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1 Introduction and main results
In this paper, we investigate the following Kirchhof-type problem with Soblev–Hardy crit-
ical exponent:

⎧
⎪⎪⎨

⎪⎪⎩

{a + b[
∫

�
(|∇u|2 – μ u2

|x|2 ) dx] 2–s
2 }(–�u – μ u

|x|2 )

= |u|2∗(s)–2u
|x|s + f (x, u) in �,

u = 0, on ∂�,

(1.1)

where � is a smooth bounded domain in R
3, 0 ∈ �, a, b > 0, 0 ≤ s < 2, μ ∈ [0, 1/4), 2∗(s) =

6 – 2s is the Sobolev–Hardy critical exponent, and f (x, t) : � × R is a continuous real
function.

Equation (1.1) is called a Schrödinger equation of Kirchhoff type due to the presence of
the term b[

∫

�
(|∇u|2 –μu2|x|–2) dx](2–s)/2. When μ = 0 and s = 1, it appears in the following

classical Kirchhoff type equation:

⎧
⎨

⎩

–(a + b
∫

�
|∇u|2 dx)�u = k(x, u) in �,

u = 0 on ∂�,
(1.2)
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related to the stationary analogue of the equation

utt –
(

a + b
∫

�

|∇u|2 dx
)

�u = f (x, t),

which was first proposed by Kirchhoff [1] as an extension of the classical D’Alembert wave
equation for free vibrations of elastic strings. Equation (1.2) has aroused widespread con-
cern after the work of Lions [2], which proposes a function analysis framework. After that,
many interesting results have been obtained such as [3–9]. For instance, Xu and Chen
[10] studied Kirchhoff-type equations with a general nonlinearity in the critical growth.
Under certain conditions, the existence of ground state solutions were proved by using
variational methods. In particular, they do not use the classical Ambrosetti–Rabinowitz
condition. Fiscella et al. [11] dealt with the existence of nontrivial solutions for critical
Hardy–Schrd̈inger–Kirchhoff systems driven by the fractional p-Laplacian operator. The
existence was derived as an application of the mountain pass theorem and the Ekeland
variational principle. The authors extend the existence results recently obtained for frac-
tional systems to entire solutions with critical nonlinear terms and generalized the systems
driven by the p-Laplacian operator to the fractional Hardy–Schrödinger–Kirchhoff case.
Xiang and Vicentiu [12] investigated the existence of solutions for critical Schrödinger–
Kirchhof-type systems driven by nonlocal integro-differential operators. By applying the
mountain pass theorem and Ekeland’s variational principle, the existence and asymptotic
behavior of solutions for the problem under some suitable assumptions were obtained.
A distinguished feature of their paper is that the systems are degenerate, that is, the Kirch-
hoff function could vanish at zero. This is the first time of exploiting the existence of solu-
tions for fractional Schrödinger–Kirchhoff systems involving critical nonlinearities in RN .

In the case k(x, u) = f (x, u) + u5, Xie et al. [6] studied the nondegenerate and degener-
ate cases and proved the existence and multiplicity of solutions by using the Brezis–Lieb
lemma and mountain pass theorem. Naimen [8] further discussed this problem in the case
of k(x, u) = μg(x, u) + u5 under different conditions of g(x, u) and μ ∈R. In the meantime,
the results were expanded in [6] by establishing the existence and nonexistence of posi-
tive solutions by using the second concentration compactness lemma and mountain pass
theorem.

Problem (1.1) in the case of a = 1 and b = 0 can be reduced to the classic semilinear ellip-
tic problem with critical exponents, for which the existence and multiplicity of solutions
was proved by Ding and Tang [9].

Inspired by the results of the above paper, the purpose of this paper is to consider the
existence and multiplicity of solutions to problem (1.1). The main difficulty in this paper
is that it contains the Sobolev–Hardy critical exponent term, which leads to the energy
functional not satisfying the Palais–Smale condition.

In order to state our main results, let F(x, u) =
∫ u

0 f (x, t) dt. We introduce the following
assumptions:

(f1) f ∈ C(� ×R
+,R), and limt→0+

f (x,t)
t = 0, limt→+∞ f (x,t)

t5–2s = 0 uniformly for a.e. x ∈ �.
(f2) There exists a constant ρ > max{ 6

1+
√

1–4μ
, 6–

√
1 – 4μ} such that 0 < ρF(x, t) ≤ f (x, t)t

for all x ∈ �, t ∈R
+ \ {0}.

