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Abstract
In this paper, we study the following quasilinear Schrödinger equation:

–div(a(x,∇u)) + V(x)|x|–αp∗ |u|p–2u = K (x)|x|–αp∗
f (x,u) in R

N ,

where N ≥ 3, 1 < p < N, –∞ < α < N–p
p , α ≤ e≤ α + 1, d = 1 + α – e,

p∗ := p∗(α, e) = Np
N–dp (critical Hardy–Sobolev exponent), V and K are nonnegative

potentials, the function a satisfies suitable assumptions, and f is superlinear, which is
weaker than the Ambrosetti–Rabinowitz-type condition. By using variational
methods we obtain that the quasilinear Schrödinger equation has infinitely many
nontrivial solutions.
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1 Introduction
In this paper, we study the following quasilinear Schrödinger equation:

⎧
⎨

⎩

– div(a(x,∇u)) + V (x)|x|–αp∗ |u|p–2u = K(x)|x|–αp∗ f (x, u) in R
N ,

u ∈D1,p(RN ) ∩D1,p
α (RN ),

(1.1)

where N ≥ 3, 1 < p < N , –∞ < α < N–p
p , α ≤ e ≤ α + 1, d = 1 + α – e, p∗ := p∗(α, e) = Np

N–dp

is the critical Hardy–Sobolev exponent, V and K are nonnegative potentials, f is of
superlinear growth near infinity, and for some positive functions h1(x) ∈ L∞(RN ) and
h0(x) ∈ Lp/(p–1)

α (RN ), where α = αp
p∗ , the function a satisfies |a(x,∇u)| ≤ c0|x|–αph0(x)+c0(1+

|x|–αp)h1(x)|∇u|p–1.
Problem (1.1) comes from the quasilinear Schrödinger equation and involves several

improvements. Firstly, Duc [17] established the existence of a nontrivial solution to the
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problem

⎧
⎨

⎩

– div(a(x,∇u)) = f (x, u) in �,

u = 0 on ∂�, u ∈ W 1,p
0 (�).

For different types of a(x,∇u), the quasilinear equation of the form (1.1) has been de-
rived from several physical models. Especially, a(x,∇u) = |∇u|p–2∇u and a(x,∇u) =
|x|–αp|∇u|p–2∇u were used for the problems of nonlinear diffusion, such as nonlinear op-
tics, plasma physics, condensed matter physics, and so on. We refer the reader to [16, 25]
and references therein.

This type of equation has been extensively studied in recent years with a huge variety
of hypotheses on the potentials V (x) and K(x). For V bounded from below by a positive
constant (V (x) ≥ V1 > 0) and K(x) ≡ 1, we would like to cite [1, 10, 21] and references
therein, and in case of K(x) 
≡ 1, we refer to [18, 23, 25].

If V goes to zero as |x| → ∞, that is,

lim|x|→∞ V (x) = 0,

which is called the zero mass case, we can cite [2, 7, 9], which use the same technique as
that used in [2]. In the case where K vanishes at infinity, we refer to the papers in [3–5].
The cases of K bounded by a positive constant and unbounded K are considered in [14].

Finally, [11, 12] deal with the comprehensive problems including the potentials V and
K . In [3], with more general potentials K and V , the authors obtained an inequality of
Hardy type and then the strong convergence in the whole space. As a matter of fact, they
have obtained the compact embedding of E ⊂ D1,2(RN ) in Lq

K (RN ) with 2 < q < 2∗. Using
the same way, the compact embedding of E ⊂ D1,p

α (RN ) in Lq
K ,α(RN ) is proved in [8] with

1 < p < N , p < q < p∗.
In most of the aforesaid references, the Ambrosetti–Rabinowitz (AR) condition is usu-

ally assumed. It is very crucial to ensure the boundedness of the Palais–Smale (PS) se-
quences of the energy functional. However, there are many functions that do not satisfy
the AR condition. So in this paper, to prove that there are infinitely many solutions to
quasilinear Schrödinger equation, we develop a superquadratic condition, which is weaker
than the condition AR.

There are many difficulties in solving the problem of relationship among nonlinearities,
operator, and potentials. To overcome this, we prove the existence of infinitely many so-
lutions to problem (1.1) with compact embedding by using Tang’s methods in [24]. As far
as we know, to prove the boundedness of the (C)c-sequence for problem (1.1), we must
have compact embedding, so we need to enhance some conditions for potentials K(x) and
V (x). Before proving our results, we need to make the following assumptions on a, A, V ,
K , and f .

(1) Functions a and A. We consider continuous functions a : RN × R
N → R

N and
A : RN × R

N → R such that a(x, ξ ) = ∂A(x,ξ )
∂ξ

. Let c0 and c1 be positive real numbers, and
let h0(x) and h1(x) be nonnegative measurable real functions in R

N such that h0(x) ∈
Lp/(p–1)

α (RN ) with α = αp
p∗ and h1(x) ∈ L∞(RN ) with h1(x) ≥ 1 for a.e. x ∈ R

N . We introduce
the following hypotheses:

(A1) |a(x, ξ )| ≤ c0|x|–αph0(x) + c0(1 + |x|–αp)h1(x)|ξ |p–1 for a.e. x ∈R
N .
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(A2) c1(1 + |x|–αp)h1(x)|ξ –η|p ≤ (a(x, ξ ) – a(x,η))(ξ –η) for all ξ ,η ∈R
N and a.e. x ∈R

N .
(A3) A is subhomogeneous, that is, 0 ≤ a(x, ξ )ξ ≤ pA(x, ξ ) for all ξ ∈R

N and a.e. x ∈R
N .

