

≥ 1
2

M3l(1–m)(n+κ)–2
0 · min

{
wpc

l0 (t), wq
l0 (t)

}
, t0 < t < t1, (44)

where

t1 = t0 +
M5

M4
(l0/δ)(–pc(n+κ–2)+m(n+κ+λ))/(pc–m).

Integrating (44) over (t0, t1) with respect to t and using

(
pc(n + κ – 2) – m(n + κ + λ)

)
/(pc – m) = (1 – m)(n + κ) – 2,

one gets that

wl0 (t1)

≥ wl0 (t0) +
1
2

M3l(1–m)(n+κ)–2
0 · min

{
(� – ε0)pc , (� – ε0)q}(t1 – t0)

≥ wl0/δ(t0) +
1
2

M3l(1–m)(n+κ)–2
0 · min

{
(� – ε0)pc , (� – ε0)q}

× M5

M4
(l0/δ)(–pc(n+κ–2)+m(n+κ+λ))/(pc–m)

= wl0/δ(t0)

+
M3M5

2M4
δ(pc(n+κ–2)–m(n+κ+λ))/(pc–m) · min

{
(� – ε0)pc , (� – ε0)q}.

That is to say,

∫
Rn\B1

(
u(x, t1) + v(x, t1)

)|x|κ dx ≥ wl0 (t1) ≥ wl0/δ(t0) + γ0 ≥ � – ε0 + γ0,

where

γ0 =
M3M5

2M4
δ(pc(n+κ–2)–m(n+κ+λ))/(pc–m) · min

{
(� – ε0)pc , (� – ε0)q}
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is a positive constant independent of l0. It is obviously verified that

w(δl0)/δ(t1) = wl0 (t1) ≥ � – ε0 + γ0 ≥ � – ε0.

Using the same method, one gets

∫
Rn\B1

(
u(x, t2) + v(x, t2)

)|x|κ dx ≥ wδl0 (t2) ≥ wl0 (t1) + γ0 ≥ � – ε0 + 2γ0,

where

t2 = t1 +
M5

M4
l(–pc(n+κ–2)+m(n+κ+λ))/(pc–m)
0 .

Similarly, for any positive integer i, we obtain

∫
Rn\B1

(
u(x, ti) + v(x, ti)

)|x|κ dx

≥ wδi–1l0 (ti) ≥ wδi–2l0 (ti–1) + δ0 ≥ � – ε0 + iγ0, (45)

where

ti = ti–1 +
M5

M4

(
δi–2l0

)–(pc(n+κ–2)+m(n+κ+λ))/(pc–m).

Letting i → +∞ in (45) implies

sup
t>0

∫
Rn\B1

(
u(x, t) + v(x, t)

)|x|κ dx = +∞,

which contradicts (38). �
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