(f3) f ∈ C(� ×R,R), and limt→0
f (x,t)

t = 0, limt→+∞ f (x,t)
t5–2s = 0 uniformly for a.e. x ∈ �.

(f4) There exists a constant ρ > max{ 6
1+

√
1–4μ

, 6–
√

1 – 4μ} such that 0 < ρF(x, t) ≤ f (x, t)t
for all x ∈ �, t ∈R \ {0}.
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Now our main results are as follows.

Theorem 1.1 Let f (x, t) satisfy (f1) and (f2). Then problem (1.1) has at least one positive
solution.

Theorem 1.2 Let f (x, t) satisfy (f3) and (f4). Then problem (1.1) has at least two distinct
nontrivial solutions.

Remark 1.1 We added the Hardy and Sobolev–Hardy terms in equation (1.1) on the basis
of [6]. We overcome the compactness problem with concentration compactness principle.
Lei [7] studied another special case of problem (1.1) with f (x, u) = λf (x)|u|q–2u|x|–β for a
suitable function f (x) and 1 < q < 2. By using the Nehari manifold and fibering maps, they
obtained two positive solutions. We observe that the term λf (x)|u|q–2u|x|–β has to be a
homogeneous function; however, it does not satisfy the assumptions we give in this paper.

The rest of this paper is organized as follows. In Sect. 2, we give some preliminary results.
In Sect. 3, we establish the proofs of our main results.

2 Preliminaries
In this part, we give some information to support this paper. Otherwise stated, C, C0, C1, . . .
represent positive constants, and “→” and “⇀” represent the strong convergence and
weak convergence in the corresponding space, respectively. Let H1

0 (�) be the usual Hilbert
space endowed with the usual inner product and norm

(u, v)H1
0 (�) =

∫

�

∇u∇v dx and ‖u‖H1
0 (�) =

(∫

�

|∇u|2 dx
) 1

2
.

By the well-known Hardy inequality [13]

∫

�

u2

|x|2 dx ≤ 4
∫

�

|∇u|2 dx,

we deduce that

(u, v) =
∫

�

(

∇u∇v – μ
uv
|x|2

)

dx and ‖u‖ =
[∫

�

(

|∇u|2 – μ
u2

|x|2
)

dx
] 1

2
,

respectively, which are equivalent to the usual inner product and norm on H1
0 (�) for any

μ ∈ [0, 1/4).
We also define the best Sobolev–Hardy constant

S � inf
u∈H1

0 (�)\{0}

∫

�
(|∇u|2 – μ u2

|x|2 ) dx

(
∫

�

|u|2∗(s)

|x|s dx)
2

2∗(s)
. (2.1)

From Lemma 2.2 in [14] we find that S is independent of �, and when � = R
3, it is obtained

by the functions

yε(x) =
[

2ε(3 – s)(μ̄ – μ)√
μ̄

]
√

μ̄
2–s /[|x|

√
μ̄–

√
μ̄–μ

(
ε + |x|

(2–s)
√

μ̄–μ√
μ̄

) 3–s
2–s

]
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for all ε > 0 and μ̄ = 1/4. In addition, the function yε(x) is the solution to the equation

–�u – μ
u

|x|2 =
|u|2∗(s)–2u

|x|s in R
3 \ {0}.

Since 0 ∈ �, let R0 be a positive constant such that B2R0 (0) ⊂ �. We take a cut-off function
η(x) ∈ C∞

0 (�) such that η(x) = 1 for |x| ≤ R0, η(x) = 0 for |x| > 2R0, and 0 ≤ η(x) ≤ 1 oth-
erwise. Let Cε = [ 2ε(3–s)

√
μ̄–μ√

μ̄
]

√
μ̄

2–s , γ1 =
√

μ̄ –
√

μ̄ – μ, γ2 =
√

μ̄ +
√

μ̄ – μ, and Uε(x) = yε (x)
Cε

.
Suppose

Uε(x) =
1

[|x| 2–s
2

γ1√
μ̄ + |x| 2–s

2
γ2√
μ̄ ]