(A4) a(x, 0) = 0, A(x, ξ ) = A(x, –ξ ) for a.e. x ∈R
N .

Remark 1.1 ([20]) The function A can be used in several cases. For example:
(i) A(x, ξ ) = 1

p |ξ |p.
(ii) A(x, ξ ) = h(x)

p |ξ |p with h ∈ L1
loc(RN ).

(iii) A(x, ξ ) = 1
p [(1 + |ξ |2)

p
2 – 1] with p ≥ 2.

(iv) A(x, ξ ) = h(x)
p [(1 + |ξ |2)

p
2 – 1] with p ≥ 2 and h ∈ L

p
p–1 (RN ).

(v) A(x, ξ ) = 1
p |ξ |p + θ (x)(

√
1 + |ξ |2 – 1) with a suitable function θ . We get the operator

div(|∇u|p–2∇u) + div(θ (x) ∇u√
1+|∇u|2 ), which can be regarded as the sum of the

p-Laplacian operator and a degenerate-form mean-curvature operator.

(2) Potentials V and K .
(VK1) V , K ∈ C(RN ,R), V (x) ≥ min V (x) ≥ 1, K(x) ≥ min K(x) ≥ 0, K(x) 
≡ 0, and

K(x) ∈ L∞(RN );
(VK2) lim|x|→∞ K (x)

V θ (x) = 0 for all 0 < θ < 1.

Example 1.2 ([15]) The following functions are typical examples of functions satisfying
(VK1) and (VK2):

(i) K(x) = 2 and V (x) = (|x| + 1)
1
θ for 0 < θ < 1.

(ii) K(x) = sin x and V (x) = [(|x| + 1)(| sin x| + 1)]
1
θ for 0 < θ < 1.

Is easy to check thatlim|x|→∞ K (x)
V θ (x) = 0, K(x) 
≡ 0, K(x) ∈ L∞(RN ), V (x) ≥ min V (x) ≥ 1,

and K(x) ≥ min K(x) ≥ 0 for all 0 < θ < 1.

(3) Functions f and F . Let functions f : RN+1 → R and F : RN+1 → R such that f (x, u) =
∂F(x,u)

∂x for all x ∈R satisfy the following conditions:
(f1) there exist constants c1, c2 > 0 and β ∈ (p, p∗) such that

∣
∣f (x, u)

∣
∣ ≤ c1|u|p–1 + c2|u|β–1 for all (x, u) ∈R

N ×R.

(f2) lim|u|→∞ |x|–αp∗ |F(x,u)|
|u|p = ∞ for a.e. x ∈R

N , and there exists r0 ≥ 0 such that

F(x, u) ≥ 0, ∀(x, u) ∈ R
N ×R, |u| ≥ r0.

(f3) F (x, u) := 1
p uf (x, u) – F(x, u) ≥ 0, and there exist c0 > 0 and κ > N

dp such that

∣
∣F(x, u)

∣
∣κ ≤ c0|u|pκF (x, u), ∀(x, u) ∈R

N ×R, |u| ≥ r0.

(f4) f (x, –u) = –f (x, u), ∀(x, u) ∈R
N ×R.

(f5) There exist μ > p and 
 > 0 such that

μF(x, u) ≤ uf (x, u) + 
|u|p, ∀(x, u) ∈R
N+1.

(f6) There exist μ > p and r1 > 0 such that

μF(x, u) ≤ uf (x, u), ∀(x, u) ∈R
N+1, |u| ≥ r1.
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Example 1.3 ([19]) Is easy to check that the following nonlinearities f satisfy (f1), (f2), (f4),
and (f6):

(i) f (x, u) = g(x)|u|p–1u[(p + 3)u2 – 2(p + 2)u + p + 1].
(ii) f (x, u) = g(x)|u|p–2u(4|u|3 + 2u sin u – 4 cos u).

(iii) f (x, u) = g(x)
∑m

i=1 bi|u|γi u, where b1 > 0, bi ∈R, i = 2, 3, . . . , m,
γ1 > γ2 > · · · > γm ≥ p – 2, g ∈ C(RN ,R), and 0 < infRN g ≤ sup

RN g < ∞.

Now we are ready to state the main theorems of this paper.

Theorem 1.4 Let (VK1)–(VK2), (A1)–(A4), and (f1)–(f4) be satisfied. Then equation (1.1)
has infinitely many nontrivial solutions.

Theorem 1.5 Let (VK1)–(VK2), (A1)–(A4), (f1), (f2), (f4), and (f5) be satisfied. The equa-
tion (1.1) has infinitely many nontrivial solutions.

It is easy to check that (f1) and (f6) imply (f5). Thus we have the following corollary.