2
√

μ̄
2–s

,

uε(x) = η(x)Uε(x) =
η(x)

[ε|x| 2–s
2

γ1√
μ̄ + |x| 2–s

2
γ2√
μ̄ ]

2
√

μ̄
2–s

,

vε(x) =
uε(x)

(
∫

�

|uε (x)|2∗(s)

|x|s dx)
1

2∗(s)
,

so that ‖vε(x)‖2∗(s)
L2∗(s)(�,|x|–s)

=
∫

�
|vε(x)|2∗(s)|x|–s dx = 1. Then we have the following results

[14]:

∥
∥vε(x)

∥
∥2 = S + O

(
ε

1
2–s

)
, (2.2)

∫

�

|vε |q dx =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

O(ε
q
√

μ̄
2–s ), 1 ≤ q < 3√

μ̄+
√

μ̄–μ
,

O(ε
q
√

μ̄
2–s | ln ε|), q = 3√

μ̄+
√

μ̄–μ
,

O(ε
√

μ̄(3–q
√

μ̄)
(2–s)

√
μ̄–μ ), 3√

μ̄+
√

μ̄–μ
< q < 6.

(2.3)

Now we define the functional I on H1
0 (�) by

I(u) =
a
2
‖u‖2 +

b
4 – s

‖u‖4–s –
1

2∗(s)

∫

�

u2∗(s)

|x|s dx –
∫

�

F(x, u) dx. (2.4)

Obviously, the functional I belongs to the class C1(H1
0 (�),R). Furthermore,

〈
I ′(u), v

〉
= a

∫

�

(

∇u∇v – μ
uv
|x|2

)

dx + b‖u‖2–s
∫

�

(

∇u∇v – μ
uv
|x|2

)

dx

–
∫

�

u2∗(s)–1v
|x|s dx –

∫

�

f (x, u)v dx, ∀v ∈ H1
0 (�).

3 Proofs of our main results
In this section, we consider the existence and multiplicity of solutions to problem (1.1).
We first verify that the functional I(u) satisfies the local (PS) condition.
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Lemma 3.1 Let f (x, t) satisfy (f1) and (f2). Suppose c ∈ (0,�0), where

�0 =
a(2 – s)
2(3 – s)

S
[

bS 4–s
2 +

√
b2S4–s + 4aS
2

] 2
2–s

+
b(2 – s)

2(3 – s)(4 – s)
S
[

bS 4–s
2 +

√
b2S4–s + 4aS
2

] 4–s
2–s

.

Then I(u) satisfies the local (PS)c condition.

Proof Suppose that {un} is a (PS)c sequence. Then, for c ∈ (0,�0),

I(un) → c, I ′(un) → 0 as n → ∞. (3.1)

First, we prove that {un} is a bounded sequence. From (3.1) we have

1 + c + o(1)‖un‖ ≥ I(un) –
1
θ

〈
I ′(un), un

〉

=
(

1
2

–
1
θ

)

a‖un‖2 +
(

1
4 – s

–
1
θ

)

b‖un‖4–s

+
(

1
θ

–
1

2∗(s)

)∫

�

|u|2∗(s)

|x|s dx +
∫

�

(
1
θ

f (x, un)un – F(x, un)
)

dx

≥
(

1
2

–
1
θ

)

a‖un‖2,

where θ = min{ρ, 2∗(s)}. Thus we conclude that {un} is a bounded sequence in H1
0 (�). By

the continuity of embedding we have |un|2∗(s)
2∗(s) ≤ C1 < ∞ (denoting the usual Lp(�) norm

by | · |p). Up to subsequences if necessary, there exists u ∈ H1
0 (�) such that

un ⇀ u weakly in H1
0 (�),

un → u in Lq(�) for q ∈ [
1, 2∗(s)

]
,

un → u a.e. in �.

Then we prove that un → u in H1
0 (�).

By (f1), for any ε > 0, there exists a(ε) such that

f (x, t) ≤ 1
2C1

εt5–2s + a(ε).