Corollary 1.6 Let (VK1)–(VK2), (A1)–(A4), (f1), (f2), (f4), and (f6) be satisfied. Then equa-
tion (1.1) has infinitely many nontrivial solutions.

Remark 1.7 In our theorems, F(x, u) is allowed to be sign-changing. Even if F(x, u) ≥ 0,
assumptions (f2), (f3), (f5), and (f6) seem to be weaker than the superquadratic conditions
obtained in the aforementioned references.

Notations Considering α and K in equation (1.1), an open set B ⊂ R, and a measurable
function u : B →R, we use the following notations.

• Lq
α(B) = {u : B →R| ∫B |x|–αp∗ |u|q dx < ∞} for 1 ≤ q < ∞.

• Lq
K ,α(B) = {u : B →R| ∫B K(x)|x|–αp∗ |u|q dx < ∞} for 1 ≤ q < ∞.

• ‖u‖Lq
K ,α (B) = (

∫

B K(x)|x|–αp∗ |u|q dx)
1
q for 1 ≤ q < ∞.

• ‖u‖D1,p
α (B) = (

∫

B |x|–αp|∇u|p dx)
1
p .

• Lq(B) is the usual Sobolev space for 1 ≤ q < ∞.
• We denote by on(1) terms that tend to zero as n → ∞. The weak (⇀) and strong (→)

convergences are always taken as n → ∞.
• Hereafter C is a positive constant that can changes its value in a sequence of

inequalities.

The remainder of the paper is organized as follows. In Sect. 2, we present variational
framework. In Sect. 3, we state and prove the main results of the paper.

2 Variational framework
In this section, we want to use variational methods. So we define a convenient space and
functional. We consider the spaces

D1,p(
R

N)
=

{
u : RN →R|u ∈ Lp∗(

R
N)

and ∇u ∈ Lp(
R

N)}

and

D1,p
α

(
R

N)
=

{
u : RN →R||x|–αu ∈ Lp∗(

R
N)

and |x|–α∇u ∈ Lp(
R

N)}
.
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We define

E =

⎧
⎪⎪⎨

⎪⎪⎩

u ∈D1,p(RN ) ∩D1,p
α (RN )

∣
∣
∣
∣
∣
∣
∣
∣

∫

RN (1 + |x|–αp)|∇u|p dx < ∞
and
∫

RN V (x)|x|–αp∗ |u|p dx < ∞

⎫
⎪⎪⎬

⎪⎪⎭

,

endowed with the norm

‖u‖ =
(∫

RN

(
(
1 + |x|–αp)|∇u|p +

1
k0p

V (x)|x|–αp∗ |u|p
)

dx
) 1

p
(2.1)

with k0 given by the inequality A(x,∇u) ≥ k0h1(x)(1 + |x|–αp)|∇u|p for all ξ ∈ R
N and a.e.

x ∈ R
N , which will be proved in Lemma 3.2. Evidently, E is continuously embedded into

D1,p
α (RN ). By the weighted Caffarelli–Kohn–Nirenberg’s inequality [13]

(∫

RN
|x|–αp∗ |u|p∗

dx
) 1

p∗
≤ C

(∫

RN
|x|–αp|∇u|p dx

) 1
p

,

D1,p
α (RN ) is continuously embedded into Lp∗

α (RN ). Thus we get E ↪→D1,p
α (RN ) ↪→ Lp∗

α (RN )
for N ≥ 3.

In E, we define the following energy functional J ∈ C1(E,R):

J(u) =
∫

RN

(

A(x,∇u) +
1
p

V (x)|x|–αp∗ |u|p
)

dx

–
∫

RN
K(x)|x|–αp∗

F(x, u) dx, ∀u ∈ E. (2.2)

Its Gateaux derivative is given by

〈
J ′(u), v

〉
=

∫

RN

(
a(x,∇u)∇v + V (x)|x|–αp∗ |u|p–2uv

)
dx

–
∫

RN
K(x)|x|–αp∗

f (x, u)v dx, ∀u, v ∈ E. (2.3)

By condition (f1) we have

∣
∣F(x, u)

∣
∣ ≤ c1

p
|u|p +

c2

β
|u|β , ∀(x, u) ∈R

N ×R. (2.4)

3 Existence of infinitely many solutions
In this section, we prove the existence of infinitely many solutions for problem (1.1). Next,
we give the definition of a (C)c-sequence.

A sequence {un} ⊂ X is said to be a (C)c-sequence if J(un) → c and ‖J ′(un)‖(1 + ‖un‖) →
0, and it is said to satisfy the (C)c-condition if any (C)c-sequence has a convergent subse-
quence.

To prove our results, we use the following symmetric mountain pass theorem.

Lemma 3.1 ([6, 22]) Let X be an infinite-dimensional Banach space, X = Y ⊕ Z, where Y
is finite dimensional. Suppose that I ∈ C1(X,R) satisfies the (C)c-condition for all c > 0 and
the following conditions:
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(I1) I(0) = 0, I(–u) = I(u) for all u ∈ X ;
(I2) there exist constants ρ, θ > 0 such that I|∂Bρ∩Z ≥ θ ;
(I3) for any finite-dimensional subspace X̃ ⊂ X , there is R = R(X̃) > 0 such that I(u) ≤ 0

on X̃ \ BR.
Then I possesses an unbounded sequence of critical values.

Lemma 3.2 ([20]) The function A satisfies

∣
∣A(x, ξ )

∣
∣ ≤ c0|x|–αp(h0(x)|ξ | + h1(x)|ξ |p) + c0h1(x)|ξ |p, a.e. x ∈ R

N , (3.1)

and there exists k0 > 0 such that

A(x, ξ ) ≥ k0h1(x)
(
1 + |x|–αp)|ξ |p for all ξ ∈ R

N and a.e. x ∈R
N . (3.2)

The following two lemmas discuss the continuous and compact embedding E ↪→
Lq

K ,α(RN ) for all q ∈ [p, p∗).

Lemma 3.3 Let (VK1)–(VK2) be satisfied. Then E is continuously embedded in Lq
K ,α(RN )

for all q ∈ [p, p∗), that is, there exists γq > 0 such that

‖u‖Lq
K ,α (RN ) ≤ γq‖u‖, ∀u ∈ E. (3.3)

Proof Since K (x)
V θ (x) → 0 as |x| → ∞ and 0 < K (x)

V (x) ≤ K (x)
V θ (x) , we have K (x)

V (x) → 0 as |x| → ∞.
By the continuity of V (x) and K(x) there exists M > 0 such that K(x) ≤ MV θ (x) ≤ MV (x)
for all x ∈ R

N and 0 < θ < 1. If q = p, then the proof is trivial. Fix q ∈ (p, p∗) and choose
σ = p∗–q

p∗–p . Then q = pσ + (1 – σ )p∗ and 0 < σ < 1. From D1,p
α (RN ) ↪→ Lp∗

α (RN ), (VK2), (2.1),
and Hölder’s inequality we can get the following inequality:

‖u‖q
K ,α =

∫

RN
K(x)|x|–αp∗ |u|q dx

=
∫

RN
K(x)|x|–αp∗ |u|pσ |u|(1–σ )p∗

dx

≤
[∫

RN
K(x)

1
σ |x|–αp∗ |u|p

]σ [∫

RN
|x|–αp∗ |u|p∗

dx
]1–σ

≤
(

sup
x∈RN

K(x)
|V (x)|σ

)(∫

RN
V (x)|x|–αp∗ |u|p

)σ (∫

RN
|x|–αp∗ |u|p∗

dx
)1–σ

≤ CM
(∫

RN
V (x)|x|–αp∗ |u|p

)σ(∫

RN
|x|–αp|∇u|p dx

) p∗(1–σ )
p

≤ pk0CM
(∫

RN

(
(
1 + |x|–αp)|∇u|p +

1
pk0

V (x)|x|–αp∗ |u|p
)

dx
)σ+ p∗(1–σ )

p

= pk0CM
(∫

RN

(
(
1 + |x|–αp)|∇u|p +

1
pk0

V (x)|x|–αp∗ |u|p
)

dx
) q

p

= pk0CM‖u‖q.

It follows that E ↪→ Lq
K ,α(RN ) is a continuous embedding. �
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Lemma 3.4 Let (VK1)–(VK2) be satisfied. Then E is compactly embedded in Lq
K ,α(RN ) for

all q ∈ [p, p∗).

Proof From Lemma 3.3 we have K (x)
V (x) → 0 as |x| → ∞. Hence for any ε > 0, there exists

R > 0 such that K(x) ≤ εV (x) for |x| > R. Let {un} ⊂ E be a bounded sequence of E. Going
if necessary to a subsequence, we may assume that

un ⇀ 0 in E, un → 0 in Lq
K ,α,loc

(
R

N)
for p ≤ q < p∗.

Next, we claim that un → 0 in Lp
K ,α(RN ). Set BR(0) = {x ∈ R

N : |x| ≤ R}. Then

∫

RN \BR

K(x)|x|–αp∗ ∣∣un(x)
∣
∣p dx < ε

∫

RN
V (x)|x|–αp∗ ∣∣un(x)

∣
∣p dx

≤ pk0ε‖un‖p. (3.4)

Hence, for any ε > 0, we have

∫

RN
K(x)|x|–αp∗ ∣∣un(x)

∣
∣p dx

=
∫

BR

K(x)|x|–αp∗ ∣∣un(x)
∣
∣p dx +

∫

RN \BR

K(x)|x|–αp∗ ∣∣un(x)
∣
∣p dx

< ε
(
1 + pk0‖un‖p),

from which (3.4) follows. Since |s|q/|s|p → 0 as s → 0 and |s|q/|s|p∗ → 0 as s → ∞, then
for any ε > 0, there exists C > 0 such that

K(x)|s|q ≤ εCK(x)
(|s|p + |s|p∗)

+ CK(x)|s|p for all s ∈R. (3.5)

To prove the lemma for general exponent q, we use an interpolation argument. Let un →
0 in E. We have just proved that un → 0 in Lq

K ,α(RN ), that is,

∫

RN
K(x)|x|–αp∗ ∣∣un(x)

∣
∣q dx → 0.