Let δ1 = ε
2a(ε) . When E ⊂ � and mes E < δ1, we have

∣
∣
∣
∣

∫

E
f (x, un)un dx

∣
∣
∣
∣ ≤

∫

E

∣
∣f (x, un)un

∣
∣dx

≤
∫

E
a(ε) dx +

1
2C1

ε

∫

E
|un|2∗(s) dx

≤ a(ε) mes E +
1

2C1
εC1

≤ ε.

(3.2)
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Hence {∫
�

f (x, un)un dx, n ∈ N} is equiabsolutely continuous. It is easy to get the following
from the Vitali convergence theorem:

∫

�

f (x, un)un dx →
∫

�

f (x, u)u dx as n → ∞. (3.3)

Similarly, we can prove that

∫

�

F(x, un) dx →
∫

�

F(x, u) dx as n → ∞.

Further, by the concentration compactness principle [15] there exist a countable set �,
a set of different points {xj} ⊂ � \ {0}, nonnegative real numbers μxj ,νxj for j ∈ �, and
nonnegative real numbers μ0, γ0, ν0 such that

|∇un|2 ⇀ dμ̃ ≥ |∇u|2 +
∑

j∈�

μxjδxj + μ0δ0,

u2
n|x|–2 ⇀ dγ = u2|x|–2 + γ0δ0,

|un|2∗(s)|x|–s ⇀ dν = |u|2∗(s)|x|–s +
∑

j∈�

νxjδxj + ν0δ0,

where δx is the Dirac mass at x ∈ �. For any ε > 0, we let xj /∈ Bε(0) for all j ∈ � and choose
φ to be s smooth cut-off function such that 0 ≤ φ ≤ 1, φ ≡ 0 for x ∈ Bc

ε(0), φ ≡ 1 for
x ∈ Bε/2(0), and |∇φ| ≤ 4/ε. Then

lim
ε→0

lim
n→∞

∫

�

|∇un|2φ dx = lim
ε→0

∫

�

φdμ̃ ≥ μ0,

lim
ε→0

lim
n→∞

∫

�

u2
n|x|–2φ dx = lim

ε→0

∫

�

φdγ = γ0,

lim
ε→0

lim
n→∞

∫

�

|un|2∗(s)|x|–sφ dx = lim
ε→0

∫

�

φdν = ν0,

lim
ε→0

lim
n→∞

∫

�

(∇un∇φ)un dx = 0, (3.4)

lim
ε→0

lim
n→∞

∫

�

f (x, un)unφ dx = 0. (3.5)

The proofs of (3.4) and (3.5) are similar to that of Theorem 2.3 in [8] and are omitted here.
Since {un} is bounded, by (3.1) we have

0 = lim
ε→0

lim
n→∞

〈
I ′(un), unφ

〉

= lim
ε→0

lim
n→∞

{
(
a + b‖un‖2–s)

[∫

�

(

|∇un|2φ + (∇un∇φ)un – μ
u2

n
|x|2 φ

)

dx
]

–
∫

�

|un|2∗(s)

|x|s φ dx –
∫

�

f (x, un)unφ dx
}

≥ a(μ0 – μγ0) + b(μ0 – μγ0)(4–s)/2 – ν0.
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Combining this with (2.1), we have that S2∗(s)/2ν0 ≤ (μ0 – μγ0)2∗(s)/2, and we deduce that

S–3+s(μ0 – μγ0)2–s – b(μ0 – μγ0)(2–s)/2 – a ≥ 0,

which implies

(μ0 – μγ0) ≥ S
[

bS 4–s
2 +

√
b2S4–s + 4aS
2

] 2
2–s

.

Therefore we get

c + o(1) = I(un) –
1

4 – s
〈
I ′(un), un

〉

=
a(2 – s)
2(4 – s)

‖un‖2 +
2 – s

2(3 – s)(4 – s)

∫

�

|un|2∗(s)

|x|s dx

+
1

4 – s

∫

�

f (x, un)un dx –
∫

�

F(x, un) dx

≥ a(2 – s)
2(4 – s)

(μ0 – μγ0) +
2 – s

2(3 – s)(4 – s)
ν0

≥ a(2 – s)
2(4 – s)

(μ0 – μγ0) +
2 – s

2(3 – s)(4 – s)
[
a(μ0 – μγ0) + b(μ0 – μγ0)(4–s)/2]

≥ �,

a contradiction. Thus we obtain

∫

�

|un|2∗(s)

|x|s dx →
∫

�

|u|2∗(s)

|x|s dx.