Since the embedding E ↪→ Lp∗
α (RN ) is continuous and {un} is bounded in E, we also have

that {un} is bounded in Lp∗
α (RN ). From (3.5) we have

∫

RN
K(x)|x|–αp∗ ∣∣un(x)

∣
∣q dx ≤ εC

∫

RN

(
K(x)|x|–αp∗ |un|p + |x|–αp∗ |un|p∗)

dx

+ C
∫

RN
K(x)|x|–αp∗ |un|p dx → 0,

implying that un → 0 in Lq
K ,α(RN ). This completes the proof. �

Next, we need the following lemmas to show that J satisfies Lemma 3.1.
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Lemma 3.5 Under assumptions (VK1), (VK2), (f1), (f2), and (f3), any sequence {un} ⊂ E
satisfying

J(un) → c∗ > 0,
〈
J ′(un), un

〉 → 0, (3.6)

is bounded in E.

Proof To prove the boundedness of {un}, arguing by contradiction, suppose that ‖un‖ →
∞ as n → ∞. Let vn = un

‖un‖ . Then ‖vn‖ = 1. Observe that for large n,

c∗ + 1 ≥ J(un) –
1
p
〈
J ′(un), un

〉

=
∫

RN

[

A(x,∇un) –
1
p

a(x,∇un)∇un

]

dx

+
∫

RN
K(x)|x|–αp∗

[
1
p

f (x, un)un – F(x, un)
]

dx (3.7)

≥
∫

RN
K(x)|x|–αp∗

[
1
p

f (x, un)un – F(x, un)
]

dx

=
∫

RN
K(x)|x|–αp∗F (x, un) dx.

It follows from (2.2) and (3.2) that

∫

RN

K(x)|x|–αp∗ |F(x, un)|
‖un‖p dx

≥
∫

RN (A(x,∇un) + 1
p V (x)|x|–αp∗ |un|p) dx – J(un)

‖un‖p

≥
∫

RN (k0h1(x)(1 + |x|–αp)|∇un|p + 1
p V (x)|x|–αp∗ |un|p) dx – J(un)

‖un‖p

≥ k0‖un‖p – J(un)
‖un‖p .

(3.8)

By (3.8) we obtain

0 < k0 ≤ lim sup
n→∞

∫

RN

K(x)|x|–αp∗ |F(x, un)|
‖un‖p dx. (3.9)

For 0 ≤ a < b, let

�n(a, b) =
{

x ∈R
N : a ≤ ∣

∣un(x)
∣
∣ < b

}
. (3.10)

Passing to a subsequence, we may assume that vn ⇀ v in E is satisfied. Then by Lemma 3.4,
E is compactly embedded in Lq

K ,α(RN ), q ∈ [p, p∗), vn → v in Lq
K ,α(RN ), q ∈ [p, p∗), and

vn → v a.e. on R
N .
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If v = 0, then vn → 0 in Lq
K ,α(�n), q ∈ [p, p∗), and vn → 0 a.e. on R

N . Hence from (2.4) it
follows that

∫

�n(0,r0)

K(x)|x|–αp∗ |F(x, un)|
|un|p |vn|p dx

≤
(

c1

p
+

c2

β
rβ–p

0

)∫

�n(0,r0)
K(x)|x|–αp∗ |vn|p dx (3.11)

=
(

c1

p
+

c2

β
rβ–p

0

)

‖vn‖p
Lp

K ,α (�n(0,r0))
→ 0.

Set κ ′ = κ
κ–1 . Since κ > N

dp , we see that pκ ′ ∈ (p, p∗). Hence from (f3) and (3.7) we have

∫

�n(r0,∞)

K(x)|x|–αp∗ |F(x, un)|
|un|p |vn|p dx

≤
[∫

�n(r0,∞)

K(x)|x|–αp∗ |F(x, un)|κ
|un|pκ

dx
] 1

κ
[∫

�n(r0,∞)
K(x)|x|–αp∗ |vn|pκ ′

dx
] 1

κ′

≤
[∫

�n(r0,∞)

K(x)|x|–αp∗c0|un|pκF (x, un)
|un|pκ

dx
] 1

κ

‖vn‖p

Lpκ′
K ,α (�n(r0,∞))

≤ [
c0

(
c∗ + 1

)] 1
κ ‖vn‖p

Lpκ′
K ,α (RN )

→ 0.

(3.12)

Combining (3.11) with (3.12), we have

∫

RN

K(x)|x|–αp∗ |F(x, un)|
‖un‖p dx → 0,

which contradicts (3.9).
Set A := {x ∈ R

N : v(x) 
= 0}. If v 
= 0, then meas(A) > 0. For a.e. x ∈ A, we have
limn→∞ |un(x)| = ∞. Hence A ⊂ �n(r0,∞) for large n ∈ N, and from Hölder’s inequality,
h0(x) ∈ Lp/(p–1)

α (RN ), h1(x) ∈ L∞(RN ), h1(x) ≥ 1, (2.2), (2.4), (3.1), (f2), and Fatou’s lemma it
follows that