Combining this with (3.2), we find

o(1) =
〈
I ′(un) – I ′(u), un – u

〉

=
(
a + b‖un‖2–s)(un, un – u) –

(
a + b‖u‖2–s)(u, un – u) + o(1)

=
(
a + b‖un‖2–s)(un – u, un – u) + b

(‖un‖2–s – ‖u‖2–s)(u, un – u) + o(1)

≥ a‖un – u‖2 + o(1),

which shows that un → u in H1
0 (�). The proof is completed. �

Lemma 3.2 If f (x, t) satisfies (f1) and (f2), then there exists u0 ∈ H1
0 (�) such that

sup
t≥0

I(tu0) < �.

Proof We consider the functions

g(t) =
at2

2
‖vε‖2 +

bt4–s

4 – s
‖vε‖4–s –

t2∗(s)

2∗(s)
–

∫

�

F(x, tvε) dx,

g0(t) =
at2

2
‖vε‖2 +

bt4–s

4 – s
‖vε‖4–s –

t2∗(s)

2∗(s)
.
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From

0 = g ′(tε) = atε‖vε‖2 + bt3–s
ε ‖vε‖4–s – t2∗(s)–1

ε –
∫

�

f (x, tεvε)vε dx

we derive

a‖vε‖2 + bt2–s
ε ‖vε‖4–s = t4–2s

ε +
1
tε

∫

�

f (x, tεvε)vε dx ≥ t4–2s
ε . (3.6)

Since 4 – 2s = 2(2 – s), we have

tε ≤
[

b‖vε‖4–s +
√

b2‖vε‖2(4–s) + 4a‖vε‖2

2

] 1
2–s

� t0.

By (f1), obviously,

f (x, t) ≤ εt5–2s + d(ε)t, d(ε) > 0.

Therefore we obtain

a‖vε‖2 + bt2–s
ε ‖vε‖4–s ≤ t4–2s

ε + ε

∫

�

|tε |4–2s|vε |2∗(s) dx + d(ε)
∫

�

|vε |2 dx (3.7)

and

t4–2s
ε + ε

∫

�

|tε |4–2s|vε |2∗(s) dx = t4–2s
ε

(

1 + ε

∫

�

|vε |2∗(s) dx
)

≤ 3
2

t4–2s
ε . (3.8)

Thanks to (2.3), when ε is small enough, we conclude from d(ε)
∫

�
|vε |2 dx → 0 as ε → 0

that

d(ε)
∫

�

|vε |2 dx ≤ a‖vε‖2. (3.9)

From (3.7)–(3.9) we get

a‖vε‖2 + bt2–s
ε ‖vε‖4–s ≤ 3

2
t4–2s
ε + a‖vε‖2.

Combining this with (2.2), we obtain

bS
4–s

2 ≤ b‖vε‖4–s ≤ 3
2

t2–s
ε ,

which implies

tε ≥
(

2bS 4–s
2

3

) 1
2–s

.

Consequently, the function g0(t) attains its maximum at t0 and continuously increases in
the interval [0, t0]. From this, together with (2.2) and the inequality F(x, t) ≥ C2|t|ρ , which
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is directly obtained from (f2), we derive that

g(t) ≤ g0(t0) –
∫

�

F(x, tεvε) dx

=
a(2 – s)
2(3 – s)

t2
0‖vε‖2 +

b(2 – s)
2(3 – s)(4 – s)

t4–s
0 ‖vε‖4–s –

∫

�

F(x, t0vε) dx

≤ a(2 – s)
2(3 – s)

‖vε‖2
[

b‖vε‖4–s +
√

b2‖vε‖2(4–s) + 4a‖vε‖2

2

] 2
2–s

+
b(2 – s)

2(3 – s)(4 – s)
‖vε‖4–s

[
b‖vε‖4–s +

√
b2‖vε‖2(4–s) + 4a‖vε‖2

2

] 4–s
2–s

– C2

∫

�

tρ
ε |vε |ρ dx

≤ � + O
(

1
2(2 – s)

)

– C2

(
2bS 4–s

2

3

) ρ
2–s

∫

�

|vε |ρ dx.