0 = lim
n→∞

c∗ + on(1)
‖un‖p = lim

n→∞
J(un)
‖un‖p

= lim
n→∞

∫

RN (A(x,∇un) + 1
p V (x)|x|–αp∗ |un|p) dx –

∫

RN K(x)|x|–αp∗F(x, un) dx
‖un‖p

≤ lim sup
n→∞

∫

RN [c0h1(x)(1 + |x|–αp)|∇un|p + 1
p V (x)|x|–αp∗ |un|p] dx

‖un‖p

+ lim sup
n→∞

∫

RN c0|x|–αph0(x)|∇un|dx
‖un‖p – lim inf

n→∞

∫

RN K(x)|x|–αp∗F(x, un) dx
‖un‖p

≤ lim sup
n→∞

max{k0, c0h1(x)}‖un‖p

‖un‖p

+ lim sup
n→∞

c0[
∫

RN |x|–αph0(x)
p

p–1 dx]
p–1

p [
∫

RN |x|–αp|∇un|p dx]
1
p

‖un‖p
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– lim inf
n→∞

∫

RN K(x)|x|–αp∗F(x, un) dx
‖un‖p

≤ max
{

k0, c0h1(x)
}

+ lim sup
n→∞

c0‖h0‖Lp/(p–1)
α

(RN )‖un‖
‖un‖p

+ lim sup
n→∞

[∫

�n(0,r0)

K(x)|x|–αp∗F(x, un)
|un|p |vn|p dx

]

– lim inf
n→∞

[∫

�n(r0,∞)

K(x)|x|–αp∗F(x, un)
|un|p |vn|p dx

]

= max
{

k0, c0h1(x)
}

+ lim sup
n→∞

[(
c1

p
+

c2

β
rβ–p

0

)

‖vn‖p
Lp

K ,α (�n(0,r0))

]

– lim inf
n→∞

[∫

�n(r0,∞)

K(x)|x|–αp∗ |F(x, un)|
|un|p

[
χ�n(r0,∞)(x)

]|vn|p dx
]

≤ max
{

k0, c0h1(x)
}

+
(

c1

p
+

c2

β
rβ–p

0

)

γ p
p

– lim inf
n→∞

[∫

�n(r0,∞)

K(x)|x|–αp∗ |F(x, un)|
|un|p

[
χ�n(r0,∞)(x)

]|vn|p dx
]

= –∞, (3.13)

which is a contradiction. Thus {un} is bounded in E. �

Lemma 3.6 Let p1, p2 > 1, r, q ≥ 1, and � ⊆R
N . Let g(x, t) be a Carathéodory function on

� ×R satisfying

∣
∣g(x, t)

∣
∣ ≤ a1|t|(p1–1)/r + a2|t|(p2–1)/r, ∀(x, t) ∈ � ×R, (3.14)

where a1, a2 ≥ 0. If un → u in Lp1
K ,α(�) ∩ Lp2

K ,α(�) and un → u for a.e. x ∈ �. Then for any
v ∈ Lp1q

K ,α(�) ∩ Lp2q
K ,α(�),

lim
n→∞

∫

�

K(x)|x|–αp∗ ∣∣g(x, un) – g(x, u)
∣
∣r|v|q dx = 0. (3.15)

Proof If (3.15) is not true, then there exist a constant ε0 > 0 and a subsequence {uki} such
that

∫

�

K(x)|x|–αp∗ ∣∣g(x, uki ) – g(x, u)
∣
∣r|v|q dx ≥ ε0, ∀i ∈N. (3.16)

Since un → u in Lp1
K ,α(�) ∩ Lp2

K ,α(�), passing to a subsequence if necessary, we can assume
that

∑∞
i=1 ‖uki – u‖p1

Lp1
K ,α

< +∞ and
∑∞

i=1 ‖uki – u‖p2
Lp2

K ,α
< +∞. Set

w1(x) =

[ ∞∑

i=1

|uki – u|p1

] 1
p1

, w2(x) =

[ ∞∑

i=1

|uki – u|p2

] 1
p2

, x ∈ �.
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Then w1 ∈ Lp1
K ,α(�) and w2 ∈ Lp2

K ,α(�). Note that

K(x)|x|–αp∗ ∣∣g(x, uki ) – g(x, u)
∣
∣r|v|q

≤ 2r–1K(x)|x|–αp∗(∣∣g(x, uki )
∣
∣r +

∣
∣g(x, u)

∣
∣r)|v|q

≤ 4r–1K(x)|x|–αp∗[
ar

1
(|uki |p1–1 + |u|p1–1) + ar

2
(|uki |p2–1 + |u|p2–1)]|v|q

≤ 4r–1K(x)|x|–αp∗

× [
2p1+1ar

1
(|uki – u|p1–1 + |u|p1–1) + 2p2+1ar

2
(|uki – u|p2–1 + |u|p2–1)]|v|q

≤ 4r–1K(x)|x|–αp∗[
2p1+1ar

1
(|w1|p1–1 + |u|p1–1) + 2p2+1ar

2
(|w2|p2–1 + |u|p2–1)]|v|q

:= h(x), ∀i ∈N, x ∈ �, (3.17)

and
∫

�

h(x) dx = 4r–1
[

2p1+1ar
1

∫

�

K(x)|x|–αp∗(|w1|p1–1 + |u|p1–1)|v|q dx

+ 2p2+1ar
2

∫

�

K(x)|x|–αp∗(|w2|p2–1 + |u|p2–1)|v|q dx
]