In addition, from (2.3) it follows that

∫

�

|vε |ρ dx = O
(
ε

√
μ̄(3–ρ

√
μ̄)

(2–s)
√

μ̄–μ
)
.

Thanks to (f2), we have

1
2(2 – s)

>
√

μ̄(3 – ρ
√

μ̄)
(2 – s)

√
μ̄ – μ

.

Choosing ε small enough, we conclude

sup
t≥0

I(tvε) = g(tε) < �.

This completes the proof of Lemma 3.2. �

Next, we prove that the functional I(u) satisfies the mountain pass geometry.

Lemma 3.3 Suppose that (f1) and (f2) hold. Then we have:
(i) there exist r,β > 0 such that inf‖u‖=r I(u) ≥ β > 0,

(ii) there exists a nonnegative function e ∈ H1
0 (�) such that ‖e‖ > r and I(e) < 0.

Proof (i) By (f1), for any ε > 0, there exists C3 such that

∣
∣f (x, t)

∣
∣ ≤ εt + C3t5–2s

for all t ∈ R
+ and x ∈ �. By the definition of F(x, u) we get

∣
∣F(x, t)

∣
∣ ≤ 1

2
εt2 + C4t2∗(s)



Fan and Deng Boundary Value Problems         (2021) 2021:49 Page 10 of 11

for all t ∈ R
+ and x ∈ �, where C5 = 1

2∗(s) C3. Then by (2.1),we get

I(u) =
a
2
‖u‖2 +

b
4 – s

‖u‖4–s –
1

2∗(s)

∫

�

|u|2∗(s)

|x|s dx –
∫

�

F(x, u) dx

≥ a
2
‖u‖2 –

1
2∗(s)

S– 2∗(s)
2 ‖u‖2∗(s) –

1
2
ε|u|22 – C5|u|2∗(s)

2∗(s)

≥ a
2
‖u‖2 –

1
2∗(s)

S– 2∗(s)
2 ‖u‖2∗(s) –

C
2

ε‖u‖2
2 – CC5‖u‖2∗(s)

2∗(s)

for ε small enough. Hence there exists β > 0 such that I(u) ≥ β for all ‖u‖ = r, where r > 0
is small enough.

By Lemma 3.2, there exists u0 ∈ H1
0 (�), u0 �≡ 0 such that

sup
t≥0

I(tu0) < �.

It follows from the nonnegativity of F(x, t) that

I(tu0) =
at2

2
‖u0‖2 +

bt4–s

4 – s
‖u0‖4–s –

t2∗(s)

2∗(s)

∫

�

|u0|2∗(s)

|x|s dx –
∫

�

F(x, tu0) dx

≤ at2

2
‖u0‖2 +

bt4–s

4 – s
‖u0‖4–s –

t2∗(s)

2∗(s)

∫

�

|u0|2∗(s)

|x|s dx,

which shows that limt→+∞ I(tu0) → –∞. Therefore we can choose t0 such that ‖t0u0‖ > r
and I(t0u0) ≤ 0. The proof of Lemma 3.3 is completed. �

Proof of Theorem 1.1 By the mountain pass theorem in [16] there is a sequence {un} ⊂
H1

0 (�) satisfying

I(un) → c ≥ β and I ′(un) → 0,

where

c = inf
γ∈τ

max
t∈[0,1]

I
(
γ (t)

)
,

τ =
{
γ ∈ C

(
[0, 1], H1

0 (�)
)|γ (0) = 0,γ (1) = t0u0

}
.

Therefore

0 < β ≤ c = inf
γ∈τ

max
t∈[0,1]

I
(
γ (t)

) ≤ max
t∈[0,1]

I(tt0u0) ≤ sup
t≥0

I(tu0) < �.

Applying this inequality and Lemma 3.1, we can obtain a critical point u1 of the func-
tional I . From the continuity of I ′ we deduce that u1 is a weak solution of problem (1.1).
Then 〈I ′(u1), u–

1 〉 = 0, where u–
1 = min{u, 0}. Thus u1 ≥ 0 and u1 �≡ 0. By the strong maxi-

mum principle there is u1 > 0 that is a positive solution of problem (1.1). Thus Theorem 1.1
holds. �

Proof of Theorem 1.2 Theorem 1.2 can be proved similarly. �
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