≤ 4r–1[2p1+1ar
1
(‖w1‖p1–1

Lp1
K ,α

+ ‖u‖p1–1
Lp1

K ,α

)‖v‖q
Lp1q

K ,α

+ 2p2+1ar
2
(‖w2‖p2–1

Lp2
K ,α

+ ‖u‖p2–1
Lp2

K ,α

)‖v‖q
Lp2q

K ,α

]

< +∞. (3.18)

Since un → u for a.e. x ∈ �, by (3.17), (3.18), and Lebesgue’s dominated convergence the-
orem we have

lim
i→∞

∫

�

K(x)|x|–αp∗ ∣∣g(x, uki ) – g(x, u)
∣
∣r|v|q dx = 0, (3.19)

which contradicts (3.16). Hence (3.15) holds. �

Similarly, we can prove the following lemma.

Lemma 3.7 Let p1, p2 > 1, r ≥ 1, and � ⊆ R
N . Let g(x, t) be a Carathéodory function on

� ×R satisfying (3.14). If un → u in Lp1
K ,α(�) ∩ Lp2

K ,α(�) and un → u for a.e. x ∈ �, then

lim
n→∞

∫

�

K(x)|x|–αp∗ ∣∣g(x, un) – g(x, u)
∣
∣r|un – u|dx = 0.

Lemma 3.8 Under assumptions (VK1), (VK2), (f1), (f2), and (f3), any sequence {un} ⊂ E
satisfying (3.6) has a convergent subsequence in E.

Proof By Lemma 3.5 the sequence {un} is bounded in E. Going if necessary to a subse-
quence, we can assume that un ⇀ u in E. By Lemma 3.4, un → u in Lq

K ,α(RN ) for q ∈ [p, p∗),
which, together with Lemma 3.7, yields

∫

RN
K(x)|x|–αp∗ ∣∣f (x, un) – f (x, u)

∣
∣|un – u|dx → 0, n → ∞. (3.20)
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Observe that

〈
J ′(un) – J ′(u), un – u

〉

=
∫

RN

(
a
(
x,∇(un – u)

)∇(un – u) + V (x)|x|–αp∗ |un – u|p)dx

–
∫

RN
K(x)|x|–αp∗[

f (x, un) – f (x, u)
]
(un – u) dx

≥
∫

RN

(
c1

(
1 + |x|–αp)h1(x)

∣
∣∇(un – u)

∣
∣p + V (x)|x|–αp∗ |un – u|p)dx

–
∫

RN
K(x)|x|–αp∗[

f (x, un) – f (x, u)
]
(un – u) dx

≥ k0p‖un – u‖p –
∫

RN
K(x)|x|–αp∗[

f (x, un) – f (x, u)
]
(un – u) dx. (3.21)

It is clear that

〈
J ′(un) – J ′(u), un – u

〉 → 0, n → ∞. (3.22)

From (3.20)–(3.22) we have ‖un – u‖ → 0, n → ∞. �

Lemma 3.9 Under assumptions (VK1), (VK2), (f1), (f2), and (f5), any sequence {un} ⊂ E
satisfying (3.6) has a convergent subsequence in E.

Proof First, we prove that {un} is bounded in E. To this end, by contradiction set ‖un‖ →
∞ as n → ∞. Let vn = un

‖un‖ . Then ‖vn‖ = 1. By (2.2), (2.3), (3.2), (A3), (f5), and h1(x) ≥ 1,
for large n ∈N, we have

c∗ + 1 ≥ J(un) –
1
μ

〈
J ′(un), un

〉

≥
∫

RN

(

A(x,∇un) +
1
p

V (x)|x|–αp∗ |un|p
)

dx –
∫

RN
K(x)|x|–αp∗

F(x, un) dx

–
1
μ

∫

RN

(
pA(x,∇un) + V (x)|x|–αp∗ |un|p

)
dx

+
1
μ

∫

RN
K(x)|x|–αp∗

f (x, un)un dx

≥
(

1 –
p
μ

)∫

RN

(

k0h1(x)
(
1 + |x|–αp)|∇un|p +

1
p

V (x)|x|–αp∗ |un|p
)

dx

–
∫

RN
K(x)|x|–αp∗

F(x, un) dx

+
1
μ

∫

RN
K(x)|x|–αp∗

f (x, un)un dx

≥
(

1 –
p
μ

)

k0‖un‖p –
∫

RN
K(x)|x|–αp∗

[
un

μ
f (x, un)

+



μ
|un|p

]

dx +
un

μ

∫

RN
K(x)|x|–αp∗

f (x, un) dx
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=
(

1 –
p
μ

)

k0‖un‖p –



μ

∫

RN
K(x)|x|–αp∗ |un|p dx

=
(

1 –
p
μ

)

k0‖un‖p –



μ
‖un‖p

Lp
K ,α (RN )

,

which implies

1 ≤ 


(μ – p)k0
lim sup

n→∞
‖vn‖p

Lp
K ,α (RN ).

(3.23)

Passing to a subsequence, we may assume that vn ⇀ v in E. Then by Lemma 3.4, E is
compactly embedded in Lq

K ,α(RN ), q ∈ [p, p∗), vn → v in Lq
K ,α(RN ), q ∈ [p, p∗), and vn → v

a.e. on R
N . Hence from (3.23) it follows that v 
= 0. By a similar fashion as for (3.13), we can

get a contradiction. Thus {un} is bounded in E. The rest of the proof is the same as that in
Lemma 3.8. �

Lemma 3.10 Under assumptions (VK1), (VK2), (f1), and (f2), for any finite-dimensional
subspace Ẽ ⊂ E, we have

J(u) → –∞ as ‖u‖ → ∞, u ∈ Ẽ.

Proof Arguing indirectly, assume that for some sequence {un} ⊂ Ẽ with ‖un‖ → ∞, n →
∞, there exists M > 0 such that J(un) ≥ –M for all n ∈ N. Set vn = un

‖un‖ ; then ‖vn‖ = 1.
Passing to a subsequence, we may assume that vn ⇀ v in E. Since Ẽ is finite dimensional,
vn → v ∈ Ẽ in E, vn → v a.e. on R

N , and thus ‖v‖ = 1. Hence we can get a contradiction by
a similar fashion as for (3.13). �

Corollary 3.11 Under assumptions (VK1), (VK2), (f1), and (f2), for any finite-dimensional
subspace Ẽ ⊂ E, there is R = R(Ẽ) > 0 such that

J(u) ≤ 0, ∀u ∈ Ẽ,‖u‖ ≥ R.

Since E is a reflexive separable Banach space, there exist {en}∞n=1 ⊂ E and {e∗
n}∞n=1 ⊂ E∗

such that

〈
e∗

n, em
〉

=

⎧
⎨

⎩

1 if n = m,

0 if n 
= m,

E = span{en : n = 1, 2, . . .}, and E∗ = span
{

e∗
n : n = 1, 2, . . .

}
.

For k = 1, 2, . . . , we denote

Xk = span{ek}, Yk =
k⊕

j=1

Xj and Zk =
∞⊕

j=k+1

Xj.

Lemma 3.12 Let (VK1) and (VK2) be satisfied. Then for any p ≤ q < p∗, we have

ηk(q) := sup
u∈Zk ,‖u‖=1

‖u‖Lq
K ,α (RN ) → 0, k → ∞.
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Proof It is clear that 0 ≤ ηk+1 ≤ ηk , so that ηk → η ≥ 0 (k → ∞). For every k ∈ N, there
exists uk ∈ Zk satisfying

‖uk‖ = 1, 0 ≤ ηk – ‖uk‖Lq
K ,α (RN ) <

1
k

.

Then there exists a subsequence of {uk} (which we still denote by uk) such that uk ⇀ u
and

〈
e∗

n, u
〉

= lim
k→∞

〈
e∗

n, uk
〉

= 0, n = 1, 2, . . . ,

which implies that u = 0, and so uk ⇀ 0. By the compact embedding E ↪→ Lq
K ,α(RN ) we

have uk → 0 in Lq
K ,α(RN ). Hence we get ηk → 0. �

By Lemma 3.12 we can choose an integer m ≥ 1 such that

‖u‖p
Lp

K ,α (RN )
≤ pk0

2c1
‖u‖p, ‖u‖β

Lβ
K ,α (RN )

≤ βk0

4c2
‖u‖β , ∀u ∈ Zm. (3.24)

Lemma 3.13 Let (VK1), (VK2), and (f1) be satisfied. Then there exist constants ρ, θ > 0
such that J|∂Bρ∩Zm ≥ θ .

Proof From (2.2), (2.4), (3.2), (3.24), and h1(x) ≥ 1, for u ∈ Zm, choosing ρ := ‖u‖ = 1
2 , we

get

J(u) =
∫

RN

(

A(x,∇u) +
1
p

V (x)|x|–αp∗ |u|p
)

dx –
∫

RN
K(x)|x|–αp∗

F(x, u) dx

≥
∫

RN

(

k0h1(x)
(
1 + |x|–αp)|∇u|p +

1
p

V (x)|x|–αp∗ |u|p
)

dx

–
∫

RN
K(x)|x|–αp∗

F(x, u) dx

≥ k0‖u‖p –
∫

RN
K(x)|x|–αp∗

(
c1

p
|u|p +

c2

β
|u|β

)

dx

= k0‖u‖p –
c1

p
‖u‖p

Lp
K ,α (RN )

–
c2

β
‖u‖β

Lβ
K ,α (RN )

≥ k0

2
‖u‖p –

k0

4
‖u‖β

=
k0 · 2β–p+1 – k0

2β+2 := θ > 0.

This completes the proof. �

Proof of Theorem 1.4 Let X = E, Y = Ym, and Z = Zm. By Lemma 3.5, Lemma 3.8,
Lemma 3.13, and Corollary 3.11 all conditions of Lemma 3.1 are satisfied. Thus problem
(1.1) possesses infinitely many nontrivial solutions. �

Proof of Theorem 1.5 Let X = E, Y = Ym, and Z = Zm. Obviously, the rest of the proof is
the same as that of Theorem 1.4 by using Lemma 3.9 instead of Lemmas 3.5 and 3.8. �
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